1
|
Skoracka J, Bajewska K, Kulawik M, Suchorska W, Kulcenty K. Advances in cartilage tissue regeneration: a review of stem cell therapies, tissue engineering, biomaterials, and clinical trials. EXCLI JOURNAL 2024; 23:1170-1182. [PMID: 39391058 PMCID: PMC11464958 DOI: 10.17179/excli2024-7088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Cartilage tissue, characterized by its limited regenerative capacity, presents significant challenges in clinical therapy. Recent advancements in cartilage regeneration have focused on integrating stem cell therapies, tissue engineering strategies, and advanced modeling techniques to overcome existing limitations. Stem cells, particularly Mesenchymal Stem Cells (MSCs) and induced pluripotent stem cells (iPSCs), hold promise for cartilage repair due to their ability to differentiate into chondrocytes, the key cells responsible for cartilage formation. Tissue engineering approaches, including 3D models, organ-on-a-chip systems, and organoids, offer innovative methods to mimic natural tissue microenvironments and evaluate potential treatments. MSC-based techniques, such as cell sheet tissue engineering, address challenges associated with traditional therapies, including cell availability and culture difficulties. Furthermore, advancements in 3D bioprinting enable the fabrication of complex tissue structures, while organ-on-a-chip systems provide microfluidic platforms for disease modeling and physiological mimicry. Organoids serve as simplified models of organs, capturing some complexity and enabling the monitoring of pathophysiological aspects of cartilage diseases. This comprehensive review underscores the transformative potential of integrating stem cell therapies, tissue engineering strategies, and advanced modeling techniques to improve cartilage regeneration and pave the way for more effective clinical treatments.
Collapse
Affiliation(s)
- Julia Skoracka
- Poznan University of Medical Sciences, Poznan, Poland, Fredry 10 Street, 61-701 Poznan, Poland
| | - Kaja Bajewska
- Poznan University of Medical Sciences, Poznan, Poland, Fredry 10 Street, 61-701 Poznan, Poland
| | - Maciej Kulawik
- Poznan University of Medical Sciences, Poznan, Poland, Fredry 10 Street, 61-701 Poznan, Poland
| | - Wiktoria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences,Garbary 15 Street, 61-866 Poznan, Poland
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Campbell TM. CORR Insights®: Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model. Clin Orthop Relat Res 2024; 482:1263-1266. [PMID: 38843517 PMCID: PMC11219161 DOI: 10.1097/corr.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 07/04/2024]
Affiliation(s)
- T Mark Campbell
- Clinician Investigator, Physical Medicine and Rehabilitation Department, Élisabeth Bruyère Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in The management of orthopedic surgical challenges. Int J Surg 2024; 110:01279778-990000000-01425. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells is easier and can be further grown in vitro. In this review, we have discussed orthopedic-related issues including bone defects and fractures, non-unions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of mesenchymal stem cells. It aims to objectify the idea of stem cells, with a major focus on the application of Mesenchymal stem cells (MSCs) from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of mesenchymal stem cells may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
4
|
Chen Y, Cheng RJ, Wu Y, Huang D, Li Y, Liu Y. Advances in Stem Cell-Based Therapies in the Treatment of Osteoarthritis. Int J Mol Sci 2023; 25:394. [PMID: 38203565 PMCID: PMC10779279 DOI: 10.3390/ijms25010394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, degenerative joint disease presenting a significant global health threat. While current therapeutic approaches primarily target symptom relief, their efficacy in repairing joint damage remains limited. Recent research has highlighted mesenchymal stem cells (MSCs) as potential contributors to cartilage repair, anti-inflammatory modulation, and immune regulation in OA patients. Notably, MSCs from different sources and their derivatives exhibit variations in their effectiveness in treating OA. Moreover, pretreatment and gene editing techniques of MSCs can enhance their therapeutic outcomes in OA. Additionally, the combination of novel biomaterials with MSCs has shown promise in facilitating the repair of damaged cartilage. This review summarizes recent studies on the role of MSCs in the treatment of OA, delving into their advantages and exploring potential directions for development, with the aim of providing fresh insights for future research in this critical field.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Deying Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| |
Collapse
|
5
|
Mavrogenis AF, Karampikas V, Zikopoulos A, Sioutis S, Mastrokalos D, Koulalis D, Scarlat MM, Hernigou P. Orthobiologics: a review. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05803-z. [PMID: 37071148 DOI: 10.1007/s00264-023-05803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE The use of biologic materials in orthopaedics (orthobiologics) has gained significant attention over the past years. To enhance the body of the related literature, this review article is aimed at summarizing these novel biologic therapies in orthopaedics and at discussing their multiple clinical implementations and outcomes. METHODS This review of the literature presents the methods, clinical applications, impact, cost-effectiveness, and outcomes, as well as the current indications and future perspectives of orthobiologics, namely, platelet-rich plasma, mesenchymal stem cells, bone marrow aspirate concentrate, growth factors, and tissue engineering. RESULTS Currently available studies have used variable methods of research including biologic materials as well as patient populations and outcome measurements, therefore making comparison of studies difficult. Key features for the study and use of orthobiologics include minimal invasiveness, great healing potential, and reasonable cost as a nonoperative treatment option. Their clinical applications have been described for common orthopaedic pathologies such as osteoarthritis, articular cartilage defects, bone defects and fracture nonunions, ligament injuries, and tendinopathies. CONCLUSIONS Orthobiologics-based therapies have shown noticeable clinical results at the short- and mid-term. It is crucial that these therapies remain effective and stable in the long term. The optimal design for a successful scaffold remains to be further determined.
Collapse
Affiliation(s)
- Andreas F Mavrogenis
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Vasileios Karampikas
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Alexandros Zikopoulos
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Spyridon Sioutis
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios Mastrokalos
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitrios Koulalis
- First Department of OrthopaedicsNational and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | | |
Collapse
|
6
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
7
|
Ragni E, Perucca Orfei C, De Luca P, Libonati F, de Girolamo L. Tissue-Protective and Anti-Inflammatory Landmark of PRP-Treated Mesenchymal Stromal Cells Secretome for Osteoarthritis. Int J Mol Sci 2022; 23:ijms232415908. [PMID: 36555578 PMCID: PMC9788137 DOI: 10.3390/ijms232415908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs' regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs' secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment.
Collapse
|
8
|
Huang J, Liu Q, Xia J, Chen X, Xiong J, Yang L, Liang Y. Modification of mesenchymal stem cells for cartilage-targeted therapy. J Transl Med 2022; 20:515. [PMID: 36348497 PMCID: PMC9644530 DOI: 10.1186/s12967-022-03726-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the destruction of the articular cartilage, sclerosis of the subchondral bone, and joint dysfunction. Its pathogenesis is attributed to direct damage and mechanical destruction of joint tissues. Mesenchymal stem cells (MSCs), suggested as a potential strategy for the treatment of OA, have shown therapeutic effects on OA. However, the specific fate of MSCs after intraarticular injection, including cell attachment, proliferation, differentiation, and death, is still unclear, and there is no guarantee that stem cells can be retained in the cartilage tissue to enact repair. Direct homing of MSCs is an important determinant of the efficacy of MSC-based cartilage repair. Recent studies have revealed that the unique homing capacity of MSCs and targeted modification can improve their ability to promote tissue regeneration. Here, we comprehensively review the homing effect of stem cells in joints and highlight progress toward the targeted modification of MSCs. In the future, developments of this targeting system that accelerate tissue regeneration will benefit targeted tissue repair.
Collapse
|
9
|
Migliorini F, Maffulli N, Eschweiler J, Götze C, Hildebrand F, Betsch M. Prognostic factors for the management of chondral defects of the knee and ankle joint: a systematic review. Eur J Trauma Emerg Surg 2022; 49:723-745. [PMID: 36344653 PMCID: PMC10175423 DOI: 10.1007/s00068-022-02155-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose
Different surgical techniques to manage cartilage defects are available, including microfracture (MFx), autologous chondrocyte implantation (ACI), osteoarticular auto- or allograft transplantation (OAT), autologous matrix-induced chondrogenesis (AMIC). This study investigated the patient-related prognostic factors on the clinical outcomes of surgically treated knee and ankle cartilage defects.
Methods
This study followed the PRISMA statement. In May 2022, the following databases were accessed: PubMed, Google Scholar, Embase, and Scopus. All the studies investigating the outcomes of surgical management for knee and/or talus chondral defects were accessed. Only studies performing mesenchymal stem cells transplantation, OAT, MFx, ACI, and AMIC were considered. A multiple linear model regression analysis through the Pearson Product–Moment Correlation Coefficient was used.
Results
Data from 184 articles (8905 procedures) were retrieved. Female sex showed a positive moderate association with visual analogue scale at last follow-up (P = 0.02). Patient age had a negative association with the American Orthopaedic Foot and Ankle Score (P = 0.04) and Lysholm Knee Scoring Scale (P = 0.03). BMI was strongly associated with graft hypertrophy (P = 0.01). Greater values of VAS at baseline negatively correlate with lower values of Tegner Activity Scale at last follow-up (P < 0.0001).
Conclusion
The clinical outcomes were mostly related to the patients’ performance status prior surgery. A greater BMI was associated with greater rate of hypertrophy. Female sex and older age evidenced fair influence, while symptom duration prior to the surgical intervention and cartilage defect size evidenced no association with the surgical outcome. Lesion size and symptom duration did not evidence any association with the surgical outcome.
Collapse
|
10
|
Daya M. Intra-tendinous platelet rich plasma injection therapy for healing wounds with exposed tendons: a clinical case series. EUROPEAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.1007/s00238-022-02001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
11
|
Grossner T, Helbig L, Schmidmaier G, Haberkorn U, Gotterbarm T. 99mTc-polyphosphonate labelling - Enhancement of a novel method for the quantification of osteogenic differentiation of MSCs in vitro. Injury 2022; 53 Suppl 2:S34-S39. [PMID: 33422291 DOI: 10.1016/j.injury.2020.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 02/09/2023]
Abstract
Bone tissue engineering is a fast-growing field in regenerative medicine. Consequently, there is a high demand for new, fast and reliable methods to track and quantify the osteogenic differentiation of cells. Recently, a novel method was published to non-destructively quantify the hydroxyapatite content of monolayer and 3-dimensional mesenchymal stem cell cultures using the ability of 99mTechnetium-methylene diphosphonate (MDP), a well-established tracer in clinical nuclear medicine, to bind to newly synthesized hydroxyapatite. In the present study, two other commonly used 99mTechnetium tracers, 2,3-dicarboxypropane-1,1-diphosphonate (DPD) and hydroxydiphosphonate (HDP), were evaluated to see if they could also be used for the same purpose. Furthermore, we investigated if labelling at various timepoints influenced the effectiveness of the labelling. The results were analysed using one-factor ANOVA followed by Bonferroni post-hoc testing. This revealed a highly significant difference between the three osteogenic groups at each timepoint compared to their corresponding negative controls. However, there was no statistically significant difference between the three different tracers (MDP, DPD, HDP) in the osteogenic groups. Therefore all three tracers are of similar value when quantifying the extracellular hydroxylapatite content in osteogenic stem cells cultures.
Collapse
Affiliation(s)
- Tobias Grossner
- University Hospital Heidelberg, Center for Orthopedics, Trauma surgery and Paraplegiology, Clinic for Orthopedics and Trauma surgery, Schlierbacher Landstrasse 200 A, 69118, Heidelberg, Germany.
| | - Lars Helbig
- University Hospital Heidelberg, Center for Orthopedics, Trauma surgery and Paraplegiology, Clinic for Orthopedics and Trauma surgery, Schlierbacher Landstrasse 200 A, 69118, Heidelberg, Germany.
| | - Gerhard Schmidmaier
- University Hospital Heidelberg, Center for Orthopedics, Trauma surgery and Paraplegiology, Clinic for Orthopedics and Trauma surgery, Schlierbacher Landstrasse 200 A, 69118, Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Tobias Gotterbarm
- Department of Orthopedics and Traumatology, Johannes Kepler University Hospital GmbH, Johannes Kepler University, 4020 Linz, Krankenhausstraße 9 and Altenberger Strasse 69, 4040 Linz, Austria.
| |
Collapse
|
12
|
Filippo M, Laura M, Riccardo G, Valeria V, Eschweiler J, Maffulli N. Mesenchymal stem cells augmentation for surgical procedures in patients with symptomatic chondral defects of the knee: a systematic review. J Orthop Surg Res 2022; 17:415. [PMID: 36104803 PMCID: PMC9476260 DOI: 10.1186/s13018-022-03311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background
The efficacy and safety profile of mesenchymal stem cells (MSCs) augmentation in chondral procedures are controversial. This systematic review updated the current evidence on MSCs augmentation for chondral procedures in patients with symptomatic chondral defects of the knee.
Methods
This study followed the PRISMA guidelines. The literature search was updated in August 2022. Two independent authors accessed PubMed, Google scholar, Embase, and Scopus. No additional filters or time constrains were used for the search. A cross reference of the bibliographies was also performed. All the clinical studies investigating surgical procedures for chondral defects of the knee augmented with MSCs were accessed. Defects of both tibiofemoral and patellofemoral joints were included. The following patient reported outcomes measures (PROMs) were retrieved at baseline and last follow-up: Visual Analogic Scale (VAS), Tegner Activity Scale, Lysholm Knee Scoring System, International Knee Documentation Committee (IKDC). Return to daily activities and data on hypertrophy, failure, revision surgery were also collected. Failures were defined as the recurrence of symptoms attributable to the index procedure. Revisions were defined as any reoperation at the site of the index procedure.
Results
A total of 15 clinical studies (411 procedures) were included. Patients returned to their prior sport activity at 2.8 ± 0.4 months. All the PROMs improved at last follow-up: Tegner (P = 0.0002), Lysholm (P < 0.0001), the IKDC (P < 0.0001), VAS (P < 0.0001). At a mean of 30.1 ± 13.9 months, 3.1% (2 of 65 patients) reported graft hypertrophy, 3.2% (2 of 63) were considered failures. No surgical revision procedures were reported. Given the lack of available quantitative data for inclusion, a formal comparison of surgical procedures was not conducted.
Conclusion
MSCs augmentation in selected chondral procedures could be effective, with a low rate of complications. Further investigations are required to overcome the current limitations to allow the clinical translation of MSCs in regenerative medicine.
Collapse
|
13
|
Autologous Stem Cells for the Treatment of Chondral Injury and Disease. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Yu H, Huang Y, Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis. Ageing Res Rev 2022; 80:101684. [PMID: 35809775 DOI: 10.1016/j.arr.2022.101684] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA), as a common orthopedic disease with cartilage injury as its main pathological feature, has a complex pathogenesis and existing medical technology remains unable to reverse the progress of cartilage degeneration caused thereby. In recent years, mesenchymal stem cells (MSCs) and their secreted exosomes have become a focus of research into cartilage regeneration. MSCs have the potential to differentiate into a variety of cells. Under specific conditions, they can be promoted to differentiate into chondrocytes and maintain the function and stability of chondrocytes. Exosomes secreted by MSCs, as an intercellular messenger, can treat OA in a variety of ways through bioactive factors carried therewith, such as protein, lipid, mRNA, and miRNA. This study reviewed the application of MSCs and their exosomes from different sources in the prevention of OA, which provides a new idea for the treatment of OA.
Collapse
Affiliation(s)
- Hongxia Yu
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yuling Huang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Campbell TM, Dilworth FJ, Allan DS, Trudel G. The Hunt Is On! In Pursuit of the Ideal Stem Cell Population for Cartilage Regeneration. Front Bioeng Biotechnol 2022; 10:866148. [PMID: 35711627 PMCID: PMC9196866 DOI: 10.3389/fbioe.2022.866148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023] Open
Abstract
Cartilage injury and degeneration are hallmarks of osteoarthritis (OA), the most common joint disease. OA is a major contributor to pain, loss of function, and reduced quality of life. Over the last decade, considerable research efforts have focused on cell-based therapies, including several stem cell-derived approaches to reverse the cartilage alterations associated with OA. Although several tissue sources for deriving cell-based therapies have been identified, none of the resident stem cell populations have adequately fulfilled the promise of curing OA. Indeed, many cell products do not contain true stem cells. As well, issues with aggressive marketing efforts, combined with a lack of evidence regarding efficacy, lead the several national regulatory bodies to discontinue the use of stem cell therapy for OA until more robust evidence becomes available. A review of the evidence is timely to address the status of cell-based cartilage regeneration. The promise of stem cell therapy is not new and has been used successfully to treat non-arthritic diseases, such as hematopoietic and muscle disorders. These fields of regenerative therapy have the advantage of a considerable foundation of knowledge in the area of stem cell repair mechanisms, the role of the stem cell niche, and niche-supporting cells. This foundation is lacking in the field of cartilage repair. So, where should we look for the ideal stem cell to regenerate cartilage? It has recently been discovered that cartilage itself may contain a population of SC-like progenitors. Other potential tissues include stem cell-rich dental pulp and the adolescent growth plate, the latter of which contains chondrocyte progenitors essential for producing the cartilage scaffold needed for bone growth. In this article, we review the progress on stem cell therapies for arthritic disorders, focusing on the various stem cell populations previously used for cartilage regeneration, successful cases of stem cell therapies in muscle and hemopoietic disorders, some of the reasons why these other fields have been successful (i.e., "lessons learned" to be applied to OA stem cell therapy), and finally, novel potential sources of stem cells for regenerating damaged cartilage in vivo.
Collapse
Affiliation(s)
- T Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - F Jeffrey Dilworth
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David S Allan
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Biochemistry, Immunology and Microbiology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Injectable cultured bone marrow derived mesenchymal cells vs chondrocytes in the treatment of chondral defects of the knee - RCT with 6 years follow-up. J Clin Orthop Trauma 2022; 28:101845. [PMID: 35433252 PMCID: PMC9006751 DOI: 10.1016/j.jcot.2022.101845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022] Open
Abstract
Articular cartilage has unique biological and biomechanical characteristics. Damage to this tissue fails to heal spontaneously, leading to progressive arthritis. Cartilage repair techniques have been looked forward to in the treatment of significant cartilage injuries. Cell-based regenerative techniques like the two-staged cultured chondrocytes and single-stage mesenchymal cell transplantation have been tried with varying results and limitations. We study the outcomes of cultured bone marrow derived MSCs in the treatment of articular cartilage defects of the knee in comparison to autologous cultured chondrocyte implantation (ACI). Both cultured MSC and ACI treatment methods resulted in significant improvements in patient reported outcome measures (PROMs). There was no difference in the PROMs, MOCART scores, T2∗ mapping and dGEMRIC values between the groups. Use of cultured MSCs leads to good clinical outcomes similar to ACI and represents a promising treatment to restore the articular cartilage in the knee.
Collapse
|
17
|
Prajwal GS, Jeyaraman N, Kanth V K, Jeyaraman M, Muthu S, Rajendran SNS, Rajendran RL, Khanna M, Oh EJ, Choi KY, Chung HY, Ahn BC, Gangadaran P. Lineage Differentiation Potential of Different Sources of Mesenchymal Stem Cells for Osteoarthritis Knee. Pharmaceuticals (Basel) 2022; 15:386. [PMID: 35455383 PMCID: PMC9028477 DOI: 10.3390/ph15040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) have paved a way for treating musculoskeletal diseases in a minimally invasive manner. The regenerative medicine cocktail involves the usage of mesenchymal stem/stromal cells (MSCs), either uncultured or culture-expanded cells along with growth factors, cytokines, exosomes, and secretomes to provide a better regenerative milieu in degenerative diseases. The successful regeneration of cartilage depends on the selection of the appropriate source of MSCs, the quality, quantity, and frequency of MSCs to be injected, and the selection of the patient at an appropriate stage of the disease. However, confirmation on the most favorable source of MSCs remains uncertain to clinicians. The lack of knowledge in the current cellular treatment is uncertain in terms of how beneficial MSCs are in the long-term or short-term (resolution of pain) and improved quality of life. Whether MSCs treatments have any superiority, exists due to sources of MSCs utilized in their potential to objectively regenerate the cartilage at the target area. Many questions on source and condition remain unanswered. Hence, in this review, we discuss the lineage differentiation potentials of various sources of MSCs used in the management of knee osteoarthritis and emphasize the role of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Gollahalli Shivashankar Prajwal
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Mallika Spine Centre, Guntur 522001, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Krishna Kanth V
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, Puducherry, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226010, Uttar Pradesh, India
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
18
|
Kinoshita T, Hashimoto Y, Orita K, Nishida Y, Nishino K, Nakamura H. Autologous Platelet-Rich Fibrin Membrane to Augment Healing of Microfracture Has Better Macroscopic and Histologic Grades Compared With Microfracture Alone on Chondral Defects in a Rabbit Model. Arthroscopy 2022; 38:417-426. [PMID: 33964385 DOI: 10.1016/j.arthro.2021.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the in vivo effectiveness of a single-stage surgical procedure that combines microfracture and an autologous platelet-rich fibrin (PRF) membrane for cartilage repair in a rabbit model. METHODS Cartilage defects were created in the trochlear groove of the knees of adult white rabbits. Defects were divided into 2 treatment groups: microfracture only (control group) and microfracture covered by a PRF membrane (PRF group). To evaluate the repair cartilage, assessments were performed at 4, 12, and 24 weeks postoperatively using the International Cartilage Repair Society (ICRS) macroscopic scoring system and modified Wakitani histologic grading system. RESULTS The mean ICRS macroscopic scores in the control and PRF groups were 4.1 and 5.8, respectively, at 4 weeks (P = .0623); 6.3 and 9.8, respectively, at 12 weeks (P = .006); and 6.5 and 10.3, respectively, at 24 weeks (P = .010). The mean modified Wakitani scores in the control and PRF groups were 4.0 and 3.9, respectively, at 4 weeks (P > .999); 5.3 and 10.4, respectively, at 12 weeks (P = .006); and 2.6 and 7.4, respectively, at 24 weeks (P = .012). CONCLUSIONS The ICRS macroscopic scores and modified Wakitani scores showed that a single-stage surgical procedure combining microfracture and a PRF membrane was more effective than surgery with only microfracture for promoting cartilage repair. CLINICAL RELEVANCE A single-stage surgical procedure combining microfracture and an autologous PRF membrane is a potentially beneficial treatment method for cartilage defects that does not require using any xenocollagen membrane.
Collapse
Affiliation(s)
- Takuya Kinoshita
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Hashimoto
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Kumi Orita
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Nishida
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Nishino
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Angele P, Docheva D, Pattappa G, Zellner J. Cell-based treatment options facilitate regeneration of cartilage, ligaments and meniscus in demanding conditions of the knee by a whole joint approach. Knee Surg Sports Traumatol Arthrosc 2022; 30:1138-1150. [PMID: 33666685 PMCID: PMC9007795 DOI: 10.1007/s00167-021-06497-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE This article provides an update on the current therapeutic options for cell-based regenerative treatment of the knee with a critical review of the present literature including a future perspective on the use of regenerative cell-based approaches. Special emphasis has been given on the requirement of a whole joint approach with treatment of comorbidities with aim of knee cartilage restoration, particularly in demanding conditions like early osteoarthritis. METHODS This narrative review evaluates recent clinical data and published research articles on cell-based regenerative treatment options for cartilage and other structures around the knee RESULTS: Cell-based regenerative therapies for cartilage repair have become standard practice for the treatment of focal, traumatic chondral defects of the knee. Specifically, matrix-assisted autologous chondrocyte transplantation (MACT) shows satisfactory long-term results regarding radiological, histological and clinical outcome for treatment of large cartilage defects. Data show that regenerative treatment of the knee requires a whole joint approach by addressing all comorbidities including axis deviation, instability or meniscus pathologies. Further development of novel biomaterials and the discovery of alternative cell sources may facilitate the process of cell-based regenerative therapies for all knee structures becoming the gold standard in the future. CONCLUSION Overall, cell-based regenerative cartilage therapy of the knee has shown tremendous development over the last years and has become the standard of care for large and isolated chondral defects. It has shown success in the treatment of traumatic, osteochondral defects but also for degenerative cartilage lesions in the demanding condition of early OA. Future developments and alternative cell sources may help to facilitate cell-based regenerative treatment for all different structures around the knee by a whole joint approach. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Peter Angele
- Sporthopaedicum Regensburg, Hildegard von Bingen Strasse 1, 93053, Regensburg, Germany.
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Denitsa Docheva
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
| | - Girish Pattappa
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center of Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany
- Department of Trauma Surgery, Caritas Hospital St. Josef Regensburg, Landshuter Strasse 65, 93053, Regensburg, Germany
| |
Collapse
|
20
|
Hede K, Christensen BB, Jensen J, Foldager CB, Lind M. Combined Bone Marrow Aspirate and Platelet-Rich Plasma for Cartilage Repair: Two-Year Clinical Results. Cartilage 2021; 13:937S-947S. [PMID: 31538811 PMCID: PMC8808891 DOI: 10.1177/1947603519876329] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To evaluate the clinical and biological outcome of combined bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) on a collagen scaffold for treating cartilage lesions in the knee. METHODS AND MATERIALS Ten patients (mean age 29.4 years, range 18-36) suffering from large full-thickness cartilage in the knee were treated with BMAC and PRP from January 2015 to December 2016. In a 1-step procedure autologous BMAC and PRP was seeded onto a collagen scaffold and sutured into the debrided defect. Patients were evaluated by clinical outcome scores (IKDC [International Knee Documentation Committee Subjective Knee Form], KOOS [Knee Injury and Osteoarthritis Outcome Score], and pain score using the Numeric Rating Scale [NRS]) preoperatively, after 3 months, and after 1 and 2 years. Second-look arthroscopies were performed (n = 7) with biopsies of the repair tissue for histology. All patients had magnetic resonance imaging (MRI) preoperatively, after 1 year, and after 2 to 3.5 years with MOCART (magnetic resonance observation of cartilage repair tissue) scores evaluating cartilage repair. RESULTS After 1 year significant improvements were found in IKDC, KOOS symptoms, KOOS ADL (Activities of Daily Living), KOOS QOL (Quality of Life), and pain at activity. At the latest follow-up significant improvements were seen in IKDC, KOOS symptoms, KOOS QOL, pain at rest, and pain at activity. MRI MOCART score for cartilage repair improved significantly from baseline to 1-year follow-up. Histomorphometry of repair tissue demonstrated a mixture of fibrous tissue (58%) and fibrocartilage (40%). CONCLUSION Treatment of cartilage injuries using combined BMAC and PRP improved subjective clinical outcome scores and pain scores at 1 and 2 years postoperatively. MRI and histology indicated repair tissue inferior to the native hyaline cartilage.
Collapse
Affiliation(s)
- Kris Hede
- Orthopedic Research Laboratory, Aarhus
University Hospital, Aarhus N, Denmark,Kris Tvilum Chadwick Hede, Orthopaedic
Research Lab, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99,
Section J, Level 1, Aarhus 8200, Denmark.
| | | | - Jonas Jensen
- Department of Radiology, Aarhus
University Hospital, Aarhus N, Denmark
| | - Casper B. Foldager
- Orthopedic Research Laboratory, Aarhus
University Hospital, Aarhus N, Denmark,Department of Orthopedics, Aarhus
University Hospital, Aarhus N, Denmark
| | - Martin Lind
- Department of Orthopedics, Aarhus
University Hospital, Aarhus N, Denmark
| |
Collapse
|
21
|
Jaibaji M, Jaibaji R, Volpin A. Mesenchymal Stem Cells in the Treatment of Cartilage Defects of the Knee: A Systematic Review of the Clinical Outcomes. Am J Sports Med 2021; 49:3716-3727. [PMID: 33555942 DOI: 10.1177/0363546520986812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral lesions are a common clinical problem and their management has been historically challenging. Mesenchymal stem cells have the potential to differentiate into chondrocytes and thus restore hyaline cartilage to the defect, theoretically improving clincal outcomes in these patients. They can also be harvested with minimal donor site morbidity. PURPOSE To assess the clinical and functional outcomes of mesenchymal stem cell implantation to treat isolated osteochondral defects of the knee. A secondary purpose is to assess the quality of the current available evidence as well as the radiological and histological outcomes. We also reviewed the cellular preparation and operative techniques for implantation. STUDY DESIGN Systematic review. METHODS A comprehensive literature search of 4 databases was carried out: CINAHL, Embase, MEDLINE, and PubMed. We searched for clinical studies reporting the outcomes on a minimum of 5 patients with at least 12 months of follow-up. Clinical, radiological, and histological outcomes were recorded. We also recorded demographics, stem cell source, culture technique, and operative technique. Methodological quality of each study was assessed using the modified Coleman methodology score, and risk of bias for the randomized controlled studies was assessed using the Cochrane Collaboration tool. RESULTS Seventeen studies were found, encompassing 367 patients. The mean patient age was 35.1 years. Bone marrow was the most common source of stem cells utilized. Mesenchymal stem cell therapy consistently demonstrated good short- to medium-term outcomes in the studies reviewed with no serious adverse events being recorded. There was significant heterogeneity in cell harvesting and preparation as well as in the reporting of outcomes. CONCLUSION Mesenchymal stem cells demonstrated a clinically relevant improvement in outcomes in patients with osteochondral defects of the knee. More research is needed to establish an optimal treatment protocol, long-term outcomes, and superiority over other therapies. REGISTRATION CRD42020179391 (PROSPERO).
Collapse
Affiliation(s)
- Monketh Jaibaji
- Division of Interventional Sciences, University College London, London, UK
| | - Rawan Jaibaji
- Division of Interventional Sciences, University College London, London, UK
| | | |
Collapse
|
22
|
Effectiveness of treating segmental bone defects with a synergistic co-delivery approach with platelet-rich fibrin and tricalcium phosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112364. [PMID: 34579883 DOI: 10.1016/j.msec.2021.112364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Several studies have applied tricalcium phosphate (TCP) or autografts in bone tissue engineering to enhance the clinical regeneration of bone. Unfortunately, there are several drawbacks related to the use of autografts, including a risk of infection, blood loss, limited quantities, and donor-site morbidities. Platelet-rich fibrin (PRF) is a natural extracellular matrix (ECM) biomaterial that possesses bioactive factors, which can generally be used in regenerative medicine. The goal of the present investigation was to develop osteoconductive TCP incorporated with bioactive PRF for bio-synergistic bone regeneration and examine the potential biological mechanisms and applications. Our in vitro results showed that PRF plus TCP had excellent biosafety and was favorable for initiating osteoblast cell attachment, slow release of bioactive factors, cell proliferation, cell migration, and ECM formation that potentially impacted bone repair. In a rabbit femoral segmental bone defect model, regeneration of bone was considerably augmented in defects locally implanted by PRF plus TCP according to radiographic and histologic examinations. Notably, the outcomes of this investigation suggest that the combination of PRF and TCP possesses novel synergistic and bio-inspired functions that facilitate bone regeneration.
Collapse
|
23
|
Urlić I, Ivković A. Cell Sources for Cartilage Repair-Biological and Clinical Perspective. Cells 2021; 10:cells10092496. [PMID: 34572145 PMCID: PMC8468484 DOI: 10.3390/cells10092496] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
Cell-based therapy represents a promising treatment strategy for cartilage defects. Alone or in combination with scaffolds/biological signals, these strategies open many new avenues for cartilage tissue engineering. However, the choice of the optimal cell source is not that straightforward. Currently, various types of differentiated cells (articular and nasal chondrocytes) and stem cells (mesenchymal stem cells, induced pluripotent stem cells) are being researched to objectively assess their merits and disadvantages with respect to the ability to repair damaged articular cartilage. In this paper, we focus on the different cell types used in cartilage treatment, first from a biological scientist’s perspective and then from a clinician’s standpoint. We compare and analyze the advantages and disadvantages of these cell types and offer a potential outlook for future research and clinical application.
Collapse
Affiliation(s)
- Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (I.U.); (A.I.)
| | - Alan Ivković
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Clinical Medicine, University of Applied Health Sciences, 10000 Zagreb, Croatia
- Correspondence: (I.U.); (A.I.)
| |
Collapse
|
24
|
Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells 2021; 10:cells10092323. [PMID: 34571972 PMCID: PMC8468169 DOI: 10.3390/cells10092323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Cell therapy strategies using mesenchymal stem cells (MSCs) carried in fibrin glue have shown promising results in regenerative medicine. MSCs are crucial for tissue healing because they have angiogenic, anti-apoptotic and immunomodulatory properties, in addition to the ability to differentiate into several specialized cell lines. Fibrin sealant or fibrin glue is a natural polymer involved in the coagulation process. Fibrin glue provides a temporary structure that favors angiogenesis, extracellular matrix deposition and cell-matrix interactions. Additionally, fibrin glue maintains the local and paracrine functions of MSCs, providing tissue regeneration through less invasive clinical procedures. Thus, the objective of this systematic review was to assess the potential of fibrin glue combined with MSCs in bone or cartilage regeneration. The bibliographic search was performed in the PubMed/MEDLINE, LILACS and Embase databases, using the descriptors (“fibrin sealant” OR “fibrin glue”) AND “stem cells” AND “bone regeneration”, considering articles published until 2021. In this case, 12 preclinical and five clinical studies were selected to compose this review, according to the eligibility criteria. In preclinical studies, fibrin glue loaded with MSCs, alone or associated with bone substitute, significantly favored bone defects regeneration compared to scaffold without cells. Similarly, fibrin glue loaded with MSCs presented considerable potential to regenerate joint cartilage injuries and multiple bone fractures, with significant improvement in clinical parameters and absence of postoperative complications. Therefore, there is clear evidence in the literature that fibrin glue loaded with MSCs, alone or combined with bone substitute, is a promising strategy for treating lesions in bone or cartilaginous tissue.
Collapse
|
25
|
Migliorini F, Eschweiler J, Schenker H, Baroncini A, Tingart M, Maffulli N. Surgical management of focal chondral defects of the knee: a Bayesian network meta-analysis. J Orthop Surg Res 2021; 16:543. [PMID: 34470628 PMCID: PMC8409000 DOI: 10.1186/s13018-021-02684-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Background Focal chondral defects of the knee are common. Several surgical techniques have been proposed for the management of chondral defects: microfractures (MFX), osteochondral autograft transplantation (OAT), autologous matrix-induced chondrogenesis (AMIC) and autologous chondrocyte implantation (ACI)—first generation (pACI), second generation (cACI) and third generation (mACI). A Bayesian network meta-analysis was conducted to compare these surgical strategies for chondral defects in knee at midterm follow-up. Methods This Bayesian network meta-analysis was conducted according to the PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions. PubMed, Google Scholar, Embase and Scopus databases were accessed in July 2021. All the prospective comparative clinical trials investigating two or more surgical interventions for chondral defects of the knee were accessed. The network meta-analyses were performed through a Bayesian hierarchical random-effects model analysis. The log odds ratio (LOR) effect measures were used for dichotomic variables, while the standardized mean difference (SMD) for the continuous variables. Results Data from 2220 procedures (36 articles) were retrieved. The median follow-up was 36 (24 to 60) months. The ANOVA test found good baseline comparability between symptoms duration, age, sex and body mass index. AMIC resulted in higher Lysholm score (SMD 3.97) and Tegner score (SMD 2.10). AMIC demonstrated the lowest rate of failures (LOR −0.22) and the lowest rate of revisions (LOR 0.89). As expected, MFX reported the lower rate of hypertrophy (LOR −0.17) followed by AMIC (LOR 0.21). No statistically significant inconsistency was found in the comparisons. Conclusion AMIC procedure for focal chondral defects of the knee performed better overall at approximately 3 years’ follow-up.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jörg Eschweiler
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Hanno Schenker
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Alice Baroncini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy.,Centre for Sports and Exercise Medicine, Mile End Hospital, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, England
| |
Collapse
|
26
|
Götze C, Nieder C, Felder H, Peterlein CD, Migliorini F. AMIC for traumatic focal osteochondral defect of the talar shoulder: a 5 years follow-up prospective cohort study. BMC Musculoskelet Disord 2021; 22:638. [PMID: 34303367 PMCID: PMC8310607 DOI: 10.1186/s12891-021-04506-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Autologous Matrix-Induced Chondrogenesis (AMIC) is addressed to osteochondral defects of the talus. However, evidence concerning the midterm efficacy and safety of AMIC are limited. This study assessed reliability and feasibility of AMIC at 60 months follow-up. We hypothesize that AMIC leads to good clinical outcome at midterm follow-up. METHODS Surgeries were approached with an arthrotomy via malleolar osteotomy. A resorbable porcine I/III collagen membrane (Chondro-Gide®, Geistlich Pharma AG, Wolhusen, Switzerland) was used. Patients were followed at 24 and 60 months. The primary outcome of interest was to analyse the Foot Function Index (FFI), and the subscale hindfoot of the American Orthopaedic Foot and Ankle Score (AOFAS). Complications such as failure, revision surgeries, graft delamination, and hypertrophy were also recorded. The secondary outcome of interest was to investigate the association between the clinical outcome and patient characteristics at admission. RESULTS Data from 19 patients were included. The mean age at admission was 47.3 ± 13.2 years, and the mean BMI 24.1 ± 4.9 kg/m2. 53% (10 of 19 patients) were female. At a mean of 66.2 ± 11.6 months, the FFI decreased at 24-months follow-up of 22.5% (P = 0.003) and of further 1.3% (P = 0.8) at 60-months follow-up. AOFAS increased at 24-months follow-up of 17.2% (P = 0.003) and of further 3.4 (P = 0.2) at 60-months follow-up. There were two symptomatic recurrences within the follow-up in two patients. There was evidence of a strong positive association between FFI and AOFAS at baseline and the same scores last follow-up (P = 0.001 and P = 0.0002, respectively). CONCLUSION AMIC enhanced with cancellous bone graft demonstrated efficacy and feasibility for osteochondral defects of the talus at five years follow-up. The greatest improvement was evidenced within the first two years. These results suggest that clinical outcome is influenced by the preoperative status of the ankle. High quality studies involving a larger sample size are required to detect seldom complications and identify prognostic factors leading to better clinical outcome. LEVEL OF EVIDENCE II, prospective cohort study.
Collapse
Affiliation(s)
- Christian Götze
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Christian Nieder
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Hanna Felder
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Christian Dominik Peterlein
- Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, 32545, Bad Oeynhausen, Germany
| | - Filippo Migliorini
- Department of Orthopaedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064, Aachen, Germany. .,Department of Orthopaedicand Trauma Surgery, RWTH Aachen University Hospital, Pauwelsstraße 31, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Migliorini F, Berton A, Salvatore G, Candela V, Khan W, Longo UG, Denaro V. Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects of the Knee- A Systematic Review. Curr Stem Cell Res Ther 2021; 15:547-556. [PMID: 32081109 DOI: 10.2174/1574888x15666200221122834] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND There is still a lack of consensus about the best treatment of chondral defects of the knee. We conducted a systematic PRISMA review to evaluate clinical outcomes of Autologous Chondrocyte Implantation (ACI) and Mesenchymal Stem Cell (MSC) injections for the treatment of focal chondral defects of the knee. METHODS A systematic review of literature was performed according to the PRISMA guidelines. All the articles reporting data on ACI and MSC treatments for chondral defects of the knee were considered for inclusion. The main databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar. The statistical analysis was performed using the Review Manager Software. RESULTS In the p-ACI group (987 knees), the Cincinnati Score improved by 18.94% (p=0.1), VAS by 38% (p=0.01), Tegner score by 19.11% (p=0.03), Lysholm score by 22.40% (p=0.01), IKCD by 27.36% (p=0.003). In the c-ACI group (444 knees), the Cincinnati Score improved by 23.80% (p=0.08), KOOS by 23.48% (p=0.03), VAS by 33.2% (p=0.005), IKDC by 33.30% (p=0.005). In the m-ACI group (599 knees), the Cincinnati Score improved by 26.80% (p=0.08), KOOS by 31.59% (p=0.1), VAS by 30.43% (p=0.4), Tegner score by 23.1% (p=0.002), Lysholm score by 31.14% (p=0.004), IKCD by 30.57% (p<0.001). In the MSCs group (291 knees), the KOOS improved by 29.7% (p=0.003), VAS by 41.89% (p<0.001), Tegner score by 25.81% (p=0.003), Lysholm score by 36.96% (p<0.001), IKCD by 30.57% (p=0.001). CONCLUSION Both ACI and MSC therapies can be considered as a concrete solution to treat focal chondral defects of the knee.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Alessandra Berton
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Giuseppe Salvatore
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Vincenzo Candela
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom
| | - Umile G Longo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy
| |
Collapse
|
28
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
29
|
Stem cell transplantation for the treatment of osteochondral defects of the knee: Operative technique for a single-stage transplantation procedure using bone marrow-derived mesenchymal stem cells. Knee 2021; 28:400-409. [PMID: 32680778 DOI: 10.1016/j.knee.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is a NICE-approved technique to regenerate hyaline cartilage in chondral and osteochondral defects (OCDs). The drawbacks of ACI include that it requires a two-stage approach, involves a lengthy rehabilitation process and is expensive. Bone marrow harvest with mesenchymal stem cell transplantation using a single-stage procedure and an accelerated rehabilitation programme has been developed to overcome this. The aim of this paper is to describe the surgical technique for stem cell transplantation of the knee for OCDs with reference to case examples. METHODS The surgical technique for stem cell transplantation of the knee for OCDs is described, with reference to three cases. Magnetic resonance imaging was performed at six months postoperatively. RESULTS The surgical technique is described in this paper. The three patient cases described all improved clinically with reduced pain and improved function at a minimum of six months follow-up. CONCLUSIONS Stem cell transplantation has the potential to produce favourable outcomes for patients with osteochondral defects of the knee. This single-stage approach and accelerated rehabilitation is associated with reduced financial costs. A long-term prospective study of this technique is currently underway at our institution and randomised controlled trials are planned to demonstrate the effectiveness over other techniques.
Collapse
|
30
|
Positive early clinical outcomes of bone marrow aspirate concentrate for osteoarthritis using a novel fenestrated trocar. Knee 2020; 27:1627-1634. [PMID: 33010782 DOI: 10.1016/j.knee.2020.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/29/2020] [Accepted: 08/23/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND This study sought to assess early clinical outcomes for knee osteoarthritis (OA) patients undergoing bone marrow aspirate concentrate (BMAC) treatment using a novel closed-end, fenestrated trocar (FT) that does not require centrifugation. METHODS A prospective cohort of 17 knee OA patients undergoing BMAC treatment with the FT system from March 2018 to March 2019 was retrospectively evaluated. Approximately 10 mL of BMAC was harvested, no centrifugation was performed, and the BMAC was injected into the affected knee. Clinical outcomes were assessed at baseline, six weeks, and 12 weeks. This study has no affiliation with/vested-interest in the FT system. RESULTS There were significant improvements in nearly all outcomes from baseline to 12 weeks. Specific improvements included Knee Injury and OA Outcome Score (KOOS) activities-of-daily-living (61.1 ± 9.2 [mean ± 95% confidence interval] to 89.3 ± 6, p = 0.001), quality-of-life (32.7 ± 9.3 to 66.1 ± 17.9, p = 0.003), sports/recreation (36.9 ± 10.6 to 72.6 ± 26.3, p = 0.006), and pain (53.8 ± 9.3 to 83 ± 10.2, p = 0.001); Lysholm scores (55.5 ± 8.4 to 77.3 ± 10.5, p = 0.009); and visual analog pain scores (5.68 ± 1.14 to 2.07 ± 1.86, p = 0.003). Individually, at least 75% of patients exhibited improvement in all KOOS categories at six weeks and at least 85% at 12 weeks. CONCLUSIONS BMAC treatment with an FT system that does not require centrifugation resulted in significant improvements in early pain and function scores for knee OA. The symptomatic improvements in this study were similar to or greater than what has been reported using traditional needles. These data may provide clinicians with comfort in using an FT system and provide motivation for future randomized-controlled trials comparing aspiration techniques.
Collapse
|
31
|
Rationale for the Use of Orthobiologics in Sports Medicine. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Debnath UK. Mesenchymal Stem Cell Therapy in Chondral Defects of Knee: Current Concept Review. Indian J Orthop 2020; 54:1-9. [PMID: 32952903 PMCID: PMC7474009 DOI: 10.1007/s43465-020-00198-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Full-thickness cartilage defects if left alone would increase the risk of osteoarthritis (OA) with severe associated pain and functional disability. Articular cartilage defect may result from direct trauma or chronic degeneration. The capability of the mesenchymal stem cells (MSCs) to repair and regenerate cartilage has been widely investigated. This review describes current trends in MSC biology, the sourcing, expansion, application and role of MSCs in chondral defects of human knees. METHODS The studies referencing MSCs and knee osteoarthritis were searched (from1998 to 2020) using PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (MSCs, chondral defects or cartilage degeneration of knee, cartilage regeneration, chondrogenesis, tissue engineering, efficacy and safety). The inclusion criteria were based on use of MSCs for treatment of chondral defects and osteoarthritis of the knee, English language and human studies. RESULTS The history of MSC research from the initial discovery of their multipotency to the more recent recognition of their role in cartilage defects of knee is elucidated. Several studies have demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant or independent procedure. Intra-articular MSCs provide improvements in pain and function in knee osteoarthritis at short-term follow-up in many studies. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome is a common issue faced by researchers. CONCLUSION Some efficacy has been shown of MSCs for cartilage repair in osteoarthritis; however, the evidence of efficacy of intra-articular MSCs on both clinical outcomes and cartilage repair remains limited. Despite the high quality of evidence to support, MSC therapy has emerged but further refinement of methodology will be necessary to support its routine clinical use.
Collapse
|
33
|
Clinical Application Status of Articular Cartilage Regeneration Techniques: Tissue-Engineered Cartilage Brings New Hope. Stem Cells Int 2020; 2020:5690252. [PMID: 32676118 PMCID: PMC7345961 DOI: 10.1155/2020/5690252] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: “cell-scaffold construct,” cell-free, and scaffold-free. In “cell-scaffold construct” strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.
Collapse
|
34
|
Eder C, Schmidt-Bleek K, Geissler S, Sass FA, Maleitzke T, Pumberger M, Perka C, Duda GN, Winkler T. Mesenchymal stromal cell and bone marrow concentrate therapies for musculoskeletal indications: a concise review of current literature. Mol Biol Rep 2020; 47:4789-4814. [PMID: 32451926 PMCID: PMC7295724 DOI: 10.1007/s11033-020-05428-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
The interest on applying mesenchymal stromal cells (MSCs) in orthopedic disorders has risen tremendously in the last years due to scientific successes in preclinical in vitro and animal model studies. In a wide range of diseases and injuries of the musculoskeletal system, MSCs are currently under evaluation, but so far have found access to clinical use only in few cases. The current assignment is to translate the acquired knowledge into clinical practice. Therefore, this review aims at presenting a synopsis of the up-to-date status of the use of MSCs and MSC related cell products in musculoskeletal indications. Clinical studies were included, whereas preclinical and animal study data not have been considered. Most studies published so far investigate the final outcome applying bone marrow derived MSCs. In fewer trials the use of adipose tissue derived MSCs and allogenic MSCs was investigated in different applications. Although the reported results are equivocal in the current literature, the vast majority of the studies shows a benefit of MSC based therapies depending on the cell sources and the indication in clinical use. In summary, the clinical use of MSCs in patients in orthopedic indications has been found to be safe. Standardized protocols and clear definitions of the mechanisms of action and the mode and timing of application as well as further coordinated research efforts will be necessary for finally adding MSC based therapies in standard operating procedures and guidelines for the clinicians treating orthopedic disorders.
Collapse
Affiliation(s)
- Christian Eder
- Center for Musculoskeletal Surgery, Charité - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - F. Andrea Sass
- Julius Wolff Institute, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité - Universitaetsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
- Julius Wolff Institute, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité – Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
35
|
Wu Y, Yang Z, Denslin V, Ren X, Lee CS, Yap FL, Lee EH. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Am J Sports Med 2020; 48:1735-1747. [PMID: 32191492 DOI: 10.1177/0363546520907137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Articular cartilage has a zonal architecture and biphasic mechanical properties. The recapitulation of surface lubrication properties with high compressibility of the deeper layers of articular cartilage during regeneration is essential in achieving long-term cartilage integrity. Current clinical approaches for cartilage repair, especially with the use of mesenchymal stem cells (MSCs), have yet to restore the hierarchically organized architecture of articular cartilage. HYPOTHESIS MSCs predifferentiated on surfaces with specific nanotopographic patterns can provide phenotypically stable and defined chondrogenic cells and, when delivered as a bilayered stratified construct at the cartilage defect site, will facilitate the formation of functionally superior cartilage tissue in vivo. STUDY DESIGN Controlled laboratory study. METHODS MSCs were subjected to chondrogenic differentiation on specific nanopatterned surfaces. The phenotype of the differentiated cells was assessed by the expression of cartilage markers. The ability of the 2-dimensional nanopattern-generated chondrogenic cells to retain their phenotypic characteristics after removal from the patterned surface was tested by subjecting the enzymatically harvested cells to 3-dimensional fibrin hydrogel culture. The in vivo efficacy in cartilage repair was demonstrated in an osteochondral rabbit defect model. Repair by bilayered construct with specific nanopattern predifferentiated cells was compared with implantation with cell-free fibrin hydrogel, undifferentiated MSCs, and mixed-phenotype nanopattern predifferentiated MSCs. Cartilage repair was evaluated at 12 weeks after implantation. RESULTS Three weeks of predifferentiation on 2-dimensional nanotopographic patterns was able to generate phenotypically stable chondrogenic cells. Implantation of nanopatterned differentiated MSCs as stratified bilayered hydrogel constructs improved the repair quality of cartilage defects, as indicated by histological scoring, mechanical properties, and polarized microscopy analysis. CONCLUSION Our results indicate that with an appropriate period of differentiation, 2-dimensional nanotopographic patterns can be employed to generate phenotypically stable chondrogenic cells, which, when implanted as stratified bilayered hydrogel constructs, were able to form functionally superior cartilage tissue. CLINICAL RELEVANCE Our approach provides a relatively straightforward method of obtaining large quantities of zone-specific chondrocytes from MSCs to engineer a stratified cartilage construct that could recapitulate the zonal architecture of hyaline cartilage, and it represents a significant improvement in current MSC-based cartilage regeneration.
Collapse
Affiliation(s)
- Yingnan Wu
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zheng Yang
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinitha Denslin
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
| | - XiaFei Ren
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chang Sheng Lee
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Fung Ling Yap
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Eng Hin Lee
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
36
|
Titan A, Schär M, Hutchinson I, Demange M, Chen T, Rodeo S. Growth Factor Delivery to a Cartilage-Cartilage Interface Using Platelet-Rich Concentrates on a Hyaluronic Acid Scaffold. Arthroscopy 2020; 36:1431-1440. [PMID: 31862290 DOI: 10.1016/j.arthro.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether (1) human leukocyte-platelet-rich plasma (L-PRP) or (2) leukocyte-platelet-rich fibrin (L-PRF) delivered on a hyaluronic acid (HA) scaffold at a bovine chondral defect, a simulated cartilage tear interface, in vitro would improve tissue formation based on biomechanical, histologic, and biochemical measures. METHODS L-PRF and L-PRP were prepared from 3 healthy volunteer donors and delivered in conjunction with HA scaffolds to defects created in full-thickness bovine cartilage plugs harvested from bovine femoral condyle and trochlea. Specimens were cultured in vitro for up to 42 days. Treatment groups included an HA scaffold alone and scaffolds containing L-PRF or L-PRP. Cartilage repair was assessed using biomechanical testing, histology, DNA quantification, and measurement of sulfated glycosaminoglycan and collagen content at 28 and 42 days. RESULTS L-PRF elicited the greatest degree of defect filling and improvement in other histologic measures. L-PRF-treated specimens also had the greatest cellularity when compared with L-PRP and control at day 28 (560.4 μg vs 191.4 μg vs 124.2 μg, P = .15); at day 48, there remained a difference, although not significant, between L-PRF versus L-PRP (761.1 μg vs 589.3 μg, P = .219) . L-PRF had greater collagen deposition when compared with L-PRP at day 42 (40.1 μg vs 16.3 μg, P < .0001). L-PRF had significantly greater maximum interfacial strength compared with the control at day 42 (10.92 N vs 0.66 N, P = .015) but had no significant difference compared with L-PRP (10.92 N vs 6.58 N, P = .536). L-PRP facilitated a greater amount of sulfated glycosaminoglycan production at day 42 when compared with L-PRF (15.9 μg vs 4.3 μg, P = .009). CONCLUSIONS Delivery of leukocyte-rich platelet concentrates in conjunction with a HA scaffold may allow for improvements in cartilage healing through different pathways. L-PRF was not superior to L-PRP in its biomechanical strength, suggesting that both treatments may be effective in improving biomechanical strength of healing cartilage through different pathways. CLINICAL RELEVANCE The delivery of platelet-rich concentrates in conjunction HA scaffolds may augment healing cartilaginous injuries.
Collapse
Affiliation(s)
- Ashley Titan
- Department of Surgery, Stanford University School of Medicine, Palo Alto, California, U.S.A
| | - Michael Schär
- Orthopaedic Soft Tissue Research Program, Sports Medicine and Shoulder Service, and the Department of Biomechanics, Hospital for Special Surgery, New York, New York, U.S.A; Department of Orthopaedic Surgery and Traumatology, University of Bern, Insel Hospital, Bern, Switzerland
| | - Ian Hutchinson
- Orthopaedic Soft Tissue Research Program, Sports Medicine and Shoulder Service, and the Department of Biomechanics, Hospital for Special Surgery, New York, New York, U.S.A; Department of Orthopaedic Surgery, University at Albany-State University of New York, Albany, New York, U.S.A
| | - Marco Demange
- Department of Orthopedic Surgery, University of São Paulo, São Paulo, Brazil
| | - Tony Chen
- Orthopaedic Soft Tissue Research Program, Sports Medicine and Shoulder Service, and the Department of Biomechanics, Hospital for Special Surgery, New York, New York, U.S.A
| | - Scott Rodeo
- Orthopaedic Soft Tissue Research Program, Sports Medicine and Shoulder Service, and the Department of Biomechanics, Hospital for Special Surgery, New York, New York, U.S.A.
| |
Collapse
|
37
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
38
|
Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Kumar GS, Sharma GT. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen Med 2020; 15:1261-1275. [PMID: 32154762 DOI: 10.2217/rme-2018-0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: An attempt was made to improve osteochondral healing with allogeneic mesenchymal stem cells (MSCs) along with certain growth factors. Materials & methods: Induced knee osteochondral defects were filled as: phosphate buffer saline (group A); MSCs in collagen gel (group B); group B plus insulin like growth factor-1 (group C); group C plus transforming growth factor β-1 (group D). Results: Gross and scanning electron microscopy showed superior morphology and surface architecture of the healed tissue in groups D and C. Histologically, group D revealed hyaline cartilage characteristic features followed in order by group C and group B. In all treatment groups, chondrogenic matrix, collagen II2B (col II 2B) and aggrecan were secreted. Conclusion: Combined use of MSCs and growth factors could accelerate osteochondral healing.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute (IVRI), Izzatnagar, India.,Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Shuhama, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Radiology & Anesthesiology Department, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia, Zagazig, Egypt
| | - Hari Prasad Aithal
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Prakash Kinjavdekar
- Division of Surgery, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Sai Kumar
- Division of Pathology, Indian Veterinary Research Institute, Izzatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Izzatnagar, India
| |
Collapse
|
39
|
Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME. Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats' critical-sized mandibular defects. World J Stem Cells 2020; 12:55-69. [PMID: 32110275 PMCID: PMC7031757 DOI: 10.4252/wjsc.v12.i1.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide. These defects generally result from severe trauma or resection of a whole large tumour. Autologous bone grafts are the current gold standard for the reconstruction of such defects. However, due to increased patient morbidity and the need for a second operative site, other lines of treatment should be introduced. To find alternative unconventional therapies to manage such defects, bone tissue engineering using a combination of suitable bioactive factors, cells, and biocompatible scaffolds offers a promising new approach for bone regeneration.
AIM To evaluate the healing capacity of platelet-rich fibrin (PRF) membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells (BMSCs) on critically sized mandibular defects in a rat model.
METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur. Rats were allocated to three equal groups of 21 rats each. Group I bone defects were irrigated with normal saline and designed as negative controls. Defects of group II were grafted with PRF membranes and served as positive controls, while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs. Seven rats from each group were killed at 1, 2 and 4 wk. The mandibles were dissected and prepared for routine haematoxylin and eosin (HE) staining, Masson's trichrome staining and CD68 immunohistochemical staining.
RESULTS Four weeks postoperatively, the percentage area of newly formed bone was significantly higher in group III (0.88 ± 0.02) than in groups I (0.02 ± 0.00) and II (0.60 ± 0.02). The amount of granulation tissue formation was lower in group III (0.12 ± 0.02) than in groups I (0.20 ± 0.02) and II (0.40 ± 0.02). The number of inflammatory cells was lower in group III (0.29 ± 0.03) than in groups I (4.82 ± 0.08) and II (3.09 ± 0.07).
CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
Collapse
Affiliation(s)
- Muhammad A Awadeen
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Fouad A Al-Belasy
- Department of Oral Surgery and Anesthesia, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Laila E Ameen
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
40
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Rahbar Saadat Y, Zununi Vahed S, Samiei M, Ardalan M, Rameshrad M, Ahmadian E, Cucchiarini M. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int J Mol Sci 2020; 21:E536. [PMID: 31947685 PMCID: PMC7014227 DOI: 10.3390/ijms21020536] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, 5515878151 Maragheh, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sara Salatin
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, 5166614756 Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, 9414975516 Bojnurd, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, 5166614756 Tabriz, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
41
|
Kingery MT, Schoof L, Strauss EJ, Bosco JA, Halbrecht J. Online Direct-to-Consumer Advertising of Stem Cell Therapy for Musculoskeletal Injury and Disease: Misinformation and Violation of Ethical and Legal Advertising Parameters. J Bone Joint Surg Am 2020; 102:2-9. [PMID: 31770294 DOI: 10.2106/jbjs.19.00714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND There has been a recent surge in health-care providers offering stem cell therapy (SCT) to patients with musculoskeletal disease. The purpose of this study was to identify and quantify the misinformation present in online direct-to-consumer (DTC) advertising of SCT targeting patients with musculoskeletal disease in the U.S. It was hypothesized that DTC advertising of SCT contains substantial misinformation. METHODS A list of keywords was used to identify web sites of practices advertising SCT directly to patients with musculoskeletal disease. Web sites were evaluated to determine the specialties of providers offering SCT, types of SCT being advertised, and misinformation presented. Categories of misinformation included false general claims, inaccurate statements regarding mechanism of action, unfounded results, and scare tactics. RESULTS Of the 896 practice web sites included in the analysis, 95.9% contained at least 1 statement of misinformation, with a mean of 4.65 ± 3.66 statements of misinformation among the sites. Practices associated with an orthopaedic surgeon provided 22% fewer statements of misinformation than practices without an orthopaedic surgeon when we controlled for the effects of other specialties. Practices associated with a podiatrist also provided 22% fewer statements of misinformation. CONCLUSIONS Nearly all practices failed to accurately represent the clinical efficacy of SCT in DTC advertising. While practices associated with an orthopaedic surgeon were less likely to provide misinformation, the majority of all web sites contained some type of misinformation, ranging from errors in the basic science of stem cells to outright false and misleading claims of their clinical effectiveness.
Collapse
Affiliation(s)
- Matthew T Kingery
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY
| | - Lauren Schoof
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY
| | - Eric J Strauss
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY
| | - Joseph A Bosco
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY
| | | |
Collapse
|
42
|
Le H, Xu W, Zhuang X, Chang F, Wang Y, Ding J. Mesenchymal stem cells for cartilage regeneration. J Tissue Eng 2020; 11:2041731420943839. [PMID: 32922718 PMCID: PMC7457700 DOI: 10.1177/2041731420943839] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Cartilage injuries are typically caused by trauma, chronic overload, and autoimmune diseases. Owing to the avascular structure and low metabolic activities of chondrocytes, cartilage generally does not self-repair following an injury. Currently, clinical interventions for cartilage injuries include chondrocyte implantation, microfracture, and osteochondral transplantation. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Stem cell therapies, especially mesenchymal stem cell (MSCs) therapies, were found to be a feasible strategy in the treatment of cartilage injuries. MSCs can easily be isolated from mesenchymal tissue and be differentiated into chondrocytes with the support of chondrogenic factors or scaffolds to repair damaged cartilage tissue. In this review, we highlighted the full success of cartilage repair using MSCs, or MSCs in combination with chondrogenic factors and scaffolds, and predicted their pros and cons for prospective translation to clinical practice.
Collapse
Affiliation(s)
- Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China
| |
Collapse
|
43
|
Kingery MT, Manjunath AK, Anil U, Strauss EJ. Bone Marrow Mesenchymal Stem Cell Therapy and Related Bone Marrow-Derived Orthobiologic Therapeutics. Curr Rev Musculoskelet Med 2019; 12:451-459. [PMID: 31749105 DOI: 10.1007/s12178-019-09583-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of the current article is to review the available literature related to bone marrow-derived mesenchymal stem cell therapy in the management of musculoskeletal pathologies and demonstrate the critical need for additional well-designed clinical studies. RECENT FINDINGS In recent years, there has been a rapid increase in interest regarding the use of bone marrow-derived mesenchymal stem cells in the treatment of musculoskeletal injury and disease. The clinical use of BM-MSCs and other forms of stem cell therapy has far outpaced the basic and translational science evidence required to elucidate the potential efficacy of this orthobiologic treatment approach. Early studies have demonstrated potential clinical benefit of utilizing bone marrow-derived mesenchymal stem cell therapy in the management of knee osteoarthritis, focal chondral lesions, shoulder pathology including rotator cuff tears and glenohumeral arthritis, and degenerative disk disease in the spine. To date, most published studies are small case series often lacking a control group or a standardized method of treatment. Bone marrow-derived mesenchymal stem cell therapy is becoming an increasingly common treatment for musculoskeletal injuries and disease. Although early clinical studies have shown promising outcomes, methodological flaws and lack of standardization among trials have limited the conclusions that can be drawn from the existing literature. A better understanding of the underlying mechanism of action and more carefully designed clinical trials will help reveal the efficacy and utility of BM-MSCs as a treatment modality for various orthopedic pathologies.
Collapse
Affiliation(s)
- Matthew T Kingery
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Amit K Manjunath
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Utkarsh Anil
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Health, New York, NY, USA. .,NYU Langone Orthopedics, 333 East 38th Street, 4th Floor, New York, NY, 10016, USA.
| |
Collapse
|
44
|
Madsen SD, Jones SH, Tucker HA, Giler MK, Muller DC, Discher CT, Russell KC, Dobek GL, Sammarco MC, Bunnell BA, O'Connor KC. Survival of aging CD264 + and CD264 - populations of human bone marrow mesenchymal stem cells is independent of colony-forming efficiency. Biotechnol Bioeng 2019; 117:223-237. [PMID: 31612990 DOI: 10.1002/bit.27195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM-MSC) cultures. Sorted CD264+ hBM-MSCs from two age-matched donors have elevated β-galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264- hBM-MSCs. Counterintuitive to their aging phenotype, CD264+ hBM-MSCs exhibited comparable survival to matched CD264- hBM-MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony-forming efficiency. These findings have ramifications for the preparation of hBM-MSC therapies given the prevalence of aging CD264+ cells in hBM-MSC cultures and the popularity of colony-forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Sean H Jones
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Dyllan C Muller
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Carson T Discher
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Georgina L Dobek
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Mimi C Sammarco
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
45
|
Nasiri N, Hosseini S, Alini M, Khademhosseini A, Baghaban Eslaminejad M. Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug Discov Today 2019; 24:2212-2224. [DOI: 10.1016/j.drudis.2019.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022]
|
46
|
Zhang R, Ma J, Han J, Zhang W, Ma J. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis. Am J Transl Res 2019; 11:6275-6289. [PMID: 31737182 PMCID: PMC6834499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by cartilage degradation, synovitis, subchondral bone sclerosis and osteophyte formation. Current therapeutic approaches for OA are not curative and only temporarily alleviate symptoms. In recent years, pre-clinical experiments and clinical trials have demonstrated that mesenchymal stem cell (MSC) related therapy is a promising option for the treatment of cartilage lesions and OA. MSCs isolated from bone marrow (BMSCs) have been widely used in animal models and clinic practice to demonstrate their chondrogenic potential, however the incidence of BMSC donors is low. Adipose derived mesenchymal stem cells (AMSCs) are a more easily accessible source of stem cells for OA treatment. MSC related therapies for cartilage lesions and OA include tissue engineering of MSC transplantation, scaffold-free injection of stem cells and cell-free injection of exosomes into the injured joints. Although a great deal of effort is required at the basic and clinical research fronts, the promise is that improved cell-based therapies will ultimately lead to the repair of damaged or diseased joints, and MSC exosome therapy for OA could be a safer, cheaper and a more effective treatment modality. MSC related therapy is predicted to become a regular and routine regenerative medicine for OA treatment in future clinical practice.
Collapse
Affiliation(s)
- Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaanxi, China
| | - Jie Ma
- School of Basic Medicine, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Jing Han
- School of Basic Medicine, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Weijie Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaanxi, China
| |
Collapse
|
47
|
Monckeberg JE, Rafols C, Apablaza F, Gerhard P, Rosales J. Intra-articular administration of peripheral blood stem cells with platelet-rich plasma regenerated articular cartilage and improved clinical outcomes for knee chondral lesions. Knee 2019; 26:824-831. [PMID: 31227435 DOI: 10.1016/j.knee.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/10/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether intra-articular injections of peripheral blood stem cells improved the regeneration of articular cartilage in patients with osteochondral knee injuries. METHODS This prospective study included 20 patients with grade 3b knee osteochondral lesions who underwent knee arthroscopies. All were white, and all had performed physical activity at least five times a week. International Knee Documentation Committee (IKDC) and visual analog scale scores were recorded before surgery, six months and one year after surgery, and then yearly until five years after surgery. Magnetic resonance imaging scans were obtained six months preoperatively and then yearly and were evaluated by musculoskeletal radiologists blinded to the patient data. Tissue repair was quantified using the International Cartilage Repair Society morphologic score system. Unpaired t-tests were used for comparisons between the time points. RESULTS The mean preoperative IKDC score was 50.5 (42-61). At the six-month follow-up, the mean values were 60.79 (P = 0.32) and 90.97. At the six-month follow-up, the mean values were 70.8 (P = 0.043). At the end of the five-year follow-up, the IKDC was 82.2 (P = 0.024). At five-year follow-up, the visual analog scale score was 1.1 (P = 0.0018). The main morphologic score system score was 3.2 preoperatively and 9.7 ± 1.6 at five-year follow-up (P = 0.0021). No infection, tumors, or synovitis were reported at the end of the follow-up. CONCLUSIONS Intra-articular peripheral blood stem cells with platelet-rich plasma regenerated articular cartilage and improved clinical outcomes for knee chondral lesions at five years of follow-up.
Collapse
|
48
|
Milano G, Sánchez M, Jo CH, Saccomanno MF, Thampatty BP, Wang JHC. Platelet-rich plasma in orthopaedic sports medicine: state of the art. J ISAKOS 2019. [DOI: 10.1136/jisakos-2019-000274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Theruvath AJ, Nejadnik H, Lenkov O, Yerneni K, Li K, Kuntz L, Wolterman C, Tuebel J, Burgkart R, Liang T, Felt S, Daldrup-Link HE. Tracking Stem Cell Implants in Cartilage Defects of Minipigs by Using Ferumoxytol-enhanced MRI. Radiology 2019; 292:129-137. [PMID: 31063081 DOI: 10.1148/radiol.2019182176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Cartilage repair outcomes of matrix-associated stem cell implants (MASIs) in patients have been highly variable. Conventional MRI cannot help distinguish between grafts that will and grafts that will not repair the underlying cartilage defect until many months after the repair. Purpose To determine if ferumoxytol nanoparticle labeling could be used to depict successful or failed MASIs compared with conventional MRI in a large-animal model. Materials and Methods Between January 2016 and December 2017, 10 Göttingen minipigs (n = 5 male; n = 5 female; mean age, 6 months ± 5.1; age range, 4-20 months) received implants of unlabeled (n = 12) or ferumoxytol-labeled (n = 20) viable and apoptotic MASIs in cartilage defects of the distal femur. All MASIs were serially imaged with MRI on a 3.0-T imaging unit at week 1 and weeks 2, 4, 8, 12, and 24, with calculation of T2 relaxation times. Cartilage regeneration outcomes were assessed by using the MR observation of cartilage repair tissue (MOCART) score (scale, 0-100), the Pineda score, and histopathologic quantification of collagen 2 production in the cartilage defect. Findings were compared by using the unpaired Wilcoxon rank sum test, a linear regression model, the Fisher exact test, and Pearson correlation. Results Ferumoxytol-labeled MASIs showed significant T2 shortening (22.2 msec ± 3.2 vs 27.9 msec ± 1.8; P < .001) and no difference in cartilage repair outcomes compared with unlabeled control MASIs (P > .05). At week 2 after implantation, ferumoxytol-labeled apoptotic MASIs showed a loss of iron signal and higher T2 relaxation times compared with ferumoxytol-labeled viable MASIs (26.6 msec ± 4.9 vs 20.8 msec ± 5.3; P = .001). Standard MRI showed incomplete cartilage defect repair of apoptotic MASIs at 24 weeks. Iron signal loss at 2 weeks correlated with incomplete cartilage repair, diagnosed at histopathologic examination at 12-24 weeks. Conclusion Ferumoxytol nanoparticle labeling can accelerate the diagnosis of successful and failed matrix-associated stem cell implants at MRI in a large-animal model. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Sneag and Potter in this issue.
Collapse
Affiliation(s)
- Ashok J Theruvath
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Hossein Nejadnik
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Olga Lenkov
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Ketan Yerneni
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Kai Li
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Lara Kuntz
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Cody Wolterman
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Jutta Tuebel
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Rainer Burgkart
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Tie Liang
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Stephen Felt
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| | - Heike E Daldrup-Link
- From the Department of Radiology and Molecular Imaging Program at Stanford (MIPS) (A.J.T., H.N., O.L., K.Y., K.L., L.K., C.W., T.L., H.E.D.), Department of Comparative Medicine (S.F.), and Department of Pediatrics (H.E.D.), Stanford University School of Medicine, 725 Welch Rd, Room 1665, Stanford, CA 94305-5654; Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany (A.J.T.); and Department of Orthopedics and Sportorthopedics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (L.K., J.T., R.B.)
| |
Collapse
|
50
|
Khanmohammadi M, Golshahi H, Saffarian Z, Montazeri S, Khorasani S, Kazemnejad S. Repair of Osteochondral Defects in Rabbit Knee Using Menstrual Blood Stem Cells Encapsulated in Fibrin Glue: A Good Stem Cell Candidate for the Treatment of Osteochondral Defects. Tissue Eng Regen Med 2019; 16:311-324. [PMID: 31205859 DOI: 10.1007/s13770-019-00189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In recent years, researchers discovered that menstrual blood-derived stem cells (MenSCs) have the potential to differentiate into a wide range of tissues including the chondrogenic lineage. In this study, we aimed to investigate the effect of MenSCs encapsulated in fibrin glue (FG) on healing of osteochondral defect in rabbit model. Methods We examined the effectiveness of MenSCs encapsulated in FG in comparison with FG alone in the repair of osteochondral defect (OCD) lesions of rabbit knees after 12 and 24 weeks. Results Macroscopical evaluation revealed that the effectiveness of MenSCs incorporation with FG is much higher than FG alone in repair of OCD defects. Indeed, histopathological evaluation of FG + MenSCs group at 12 weeks post-transplantation demonstrated that defects were filled with hyaline cartilage-like tissue with proper integration, high content of glycosaminoglycan and the existence of collagen fibers especially collagen type II, as well as by passing time (24 weeks post-transplantation), the most regenerated tissue in FG + MenSCs group was similar to hyaline cartilage with relatively good infill and integration. As the same with the result of 12 weeks post-implantation, the total point of microscopical examination in FG + MenSCs group was higher than other experimental groups, however, no significant difference was detected between groups at 24 weeks (p > 0.05). Conclusion In summary, MenSCs as unique stem cell population, is suitable for in vivo repair of OCD defects and promising for the future clinical application.
Collapse
Affiliation(s)
- Manijeh Khanmohammadi
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran.,2Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC Australia.,3The Ritchie Centre, Hudson Institute of Medical Research Clayton, VIC, Australia
| | - Hannaneh Golshahi
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran
| | - Zahra Saffarian
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran
| | - Samaneh Montazeri
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran
| | - Somaye Khorasani
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran
| | - Somaieh Kazemnejad
- 1Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, P.O. Box: 1177-19615 Tehran, Iran
| |
Collapse
|