3
|
Trofa DP, Hong IS, Lopez CD, Rao AJ, Yu Z, Odum SM, Moorman CT, Piasecki DP, Fleischli JE, Saltzman BM. Isolated Osteochondral Autograft Versus Allograft Transplantation for the Treatment of Symptomatic Cartilage Lesions of the Knee: A Systematic Review and Meta-analysis. Am J Sports Med 2023; 51:812-824. [PMID: 35139311 DOI: 10.1177/03635465211053594] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Focal cartilage lesions of the knee remain a difficult entity to treat. Current treatment options include arthroscopic debridement, microfracture, autograft or allograft osteochondral transplantation, and cell-based therapies such as autologous chondrocyte transplantation. Osteochondral transplantation techniques restore the normal topography of the condyles and provide mature hyaline cartilage in a single-stage procedure. However, clinical outcomes comparing autograft versus allograft techniques are scarce. PURPOSE To perform a comprehensive systematic review and meta-analysis of high-quality studies to evaluate the results of osteochondral autograft and allograft transplantation for the treatment of symptomatic cartilage defects of the knee. STUDY DESIGN Systematic review and meta-analysis; Level of evidence, 2. METHODS A comprehensive search of the literature was conducted using various databases. Inclusion criteria were level 1 or 2 original studies, studies with patients reporting knee cartilage injuries and chondral defects, mean follow-up ≥2 years, and studies focusing on osteochondral transplant techniques. Exclusion criteria were studies with nonknee chondral defects, studies reporting clinical outcomes of osteochondral autograft or allograft combined with other procedures, animal studies, cadaveric studies, non-English language studies, case reports, and reviews or editorials. Primary outcomes included patient-reported outcomes and failure rates associated with both techniques, and factors such as lesion size, age, sex, and the number of plugs transplanted were assessed. Metaregression using a mixed-effects model was utilized for meta-analyses. RESULTS The search resulted in 20 included studies with 364 cases of osteochondral autograft and 272 cases of osteochondral allograft. Mean postoperative survival was 88.2% in the osteochondral autograft cohort as compared with 87.2% in the osteochondral allograft cohort at 5.4 and 5.2 years, respectively (P = .6605). Patient-reported outcomes improved by an average of 65.1% and 81.1% after osteochondral autograft and allograft, respectively (P = .0001). However, meta-analysis revealed no significant difference in patient-reported outcome percentage change between osteochondral autograft and allograft (P = .97) and a coefficient of 0.033 (95% CI, -1.91 to 1.98). Meta-analysis of the relative risk of graft failure after osteochondral autograft versus allograft showed no significant differences (P = .66) and a coefficient of 0.114 (95% CI, -0.46 to 0.69). Furthermore, the regression did not find other predictors (mean age, percentage of female patients, lesion size, number of plugs/grafts used, and treatment location) that may have significantly affected patient-reported outcome percentage change or postoperative failure between osteochondral autograft versus allograft. CONCLUSION Osteochondral autograft and allograft result in favorable patient-reported outcomes and graft survival rates at medium-term follow-up. While predictors for outcomes such as mean age, percentage of female patients, lesion size, number of plugs/grafts used, and treatment location did not affect the comparison of the 2 cohorts, proper patient selection for either procedure remains paramount to the success and potentially long-term viability of the graft.
Collapse
Affiliation(s)
- David P Trofa
- Department of Orthopaedics, New York Presbyterian, Columbia University Medical Center, New York, New York, USA
| | - Ian S Hong
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Cesar D Lopez
- Department of Orthopaedics, New York Presbyterian, Columbia University Medical Center, New York, New York, USA
| | - Allison J Rao
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
| | - Ziqing Yu
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Susan M Odum
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
- OrthoCarolina Research Institute, Charlotte, North Carolina, USA
| | - Claude T Moorman
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Dana P Piasecki
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - James E Fleischli
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Bryan M Saltzman
- OrthoCarolina Sports Medicine Center, Charlotte, North Carolina, USA
- Musculoskeletal Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
10
|
Görtz S, Tabbaa SM, Jones DG, Polousky JD, Crawford DC, Bugbee WD, Cole BJ, Farr J, Fleischli JE, Getgood A, Gomoll AH, Gross AE, Krych AJ, Lattermann C, Mandelbaum BR, Mandt PR, Mirzayan R, Mologne TS, Provencher MT, Rodeo SA, Safir O, Strauss ED, Wahl CJ, Williams RJ, Yanke AB. Metrics of OsteoChondral Allografts (MOCA) Group Consensus Statements on the Use of Viable Osteochondral Allograft. Orthop J Sports Med 2021; 9:2325967120983604. [PMID: 34250153 PMCID: PMC8237219 DOI: 10.1177/2325967120983604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Osteochondral allograft (OCA) transplantation has evolved into a first-line
treatment for large chondral and osteochondral defects, aided by
advancements in storage protocols and a growing body of clinical evidence
supporting successful clinical outcomes and long-term survivorship. Despite
the body of literature supporting OCAs, there still remains controversy and
debate in the surgical application of OCA, especially where high-level
evidence is lacking. Purpose: To develop consensus among an expert group with extensive clinical and
scientific experience in OCA, addressing controversies in the treatment of
chondral and osteochondral defects with OCA transplantation. Study Design: Consensus statement. Methods: A focus group of clinical experts on OCA cartilage restoration participated
in a 3-round modified Delphi process to generate a list of statements and
establish consensus. Questions and statements were initially developed on
specific topics that lack scientific evidence and lead to debate and
controversy in the clinical community. In-person discussion occurred where
statements were not agreed on after 2 rounds of voting. After final voting,
the percentage of agreement and level of consensus were characterized. A
systematic literature review was performed, and the level of evidence and
grade were established for each statement. Results: Seventeen statements spanning surgical technique, graft matching,
indications, and rehabilitation reached consensus after the final round of
voting. Of the 17 statements that reached consensus, 11 received unanimous
(100%) agreement, and 6 received strong (80%-99%) agreement. Conclusion: The outcomes of this study led to the establishment of consensus statements
that provide guidance on surgical and perioperative management of OCAs. The
findings also provided insights on topics requiring more research or
high-quality studies to further establish consensus and provide stronger
evidence.
Collapse
Affiliation(s)
- Simon Görtz
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Suzanne M Tabbaa
- University of California-San Francisco, San Francisco, California, USA
| | - Deryk G Jones
- Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA
| | - John D Polousky
- Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA
| | | | | | - William D Bugbee
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Brian J Cole
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Jack Farr
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - James E Fleischli
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Alan Getgood
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Andreas H Gomoll
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Allan E Gross
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Aaron J Krych
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Christian Lattermann
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Bert R Mandelbaum
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Peter R Mandt
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Raffy Mirzayan
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Timothy S Mologne
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Matthew T Provencher
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Scott A Rodeo
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Oleg Safir
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Eric D Strauss
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Christopher J Wahl
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Riley J Williams
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| | - Adam B Yanke
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,University of California-San Francisco, San Francisco, California, USA.,Ochsner Sports Medicine Institute, Jefferson, Louisiana, USA.,Children's Health Andrews Institute for Orthopedics and Sports Medicine, Plano, Texas, USA.,Oregon Health and Science University, Portland, Oregon, USA.,Investigation performed at Metrics of Osteochondral Allografts (MOCA), JRF Ortho, Centennial, Colorado, USA
| |
Collapse
|
11
|
Duan WP, Huang LA, Dong ZQ, Li HQ, Guo L, Song WJ, Yang YF, Li PC, Wei XC. Studies of Articular Cartilage Repair from 2009 to 2018: A Bibliometric Analysis of Articles. Orthop Surg 2021; 13:608-615. [PMID: 33554478 PMCID: PMC7957388 DOI: 10.1111/os.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023] Open
Abstract
Objective To perform a bibliometric analysis of research on articular cartilage repair published in Chinese and English over the past decade. Fundamental and clinical research topics of high interest were further comparatively analyzed. Methods Relevant studies published from 1 January 2009 to 31 December 2018 (10 years) were retrieved from the Wanfang database (Chinese articles) and six databases, including MEDLINE, WOS, INSPEC, SCIELO, KJD, and RSCI on the website “Web of Science” (English articles), using key words: “articular cartilage” AND “injury” AND “repair”. The articles were categorized according to research focuses for a comparative analysis between those published in Chinese vs English, and further grouped according to publication date (before and after 2014). A comparative analysis was performed on research focus to characterize the variation in research trends between two 5‐year time spans. Moreover, articles were classified as basic and clinical research studies. Results Overall, 5762 articles were retrieved, including 2748 in domestic Chinese journals and 3014 in international English journals. A total of 4937 articles focused on the top 10 research topics, with the top 3 being stem cells (32.1%), tissue‐engineered scaffold (22.8%), and molecular mechanisms (16.4%). Differences between the numbers of Chinese and English papers were observed for 3 topics: chondrocyte implantation (104 vs 316), osteochondral allograft (27 vs 86), and microfracture (127 vs 293). The following topics gained more research interest in the second 5‐year time span compared with the first: microfracture, osteochondral allograft, osteochondral autograft, stem cells, and tissue‐engineered scaffold. Articles with a focus on three‐dimensional‐printing technology have shown the fastest increase in publication numbers. Among 5613 research articles, basic research studies accounted for the majority (4429), with clinical studies described in only 1184 articles. The top 7 research topics of clinical studies were: chondrocyte implantation (28.7%), stem cells (21.9%), microfracture (19.2%), tissue scaffold (10.6%), osteochondral autograft (10.5%), osteochondral allograft (6.3%), and periosteal transplantation (2.8%). Conclusion Studies focused on stem cells and tissue‐engineered scaffolds led the field of damaged articular cartilage repair. International researchers studied allograft‐related implantation approaches more often than Chinese researchers. Traditional surgical techniques, such as microfracture and osteochondral transplantation, gained high research interest over the past decade.
Collapse
Affiliation(s)
- Wang-Ping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Ling-An Huang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Zheng-Quan Dong
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Hao-Qian Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Li Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Wen-Jie Song
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Yan-Fei Yang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Peng-Cui Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Xiao-Chun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| |
Collapse
|