1
|
Uchio Y, Kuroda R, Niki Y, Sugawara K, Ishibashi Y. Effectiveness and Safety of Matrix-Associated Autologous Chondrocyte Implantation for the Treatment of Articular Cartilage Defects: A Real-World Data Analysis in Japan. Am J Sports Med 2024; 52:3232-3243. [PMID: 39397727 DOI: 10.1177/03635465241282671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND The effectiveness and safety of matrix-associated autologous chondrocyte implantation with an autologous periosteal flap (pMACI) remain unclear. The Japanese Ministry of Health, Labor, and Welfare requires postmarketing surveillance of all patients undergoing pMACI using the tissue-engineered product JACC. PURPOSE To evaluate the effectiveness and safety of pMACI for large articular cartilage defects (≥4 cm2) in the knee joint using real-world data analysis. STUDY DESIGN Case series; Level of evidence, 4. METHODS Data were collected from patients who underwent pMACI between 2012 and 2019, with 2 years of follow-up. The primary outcomes were the Lysholm knee score and Knee injury and Osteoarthritis Outcome Score (KOOS) at 6, 12, and 24 months. Adverse events were assessed by physical examination, magnetic resonance imaging, and/or arthroscopy. RESULTS Overall, 232 knees in 225 patients who presented with trauma (198 knees) or osteochondritis dissecans (34 knees) in the medial (132 knees) and lateral (44 knees) femoral condyle, patella (25 knees), trochlea (86 knees), and tibial plateau (4 knees) were included. The mean age of the patients was 40.9 ± 15.0 years, with mean cartilage defects of 5.6 ± 2.4 cm2 in size. Concomitant surgeries, such as osteotomy (50 knees), ligament reconstruction (27 knees), meniscal procedures (28 knees), osteochondral autograft transplantation (24 knees), and microfracture (14 knees), were performed in 113 (48.7%) knees. The minimal clinically important difference in the Lysholm knee score and KOOS Symptoms subscale was achieved in 79.7% and 63.5% of patients, respectively, and the Patient Acceptable Symptom State was achieved in 90.1% and 73.7%, respectively. Substantial clinical benefit was achieved in the KOOS Sports/Recreation and Quality of Life subscales at 39.6% and 37.8%, respectively. Knees that underwent concomitant microfracture had significantly worse KOOS values than the remainder of the cohort. Complications, including effusion (16.8%), graft delamination (14.7%), knee contracture (9.1%), graft hypertrophy (8.2%), and ossification (3.4%), were observed in 86 (37.1%) knees. Osteochondritis dissecans was significantly associated with graft hypertrophy and ossification, whereas concomitant surgery was significantly associated with delamination and contracture. Treatment failure required additional cartilage procedures in 11 (4.7%) knees. CONCLUSION Treatment of large cartilage defects (≥4 cm2) with pMACI resulted in improved outcome scores in approximately 75% of patients. However, complications occurred in one-third of patients, and 4.7% required reoperation.
Collapse
Affiliation(s)
- Yuji Uchio
- Department of Orthopaedic Surgery, Shimane University School of Medicine, Izumo City, Shimane Prefecture, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe City, Hyogo Prefecture, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, Fujita Medical Innovation Center Tokyo, Tokyo, Japan
| | - Katsura Sugawara
- Japan Tissue Engineering Co., LTD., Gamagori City, Aichi Prefecture, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki City, Aomori Prefecture, Japan
| |
Collapse
|
2
|
Bumberger A, Niemeyer P, Angele P, Wright EK, Faber SO. Hydrogel-based and spheroid-based autologous chondrocyte implantation of the knee show similar 2-year functional outcomes: An analysis based on the German Cartilage Registry (KnorpelRegister DGOU). Knee Surg Sports Traumatol Arthrosc 2024; 32:2258-2266. [PMID: 38751089 DOI: 10.1002/ksa.12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 09/03/2024]
Abstract
PURPOSE To compare short-term patient-reported outcomes (PRO) of two contemporary matrix-associated autologous chondrocyte implantation (M-ACI) products for the treatment of large articular cartilage defects of the knee. METHODS A retrospective, registry-based, matched-pair analysis was performed, comparing PRO of patients undergoing isolated M-ACI with either Spherox™, a spheroid-based ACI (Sb-ACI), or NOVOCART™ Inject, a hydrogel-based ACI product (Hb-ACI), for a focal full-thickness cartilage defect of the knee ≥4 cm2. Matching parameters included age, sex, body mass index, defect size, defect localization, symptom duration and previous surgeries. The Knee Injury and Osteoarthritis Outcome Score (KOOS) and the International Knee Documentation Committee (IKDC) score were obtained up to the 24-month follow-up. The total KOOS response rate and percentage of patients attaining a substantial clinical benefit (SCB) in KOOS subscores were calculated. RESULTS A total of 45 patients per group were matched. The response rate after 24 months was not significantly different between the groups (Sb-ACI 64.4% vs. Hb-ACI 82.2%, p = 0.057). The number of patients with a SCB at 24 months was not significantly different in any KOOS subscore, despite significantly higher improvement of the total KOOS (14.8 ± 16.2 vs. 21.5 ± 15.4, p = 0.047) and KOOS pain in the Hb-ACI group (12.2 ± 18.6 vs. 20.6 ± 19.1, p = 0.037). The IKDC score in the Hb-ACI group was significantly higher at the 12- and 24-month follow-up (60.7 ± 20.2 vs. 70.9 ± 18.0, p = 0.013). CONCLUSION The response rate and number of patients achieving an SCB were not significantly different between patients treated with Sb-ACI or Hb-ACI. Both procedures can achieve favourable 2-year PRO. Hb-ACI was associated with better PRO between 1 and 2 years postoperatively; however, the clinical relevance of this benefit is yet to be proven. LEVEL OF EVIDENCE III, Retrospective comparative study.
Collapse
Affiliation(s)
- Alexander Bumberger
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Peter Angele
- Sporthopaedicum Regensburg/Straubing, Regensburg, Germany
- University Medical Center Regensburg, Regensburg, Germany
| | - Emily K Wright
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Svea O Faber
- MUM-Muskuloskelettales Universitätszentrum München, LMU Klinikum, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
3
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
4
|
Ossendorff R, Wang S, Kurth S, Jaenisch M, Assaf E, Strauss AC, Bertheloot D, Welle K, Burger C, Wirtz DC, Schildberg FA. TNFα-Induced Inflammation Model-Evaluation of Concentration and Passage-Dependent Effects on Bovine Chondrocytes. Int J Mol Sci 2024; 25:9136. [PMID: 39273085 PMCID: PMC11395278 DOI: 10.3390/ijms25179136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation models are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis. TNFα (tumor necrosis factor alpha) plays an important role in the inflammatory process. Current inflammation models lack uniformity and make comparisons difficult. Therefore, this study aimed to systematically investigate whether the effects of TNFα are concentration-dependent and whether chondrocyte expansion has an effect on the inflammatory model. Bovine chondrocytes were enzymatically isolated, expanded to passages 1-3, and transferred into a 3D pellet culture. Chondrocyte pellets were stimulated with recombinant bovine TNFα at different concentrations for 48 h to induce inflammation. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP)), catabolic (matrix metalloproteinases (MMP3, MMP13)), dedifferentiation (collagen 1) markers, inflammation markers (interleukin-6 (IL-6), nuclear factor kappa B (NFkB), cyclooxygenase-2 (COX), prostaglandin-E-synthase-2 (PTGES2)), and the apoptosis marker caspase 3 was determined. At the protein level, concentrations of IL-6, nitric oxide (NO), and sulfated glycosaminoglycans (GAG) were evaluated. Statistical analysis was performed using the independent t-test, and significance was defined as p < 0.05. In general, TNFα caused a decrease in anabolic markers and an increase in the expression of catabolic and inflammatory markers. There was a concentration-dependent threshold of 10 ng/mL to induce significant inflammatory effects. Most of the markers analyzed showed TNFα concentration-dependent effects (COMP, PRG4, AGN, Col1, MMP3, and NFkB). There was a statistical influence of selected gene expression markers from different passages on the TNFα chondrocyte inflammation model, including Col2, MMP13, IL-6, NFkB, COX2, and PTGES2. Considering the expression of collagen 2 and MMP3, passage 3 chondrocytes showed a higher sensitivity to TNFα stimulation compared to passages 1 and 2. On the other hand, MMP13, IL-6, NFkB, and caspase 3 gene expression were lower in P3 chondrocytes compared to the other passages. On the protein level, inflammatory effects showed a similar pattern, with cytokine effects starting at 10 ng/mL and differences between the passages. TNFα had a detrimental effect on cartilage, with a clear threshold observed at 10 ng/mL. Although TNFα effects showed concentration-dependent patterns, this was not consistent for all markers. The selected passage showed a clear influence, especially on inflammation markers. Further experiments were warranted to explore the effects of TNFα concentration and passage in long-term stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
6
|
Gan X, Wang X, Huang Y, Li G, Kang H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024; 12:923. [PMID: 38672277 PMCID: PMC11048369 DOI: 10.3390/biomedicines12040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review critically evaluates advancements in multifunctional hydrogels, particularly focusing on their applications in osteoarthritis (OA) therapy. As research evolves from traditional natural materials, there is a significant shift towards synthetic and composite hydrogels, known for their superior mechanical properties and enhanced biodegradability. This review spotlights novel applications such as injectable hydrogels, microneedle technology, and responsive hydrogels, which have revolutionized OA treatment through targeted and efficient therapeutic delivery. Moreover, it discusses innovative hydrogel materials, including protein-based and superlubricating hydrogels, for their potential to reduce joint friction and inflammation. The integration of bioactive compounds within hydrogels to augment therapeutic efficacy is also examined. Furthermore, the review anticipates continued technological advancements and a deeper understanding of hydrogel-based OA therapies. It emphasizes the potential of hydrogels to provide tailored, minimally invasive treatments, thus highlighting their critical role in advancing the dynamic field of biomaterial science for OA management.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiwan Huang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
7
|
Wilke HJ, Fuchs H, Benz K, Mollenhauer J, Gaissmaier C, Heuer F, Neidlinger-Wilke C. The Injection of Gels Through an Intact Annulus Maintains Biomechanical Performance without Extrusion Risk. Gels 2024; 10:269. [PMID: 38667688 PMCID: PMC11049287 DOI: 10.3390/gels10040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
For autologous-disc-derived chondrocyte transplantation (ADCT) a transglutaminase crosslinked gelatine gel and an albumin hyaluronic acid gel, crosslinked with bis-thio-polyethylene glycol, were injected through a syringe into a degenerated intervertebral disc, where they solidified in situ. This biomechanical in vitro study with lumbar bovine motion segments evaluated disc height changes, motion characteristics in a quasi-static spine loading simulators, and the potential extrusion risk of these biomaterials in a complex dynamic multi-axial loading set-up with 100,000 loading cycles. After the injection and formation of the gel in the center of the nucleus, the disc height increase was about 0.3 mm. During cyclic testing, a gradual decrease in height could be detected due to viscoelastic effects and fluid loss. No gel extrusion could be observed for all specimens during the entire test procedure. A macroscopic inspection after dissections showed an accumulation of the solidified gel in the center of the nucleus. The results demonstrate that the injection of in situ solidifying gels through the intact annulus allows for the stable maintenance of the injected gel at the target location, with high potential for use as a suitable scaffold to anchor therapeutically applied cells for disc regeneration within the treated nucleus pulposus.
Collapse
Affiliation(s)
- Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany (C.N.-W.)
| | - Holger Fuchs
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany (C.N.-W.)
| | - Karin Benz
- NMI Natural and Medical Sciences Institute, The University of Tübingen, 72770 Reutlingen, Germany; (K.B.)
- TETEC Tissue Engineering Technologies AG, 72770 Reutlingen, Germany;
| | - Juergen Mollenhauer
- NMI Natural and Medical Sciences Institute, The University of Tübingen, 72770 Reutlingen, Germany; (K.B.)
| | | | - Frank Heuer
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany (C.N.-W.)
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Centre for Trauma Research Ulm, Ulm University, 89081 Ulm, Germany (C.N.-W.)
| |
Collapse
|
8
|
Gaissmaier C, Angele P, Spiro RC, Köhler A, Kirner A, Niemeyer P. Hydrogel-Based Matrix-Associated Autologous Chondrocyte Implantation Shows Greater Substantial Clinical Benefit at 24 Months Follow-Up than Microfracture: A Propensity Score Matched-Pair Analysis. Cartilage 2024:19476035241235928. [PMID: 38501741 DOI: 10.1177/19476035241235928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To compare substantial clinical benefit (SCB) of a hydrogel-based, matrix-associated autologous chondrocyte implantation (M-ACI) method versus microfracture (MFx) in the treatment of knee cartilage defects. DESIGN Propensity score matched-pair analysis, using the MFx control group of a phase III study as comparator for M-ACI treatment in a single-arm phase III study, resulting in 144 patients in the matched-pair set. RESULTS Groups were comparable regarding baseline Knee Injury and Osteoarthritis Outcome Score (KOOS), sex, age, body mass index, symptom duration, smoking status, and previous knee surgeries. Defect sizes in the M-ACI group were significantly larger than in the MFx group (6.4 cm2 vs. 3.7 cm2). Other differences concerned location, number, and etiology of defects that were not considered to influence the interpretation of results. At 24 months, significantly more patients in the M-ACI group achieved SCB in KOOS pain (72.2% vs. 48.6%; P = 0.0108), symptoms (84.7% vs. 61.1%, P = 0.0039), sports/recreation (84.7% vs. 56.9%, P = 0.0008), and quality of life (QoL; 72.2% vs. 44.4%, P = 0.0014). The SCBs for KOOS activities in daily living and International Knee Documentation Committee score were higher for M-ACI but not significantly different from MFx. The SCB rates consistently favored M-ACI from 3 months onward. The highest improvements from baseline at 24 months in patients with SCB were observed for KOOS sports/rec. (M-ACI: 60.8 points, MFx: 55.9 points) and QoL (M-ACI: 58.1, MFx: 57.4). CONCLUSION Hydrogel-based M-ACI demonstrated superior SCB in KOOS pain, symptoms, sports/rec., and QoL compared with MFx in patients with knee cartilage defects through 2 years follow-up.
Collapse
Affiliation(s)
| | - Peter Angele
- Sporthopaedicum Regensburg, Regensburg, Germany
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | | | - Annette Köhler
- TETEC-Tissue Engineering Technologies AG, Reutlingen, Germany
| | | | - Philipp Niemeyer
- OCM Orthopädische Chirurgie München, Munich, Germany
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert Ludwig University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Cognetti DJ, Defoor MT, Yuan TT, Sheean AJ. Knee Joint Preservation in Tactical Athletes: A Comprehensive Approach Based upon Lesion Location and Restoration of the Osteochondral Unit. Bioengineering (Basel) 2024; 11:246. [PMID: 38534520 DOI: 10.3390/bioengineering11030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The unique physical demands of tactical athletes put immense stress on the knee joint, making these individuals susceptible to injury. In order to ensure operational readiness, management options must restore and preserve the native architecture and minimize downtime, while optimizing functionality. Osteochondral lesions (OCL) of the knee have long been acknowledged as significant sources of knee pain and functional deficits. The management of OCL is predicated on certain injury characteristics, including lesion location and the extent of subchondral disease. Techniques such as marrow stimulation, allograft and autologous chondrocyte implantation are examined in detail, with a focus on their application and suitability in tactical athlete populations. Moreover, the restoration of the osteochondral unit (OCU) is highlighted as a central aspect of knee joint preservation. The discussion encompasses the biomechanical considerations and outcomes associated with various cartilage restoration techniques. Factors influencing procedure selection, including lesion size, location, and patient-specific variables, are thoroughly examined. Additionally, the review underscores the critical role of post-operative rehabilitation and conditioning programs in optimizing outcomes. Strengthening the surrounding musculature, enhancing joint stability, and refining movement patterns are paramount in facilitating the successful integration of preservation procedures. This narrative review aims to provide a comprehensive resource for surgeons, engineers, and sports medicine practitioners engaged in the care of tactical athletes and the field of cartilage restoration. The integration of advanced preservation techniques and tailored rehabilitation protocols offers a promising avenue for sustaining knee joint health and function in this demanding population.
Collapse
Affiliation(s)
- Daniel J Cognetti
- Department of Orthopedic Surgery, Brooke Army Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234, USA
| | - Mikalyn T Defoor
- Department of Orthopedic Surgery, Brooke Army Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234, USA
| | - Tony T Yuan
- Advanced Exposures Diagnostics, Interventions and Biosecurity Group, 59 Medical Wing, Lackland Air Force Base, San Antonio, TX 78236, USA
- Center for Biotechnology (4D Bio3), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew J Sheean
- Department of Orthopedic Surgery, Brooke Army Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234, USA
| |
Collapse
|
10
|
Almohaileb FI, Rasheed Z. Clinical Applicability of Autologous Chondrocyte Implantation for the Treatment of Osteochondral Defects: A Meta-analysis. Curr Rheumatol Rev 2024; 20:317-331. [PMID: 37957845 DOI: 10.2174/0115733971249660231101102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Osteoarthritis and other joint disorders are the leading cause of disability in the elderly and the treatment of joint lesions is challenging. Autologous chondrocyte implantation (ACI) has been reported with variable effects for the treatment of osteochondral and other joint lesions. In this study, we performed a meta-analysis of the recent literature to determine the clinical applicability of ACI for osteochondral defects. METHODS A meta-analysis was performed on the recent literature showing the effects of ACI on osteochondral defects. The PUBMED, ScienceDirect and Google Scholar databases were used to identify eligible studies from Jan 2010 to Sep 2022. Both fixed and random models of meta-analysis were applied with all reported scoring systems to quantify the effectiveness of ACI on osteochondral defects. RESULTS The pool data of 965 patients as a case series after ACI from a fixed model showed a significant improvement in the osteochondral defects (odds ratio = 8.75, 95%CI = 7.127 to 10.743, p = 0.000). These results were further verified by a random model of meta-analysis. The data also showed a substantial heterogeneity among the studies used in the meta-analysis (Q-value = 160.41, I-squared = 87.53, p = 0.000). Furthermore, this meta-analysis also compared different ACI procedures with different scoring systems but the overall outcome remains the same as ACI was found to be useful for the healing of the osteochondral defects. CONCLUSION This meta-analysis of 965 case series revealed that the ACI markedly improved the damage osteochondral defects scores but the optimal treatment is still controversial, therefore further studies are needed to validate these findings in a clinical setting.
Collapse
Affiliation(s)
- Faisal I Almohaileb
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
11
|
Yoon KH, Song SJ, Hwang SH, Jang WJ, Park CH. Costal chondrocyte-derived pellet-type scaffold-free autologous chondrocyte implantation provided acceptable mid-term outcomes in osteochondral defects with up to 10-mm depth. Knee Surg Sports Traumatol Arthrosc 2023; 31:5111-5117. [PMID: 37715051 DOI: 10.1007/s00167-023-07566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/02/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE To evaluate clinical, radiographic, and magnetic resonance (MR) results of costal chondrocyte-derived pellet-type scaffold-free autologous chondrocyte implantation (CCP-ACI) in osteochondral defects (ODs) up to 10-mm depth during 5 years of follow-up. METHODS Ten patients with CCP-ACI performed in ODs with depth up to 10 mm were retrospectively analyzed. The minimum follow-up period was 5 years. The median age was 36.5 (range 20-55) years. The median size and the depth of the OD lesion were 4.25 cm2 (range 2-6) and 7.0 mm (6-9), respectively. Clinically, the International Knee Documentation Committee, Lysholm, and visual analog scale pain scores were evaluated. Radiographically, the hip‒knee‒ankle (HKA) angle and the Kellgren‒Lawrence (K‒L) grade were assessed. On MR imaging, the magnetic resonance observation of cartilage repair tissue (MOCART) 2.0 score and the defect depth were evaluated. RESULTS All average clinical scores improved significantly by 1, 2, and 5 years postoperatively. The average HKA angle and the proportion of K‒L grade did not change significantly within 5 years. The median total MOCART scores were 50 (range 45-65), 50 (35-90), 57.5 (40-90), and 65 (50-85) at 6 months, 1 year, 2 years, and 5 years postoperatively, respectively (p = 0.001), with significant improvement at 2 years compared to that at 6 months postoperatively. The signal intensity of the repair tissue and subchondral change significantly improved from 10 (range 10-10) to 12.5 (10-15) (p = 0.036), and from 10 (10-10) to 17.5 (0-20) (p = 0.017), respectively. Significant improvements were seen at 5 years postoperatively for the former and at 2 years postoperatively for the latter. The average depths on MR imaging were 6.7, 6.7, 6.8, 6.6, and 6.6 mm preoperatively and at 6 months, 1 year, 2 years, and 5 years postoperatively with no significant changes (n.s). CONCLUSION CCP-ACI provided acceptable mid-term outcomes in ODs up to 10-mm in depth without bone grafting despite of no scaffold. The procedure can be one of minimally invasive treatment options for ODs without scaffold-related problems. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Kyoung Ho Yoon
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, 02447, Korea
| | - Sang Jun Song
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, 02447, Korea
| | - Sung Hyun Hwang
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, 02447, Korea
| | - Woo Jae Jang
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, 02447, Korea
| | - Cheol Hee Park
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-Daero, Dongdaemun-Gu, Seoul, 02447, Korea.
| |
Collapse
|
12
|
Philippe V, Jeannerat A, Peneveyre C, Jaccoud S, Scaletta C, Hirt-Burri N, Abdel-Sayed P, Raffoul W, Darwiche S, Applegate LA, Martin R, Laurent A. Autologous and Allogeneic Cytotherapies for Large Knee (Osteo)Chondral Defects: Manufacturing Process Benchmarking and Parallel Functional Qualification. Pharmaceutics 2023; 15:2333. [PMID: 37765301 PMCID: PMC10536774 DOI: 10.3390/pharmaceutics15092333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cytotherapies are often necessary for the management of symptomatic large knee (osteo)-chondral defects. While autologous chondrocyte implantation (ACI) has been clinically used for 30 years, allogeneic cells (clinical-grade FE002 primary chondroprogenitors) have been investigated in translational settings (Swiss progenitor cell transplantation program). The aim of this study was to comparatively assess autologous and allogeneic approaches (quality, safety, functional attributes) to cell-based knee chondrotherapies developed for clinical use. Protocol benchmarking from a manufacturing process and control viewpoint enabled us to highlight the respective advantages and risks. Safety data (telomerase and soft agarose colony formation assays, high passage cell senescence) and risk analyses were reported for the allogeneic FE002 cellular active substance in preparation for an autologous to allogeneic clinical protocol transposition. Validation results on autologous bioengineered grafts (autologous chondrocyte-bearing Chondro-Gide scaffolds) confirmed significant chondrogenic induction (COL2 and ACAN upregulation, extracellular matrix synthesis) after 2 weeks of co-culture. Allogeneic grafts (bearing FE002 primary chondroprogenitors) displayed comparable endpoint quality and functionality attributes. Parameters of translational relevance (transport medium, finished product suturability) were validated for the allogeneic protocol. Notably, the process-based benchmarking of both approaches highlighted the key advantages of allogeneic FE002 cell-bearing grafts (reduced cellular variability, enhanced process standardization, rationalized logistical and clinical pathways). Overall, this study built on our robust knowledge and local experience with ACI (long-term safety and efficacy), setting an appropriate standard for further clinical investigations into allogeneic progenitor cell-based orthopedic protocols.
Collapse
Affiliation(s)
- Virginie Philippe
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Laboratory of Biomechanical Orthopedics, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
| | - Salim Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Alexis Laurent
- Regenerative Therapy Unit, Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (S.J.); (C.S.); (N.H.-B.); (P.A.-S.); (W.R.); (L.A.A.)
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland; (A.J.); (C.P.)
| |
Collapse
|
13
|
Niemeyer P, Angele P, Spiro RC, Kirner A, Gaissmaier C. Comparison of Hydrogel-Based Autologous Chondrocyte Implantation Versus Microfracture: A Propensity Score Matched-Pair Analysis. Orthop J Sports Med 2023; 11:23259671231193325. [PMID: 37655236 PMCID: PMC10467419 DOI: 10.1177/23259671231193325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023] Open
Abstract
Background Few studies exist for large defects comparing matrix-associated autologous chondrocyte implantation (M-ACI) with other cartilage repair methods due to the limited availability of suitable comparator treatments. Purpose To compare the clinical efficacy of a novel hydrogel-based M-ACI method (NOVOCART Inject plus) versus microfracture (MFx) in patients with knee cartilage defects. Study Design Cohort study; Level of evidence, 3. Methods Propensity score matched-pair analysis was used to compare the 24-month outcomes between the M-ACI treatment group from a previous single-arm phase 3 study and the MFx control group from another phase 3 study. Patients were matched based on preoperative Knee injury and Osteoarthritis Outcomes Score (KOOS), symptom duration, previous knee surgeries, age, and sex, resulting in 144 patients in the matched-pair set (72 patients per group). The primary endpoint was the change in least-squares means (ΔLSmeans) for the KOOS from baseline to the 24-month assessment. Results Defect sizes in the M-ACI group were significantly larger than in the MFx group (6.4 versus 3.7 cm2). Other differences included defect location (no patellar or tibial defects in the MFx group), number of defects (33.3% with 2 defects in the M-ACI group versus 9.7% in the MFx group), and defect cause (more patients with degenerative lesions in the M-ACI group). The M-ACI group had higher posttreatment KOOS (M-ACI versus MFX: 81.8 ± 16.8 versus 73.0 ± 20.6 points) and KOOS ΔLSmeans from baseline to 24 months posttreatment (M-ACI versus MFX: 36.9 versus 26.9 points). Treatment contrasts in KOOS ΔLSmeans from baseline indicated statistical significance in favor of M-ACI from 3 to 24 months posttreatment (P = .0026). Significant and clinically meaningful differences in favor of M-ACI at 24 months were also found regarding International Knee Documentation Committee (IKDC) score ΔLSmeans from baseline (37.8 versus 30.4 points; P = .0334), KOOS responder rates at 24 months (≥10-point improvement from baseline; 94.4% versus 65.3%; P < .0001), IKDC responder rates at 24 months (>20.5-point improvement from baseline; 83.3% versus 61.1%, P = .0126) and MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) score in a subgroup of patients (LS means, 86.9 versus 69.1; P = .0096). Conclusion In this exploratory analysis, M-ACI using an in situ crosslinked hydrogel demonstrated superior clinical and structural (MOCART) 24-month outcomes compared with MFx in patients with knee cartilage defects.
Collapse
Affiliation(s)
- Philipp Niemeyer
- OCM Orthopädische Chirurgie München, Munich, Germany
- Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Peter Angele
- Sporthopaedicum Regensburg, Regensburg, Germany
- Department of Trauma Surgery, University Medical Centre Regensburg, Germany
| | | | | | | |
Collapse
|
14
|
Weitkamp JT, Benz K, Rolauffs B, Bayer A, Weuster M, Lucius R, Gülses A, Naujokat H, Wiltfang J, Lippross S, Hoffmann M, Kurz B, Behrendt P. In Vitro Comparison of 2 Clinically Applied Biomaterials for Autologous Chondrocyte Implantation: Injectable Hydrogel Versus Collagen Scaffold. Cartilage 2023; 14:220-234. [PMID: 36859785 PMCID: PMC10416195 DOI: 10.1177/19476035231154507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE In autologous chondrocyte implantation (ACI), there is no consensus about used bioscaffolds. The aim of this study was to perform an in vitro comparative analysis of 2 clinically applied biomaterials for cartilage lesion treatment. DESIGN Monolayer expanded human chondrocytes (n = 6) were embedded in a collagen scaffold (CS) and a hyaluronic acid-based hydrogel (HA). Cells were cultured in chondropermissive medium supplemented with and without interleukin-10 (IL-10) and bone morphogenetic protein-2 (BMP-2). Gene expression of chondrogenic markers (COL1A1, COL2A1, COL10A1, ACAN, SOX9) was detected via quantitative real-time-polymerase chain reaction (RT-qPCR). Biosynthesis of matrix compounds, cell viability, morphology as well as migration from surrounding native bovine cartilage into cell-free scaffolds were analyzed histologically. Adhesion of the material to adjacent cartilage was investigated by a custom-made push-out test. RESULTS The shift of COL1/2 ratio toward COL2A1 was more pronounced in HA, and cells displayed a more spherical morphology compared with CS. BMP-2 and IL-10 significantly increased COL2A1, SOX9, and ACAN expression, which was paralleled by enhanced staining of glycosaminoglycans (GAGs) and type 2 collagen in histological sections of CS and HA. COL10A1 was not significantly expressed in HA and CS. Better interfacial integration and enhanced cell invasion was observed in CS. Push-out tests using CS showed higher bonding strength to native cartilage. CONCLUSION HA-based hydrogel revealed a more chondrocyte-like phenotype but only allowed limited cell invasion, whereas CS were advantageous in terms of cellular invasion and interfacial adhesion. These differences may be clinically relevant when treating cartilaginous or osteochondral defects.
Collapse
Affiliation(s)
- Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Karin Benz
- TETEC Tissue Engineering Technologies AG, Reutlingen, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andreas Bayer
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Matthias Weuster
- Clinic for Trauma Surgery, Diako Hospital Flensburg, Flensburg, Germany
| | - Ralph Lucius
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sebastian Lippross
- Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michael Hoffmann
- Department of Trauma Surgery, Orthopedics and Sportsorthopedics, Asklepios Klinik St. Georg, Hamburg, Germany
| | - Bodo Kurz
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Peter Behrendt
- Department of Anatomy, Kiel University, Kiel, Germany
- Department of Trauma Surgery, Orthopedics and Sportsorthopedics, Asklepios Klinik St. Georg, Hamburg, Germany
| |
Collapse
|
15
|
Snow M, Mandalia V, Custers R, Emans PJ, Kon E, Niemeyer P, Verdonk R, Gaissmaier C, Roeder A, Weinand S, Zöllner Y, Schubert T. Cost-effectiveness of a new ACI technique for the treatment of articular cartilage defects of the knee compared to regularly used ACI technique and microfracture. J Med Econ 2023; 26:537-546. [PMID: 36974460 DOI: 10.1080/13696998.2023.2194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AIMS For patients with cartilage defects of the knee, a new biocompatible and in situ cross-linkable albumin-hyaluronan-based hydrogel has been developed for matrix-associated autologous chondrocyte implantation (M-ACI) - NOVOCART® Inject plus (NInject)1. We aimed to estimate the potential cost-effectiveness of NInject, that is not available on the market, yet compared to spheroids of human autologous matrix-associated chondrocytes (Spherox®)2 and microfracture. MATERIALS AND METHODS An early Markov model was developed to estimate the cost-effectiveness in the United Kingdom (UK) from the payer perspective. Transition probabilities, response rates, utility values and costs were derived from literature. Since NInject has not yet been launched and no prices are available, its costs were assumed equal to those of Spherox®. Cycle length was set at one year and the time horizon chosen was notional patients' remaining lifetime. Model robustness was evaluated with deterministic and probabilistic sensitivity analyses (DSA; PSA) and value of information (VOI) analysis. The Markov model was built using TreeAge Pro Healthcare. RESULTS NInject was cost-effective compared to microfracture (ICER: ₤5,147) while Spherox® was extendedly dominated. In sensitivity analyses, the ICER exceeded conventional WTP threshold of ₤20,000 only when the utility value after successful first treatment with NInject was decreased by 20% (ICER: ₤69,620). PSA corroborated the cost-effectiveness findings of NInject, compared to both alternatives, with probabilities of 60% of NInject undercutting the aforementioned WTP threshold and being the most cost-effective alternative. The VOIA revealed that obtaining additional evidence on the new technology will likely not be cost-effective for the UK National Health Service. LIMITATIONS AND CONCLUSION This early Markov model showed that NInject is cost-effective for the treatment of articular cartilage defects in the knee, compared to Spherox and microfracture. However, as the final price of NInject has yet to be determined, the cost-effectiveness analysis performed in this study is provisional, assuming equal prices for NInject and Spherox.
Collapse
Affiliation(s)
- Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, UK
- The Robert Jones and Agnes Hunt, Oswestry, UK
| | | | - Roel Custers
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter J Emans
- Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Casa di Cura Toniolo, Bologna, Italy
| | | | | | | | | | | | - York Zöllner
- Hamburg University of Applied Sciences, Hamburg, Germany
| | | |
Collapse
|
16
|
Niemeyer P, Angele P. Autologous Chondrocyte Implantation (ACI) for Cartilage Defects of the knee using Novocart® 3D and Novocart® Inject. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Aktuelle Therapieempfehlungen zur operativen Knorpeltherapie am Kniegelenk. ARTHROSKOPIE 2022. [DOI: 10.1007/s00142-022-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Janacova V, Szomolanyi P, Kirner A, Trattnig S, Juras V. Adjacent cartilage tissue structure after successful transplantation: a quantitative MRI study using T 2 mapping and texture analysis. Eur Radiol 2022; 32:8364-8375. [PMID: 35737095 DOI: 10.1007/s00330-022-08897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to assess the texture of repair tissue and tissue adjacent to the repair site after matrix-associated chondrocyte transplantation (MACT) of the knee using gray-level co-occurrence matrix (GLCM) texture analysis of T2 quantitative maps. METHODS Twenty patients derived from the MRI sub-study of multicenter, single-arm phase III study underwent examination on a 3 T MR scanner, including a T2 mapping sequence 12 and 24 months after MACT. Changes between the time points in mean T2 values and 20 GLCM features were assessed for repair tissue, adjacent tissue, and reference cartilage. Differences in T2 values and selected GLCM features between the three cartilage sites at two time points were analyzed using linear mixed-effect models. RESULTS A significant decrease in T2 values after MACT, between time points, was observed only in repair cartilage (p < 0.001). Models showed significant differences in GLCM features between repair tissue and reference cartilage, namely, autocorrelation (p < 0.001), correlation (p = 0.015), homogeneity (p = 0.002), contrast (p < 0.001), and difference entropy (p = 0.047). The effect of time was significant in a majority of models with regard to GLCM features (except autocorrelation) (p ≤ 0.001). Values in repair and adjacent tissue became similar to reference tissue over time. CONCLUSIONS GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to changes in cartilage structure. The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant. KEY POINTS • GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to changes in cartilage structure. • Repair and adjacent tissue became similar to reference tissue over time. • The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant.
Collapse
Affiliation(s)
- Veronika Janacova
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| | - Pavol Szomolanyi
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria.,Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Kirner
- TETEC Tissue Engineering Technologies AG, Aspenhaustraße 18, 72770, Reutlingen, Germany
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria. .,CD Laboratory for Clinical Molecular MR Imaging, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria. .,Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.
| | - Vladimir Juras
- High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, BT32, Lazarettgasse 14, 1090, Vienna, Austria
| |
Collapse
|