1
|
Lane NE. Slow acting medications for progressive and painful knee osteoarthritis. How do we assess the benefit to risk of these potentially novel therapies? OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100546. [PMID: 39737142 PMCID: PMC11683324 DOI: 10.1016/j.ocarto.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Affiliation(s)
- Nancy E. Lane
- Department of Medicine, U.C. Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
2
|
Gagliardi R, Koch DW, Loeser R, Schnabel LV. Matrikine stimulation of equine synovial fibroblasts and chondrocytes results in an in vitro osteoarthritis phenotype. J Orthop Res 2025; 43:292-303. [PMID: 39486895 DOI: 10.1002/jor.26004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
Osteoarthritis (OA) is a debilitating disease that impacts millions of individuals and has limited therapeutic options. A significant hindrance to therapeutic discovery is the lack of in vitro OA models that translate reliably to in vivo preclinical animal models. An alternative to traditional inflammatory cytokine models is the matrikine stimulation model, in which fragments of matrix proteins naturally found in OA tissues and synovial fluid, are used to stimulate cells of the joint. The objective of this study was to determine if matrikine stimulation of equine synovial fibroblasts and chondrocytes with fibronectin fragments (FN7-10) would result in an OA phenotype. We hypothesized that FN7-10 stimulation of equine articular cells would result in an OA phenotype with gene and protein expression changes similar to those previously described for human chondrocytes stimulated with FN7-10. Synovial fibroblasts and chondrocytes isolated from four horses were stimulated in monolayer culture for 6 or 18 h with 1 µM purified recombinant 42 kD FN7-10 in serum-free media. At the conclusion of stimulation, RNA was collected for targeted gene expression analysis and media for targeted protein production analysis. Consistent with our hypothesis, FN7-10 stimulation resulted in significant alterations to many important genes that are involved in OA pathogenesis including increased expression of IL-1β, IL-4, IL-6, CCL2/MCP-1, CCL5/RANTES, CXCL6/GCP-2, MMP-1, MMP-3, and MMP13. The results of this study suggest that the equine matrikine stimulation model of OA may prove useful for in vitro experiments leading up to preclinical trials.
Collapse
Affiliation(s)
- Rachel Gagliardi
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Richard Loeser
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Hu YC, Huang TC, Hsieh BS, Huang LW, Lin JS, Hsu HY, Lee CC, Chang KL. Heat-Killed Lactobacillus delbrueckii subsp. lactis 557 Extracts Protect Chondrocytes from Osteoarthritis Damage by Reducing Inflammation: An In Vitro Study. Nutrients 2024; 16:4417. [PMID: 39771038 PMCID: PMC11676954 DOI: 10.3390/nu16244417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed Lactobacillus delbrueckii subsp. lactis 557 (LDL557) could significantly decrease OA progression. METHODS Accordingly, we designed an in vitro cell culture study aimed at investigating the effects of heat-killed LDL557 extracts on chondrocytes using SW1353 cells (a human chondrosarcoma cell line) challenged with 5 μM MIA to mimic OA conditions. RESULTS The results showed that the 10 μg/mL LDL557 extracts protected SW1353 cells from MIA-induced death and reduced extracellular matrix (ECM) loss, as evaluated by toluidine blue O staining and extracellular matrix component synthesis with RT-qPCR measurement. This was achieved by decreasing the expression of MIA-induced pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, while slightly increasing the MIA-suppressed expression of the anti-inflammatory cytokine IL-10, which were evidenced by RT-qPCR analysis. Moreover, the RT-qPCR evaluation also indicated that the LDL557 extracts slightly reduced the expression of COX-2 compared with the control, while it did not reduce the MIA-increased expression of microsomal prostaglandin E synthase-1 (mPGES-1). In addition, the LDL557 extracts influenced neither the matrix-degrading protease expressions measured via RT-qPCR nor the oxidative stress measured via fluorescence flow cytometry in the cells with or without the MIA challenge. CONCLUSIONS This study demonstrates that LDL557 extracts may protect chondrocytes from OA damage by reducing inflammation-related factors and thus mitigating cartilage matrix loss, suggesting LDL557 extracts are attractive alternatives for OA applications.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tzu-Ching Huang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Bau-Shan Hsieh
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Li-Wen Huang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Jin-Seng Lin
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Han-Yin Hsu
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Chia-Chia Lee
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 821011, Taiwan; (J.-S.L.); (H.-Y.H.)
| | - Kee-Lung Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (Y.-C.H.); (T.-C.H.); (B.-S.H.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Semerci Sevimli T, Inan U, Mantar D, Guler K, Ahmadova Z, Gulec K, Topal AE. In vitro Chondrogenic Induction Promotes the Expression Level of IL-10 via the TGF-β/SMAD and Canonical Wnt/β-catenin Signaling Pathways in Exosomes Secreted by Human Adipose Tissue-derived Mesenchymal Stem Cells. Cell Biochem Biophys 2024; 82:3741-3750. [PMID: 39266872 DOI: 10.1007/s12013-024-01461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Current treatment approaches cannot exactly regenerate cartilage tissue. Regarding some problems encountered with cell therapy, exosomes are advantageous because of their "cell-free" nature. This study examines the relationship between IL-10 and TGF-β and Canonical Wnt/β-catenin signal pathways in human adipose tissue-derived MSCs exosomes (hAT-MSCs-Exos) after in vitro chondrogenic differentiation. Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and, as a control group, human fetal chondroblast cells (hfCCs) were differentiated chondrogenically in vitro. Exosome isolation and characterization analyses were performed. Chondrogenic differentiation was shown by Alcian Blue and Safranin O stainings. The expression levels of IL-10, TGF-β/SMAD signaling pathway genes, and Canonical Wnt/β-catenin signaling pathway genes, which play an essential role in chondrogenesis, were analyzed by RT-qPCR. Conditioned media cytokine levels were measured by using the TGF-β and IL-10 ELISA kits. IL-10 expression was upregulated in both chondrogenic differentiated hAT-MSC-Exos (dhAT-MSC-Exos) (p < 0.0001). In the TGF-β signaling pathway, TGF-β (p < 0.0001), SMAD2 (p < 0.0001), SMAD4 (p < 0.001), ACAN (p < 0.0001), SOX9 (p < 0.05) and COL1A2 (p < 0.0001) expressions were upregulated in dhAT-MSC-Exos. SMAD3 expression was upregulated in non-differentiated hAT-MSC-Exos. In the Canonical Wnt/β-catenin signaling pathway, WNT (p < 0.0001) and CTNNB1(p < 0.0001) expressions were upregulated in dhAT-MSC-Exos. AXIN (p < 0.0001) expression was upregulated in non-differentiated hAT-MSC-Exos. TGF-β and IL-10 levels were higher in dhAT-MSCs) (p < 0.0001). Related to these results, IL-10 may induce TGF-β/SMAD and Canonical Wnt/β-catenin signaling pathways in hAT-MSC exosomes obtained after chondrogenic differentiation. Therefore, using these exosomes for cartilage regeneration can lead to the development of treatment methods.
Collapse
Affiliation(s)
- Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Ulukan Inan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey
| | | | - Kubra Guler
- Department of Biochemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| | - Zarifa Ahmadova
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Kadri Gulec
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Ahmet Emin Topal
- Department of Biochemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
5
|
Gardashli M, Baron M, Drohat P, Quintero D, Kaplan LD, Szeto A, Mendez AJ, Best TM, Kouroupis D. The roles of regulatory-compliant media and inflammatory/oxytocin priming selection in enhancing human mesenchymal stem/stromal cell immunomodulatory properties. Sci Rep 2024; 14:29438. [PMID: 39604514 PMCID: PMC11603324 DOI: 10.1038/s41598-024-80050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Osteoarthritis (OA) represents a significant global health burden without a known disease modifying agent thereby necessitating pursuit of innovative therapeutic approaches. The infrapatellar fat pad (IFP) serves as a reservoir of mesenchymal stem/stromal cells (MSC), and with adjacent synovium plays key roles in joint disease affecting local inflammatory responses. Therapeutically, IFP-MSC have garnered attention for their potential in OA treatment due to their immunomodulatory and regenerative properties. However, optimizing their therapeutic efficacy necessitates a comprehensive understanding of how growth medium and inflammatory/hormonal priming influence their behavior. In this study, we isolated and expanded IFP-MSC in three different growth media: DMEM + 10% fetal bovine serum (FBS), DMEM + 10% human platelet lysate (HPL), and xeno-/serum-free synthetic (XFSF) medium. Subsequently, cells were induced with an inflammatory/fibrotic cocktail (TIC) with or without oxytocin (OXT). We evaluated various parameters including growth kinetics, phenotype, immunomodulatory capacity, gene expression, and macrophage polarization capacity. Our results revealed significant differences in the behavior of MSC cultured in different media. IFP-MSC cultured in HPL and XFSF exhibited superior growth kinetics and colony-forming abilities compared to those cultured in FBS. Furthermore, both HPL and XFSF media enhanced the expression of MSC markers (> 90%) and potentiated their immunomodulatory properties. Notably, XFSF-conditioned IFP-MSC demonstrated the highest attenuation of peripheral blood mononuclear cell (PBMC) proliferation, indicating their robust immunosuppressive capacity. Additionally, TIC priming further augmented the immunomodulatory functionality of MSC, with IFP-MSC exhibiting enhanced suppression of PBMC proliferation upon TIC priming. Of particular interest, gene expression analysis revealed distinct patterns in TIC + OXT induced MSC compared to TIC only induced, with upregulation of genes associated with immunomodulatory and regenerative functions. Furthermore, TIC + OXT priming promoted M2 polarization in macrophages, suggesting a potential therapeutic strategy for immune-mediated inflammatory joint conditions including OA. Our findings highlight the critical influence of growth medium and inflammatory/hormonal priming on MSC behavior and therapeutic potential. XFSF and HPL media offer promising alternatives to FBS, enhancing MSC growth and immunomodulatory properties. Moreover, TIC + OXT priming represents a novel approach to augment MSC immunomodulation and promote M2 polarization, providing insights into potential therapeutic strategies for OA and other immune-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Max Baron
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Philip Drohat
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Quintero
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lee D Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Armando J Mendez
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas M Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Ningsih S, Agustini K, Kusumaningrum S, Firdausi N, Eru Wibowo A, Efendi J, Ngatinem N, Subiantoro AH, Suparjo S, Catherine C, Auni Rabbina N, Bahtiar A, Damayanti R, Lee K. Anti-inflammatory activity of the combination Ardisia humilis Vahl. and Curcuma xanthorrhiza Roxb. extract on an osteoarthritis rat model. Arch Physiol Biochem 2024:1-11. [PMID: 39324962 DOI: 10.1080/13813455.2024.2406890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to evaluate the anti-inflammatory activity of the combination of Ardisia humilis Vahl. and Curcuma xanthorrhiza Roxb. (AC) extract in monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. AC was administered orally to OA rats (240, 480, and 960 mg/kg bw) for three weeks. The control and model groups comprised OA rats treated with diclofenac sodium and carrier, respectively. AC-treated rats exhibited a significant reduction in oedema volume compared to those of the model group (p < 0.05). Notably, AC, at 960 mg/kg bw, significantly decreased inflammatory cytokines TNF-α and IL-1β, along with matrix metalloproteinase-9 (MMP-9) levels compared to those of the model group (p < 0.05). AC's attenuation of OA progression was also observed through haematoxylin and eosin (H&E) and Safranin O-fast green analysis. A phytochemical study showed AC contained phenolic, flavonoid, curcumin, demethoxycurcumin, and bisdemethoxycurcumin compounds. This study concludes that AC alleviated OA progression through anti-inflammatory effects and depressed MMP-9 levels.
Collapse
Affiliation(s)
- Sri Ningsih
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Susi Kusumaningrum
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Nisrina Firdausi
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Agung Eru Wibowo
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Julham Efendi
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Ngatinem Ngatinem
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Agus Himawan Subiantoro
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Suparjo Suparjo
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, BRIN, Banten, Indonesia
| | - Catherine Catherine
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Nasal Auni Rabbina
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Anton Bahtiar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Rini Damayanti
- Research Centre for Veterinary Science, BRIN, Cibinong Science Center, Bogor Regency, West Java, Indonesia
| | - KyuJong Lee
- International Biological Material Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
7
|
Sun Y, Ding SL, Zhao X, Sun D, Yang Y, Chen M, Zhu C, Jiang B, Gu Q, Liu H, Zhang M. Self-Reinforced MOF-Based Nanogel Alleviates Osteoarthritis by Long-Acting Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401094. [PMID: 38684182 DOI: 10.1002/adma.202401094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Intra-articular injection of drugs is an effective strategy for osteoarthritis (OA) treatment. However, the complex microenvironment and limited joint space result in rapid clearance of drugs. Herein, a nanogel-based strategy is proposed for prolonged drug delivery and microenvironment remodeling. Nanogel is constructed through the functionalization of hyaluronic acid (HA) by amide reaction on the surface of Kartogenin (KGN)-loaded zeolitic imidazolate framework-8 (denoted as KZIF@HA). Leveraging the inherent hydrophilicity of HA, KZIF@HA spontaneously forms nanogels, ensuring extended drug release in the OA microenvironment. KZIF@HA exhibits sustained drug release over one month, with low leakage risk from the joint cavity compared to KZIF, enhanced cartilage penetration, and reparative effects on chondrocytes. Notably, KGN released from KZIF@HA serves to promote extracellular matrix (ECM) secretion for hyaline cartilage regeneration. Zn2+ release reverses OA progression by promoting M2 macrophage polarization to establish an anti-inflammatory microenvironment. Ultimately, KZIF@HA facilitates cartilage regeneration and OA alleviation within three months. Transcriptome sequencing validates that KZIF@HA stimulates the polarization of M2 macrophages and secretes IL-10 to inhibit the JNK and ERK pathways, promoting chondrocytes recovery and enhancing ECM remodeling. This pioneering nanogel system offers new therapeutic opportunities for sustained drug release, presenting a significant stride in OA treatment strategies.
Collapse
Affiliation(s)
- Yun Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiyuan Zhao
- State Key Laboratory of Membrane Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Dadi Sun
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yuhan Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunlin Zhu
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Bingyin Jiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
8
|
González-Rodríguez S, Sordo-Bahamonde C, Álvarez-Artime A, Baamonde A, Menéndez L. Hyperalgesic Effect Evoked by il-16 and its Participation in Inflammatory Hypernociception in Mice. J Neuroimmune Pharmacol 2024; 19:44. [PMID: 39152360 PMCID: PMC11329551 DOI: 10.1007/s11481-024-10145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The systemic administration of interleukin-16 (IL-16, 3-30 ng/kg) induced thermal hyperalgesia in mice, that was prevented by the acute injection of an anti-CD4 antibody (1 µg/kg), the depletion of circulating white blood cells by cyclophosphamide or the specific reduction of circulating CD4+ cells provoked by a high dose of an anti-CD4 antibody (30 µg/mouse, 24 h before). IL-16-induced hyperalgesia was locally inhibited after intraplantar (i.pl.) administration of the non-selective cyclooxygenase (COX) inhibitor diclofenac, the COX-1 inhibitor SC-560, the COX-2 inhibitor celecoxib, the TRPV1 antagonist capsazepine or the TRPA1 antagonist HC030031, thus demonstrating that prostaglandins and TRP channels are involved in this effect. The i.pl. administration of low doses of IL-16 (0.1-1 ng) evoked local hyperalgesia suggesting the possibility that IL-16 could participate in hypernociception associated to local tissue injury. Accordingly, IL-16 concentration measured by ELISA was increased in paws acutely inflamed with carrageenan or chronically inflamed with complete Freund´s adjuvant (CFA). This augmentation was reduced after white cell depletion with cyclophosphamide or neutrophil depletion with an anti-Ly6G antibody. Immunofluorescence and flow cytometry experiments showed that the increased concentration of IL-16 levels found in acutely inflamed paws is mainly related to the infiltration of IL-16+ neutrophils, although a reduced number of IL-16+ lymphocytes was also detected in paws inflamed with CFA. Supporting the functional role of IL-16 in inflammatory hypernociception, the administration of an anti-IL-16 antibody dose-dependently reduced carrageenan- and CFA-induced thermal hyperalgesia and mechanical allodynia. The interest of IL-16 as a target to counteract inflammatory pain is suggested.
Collapse
Affiliation(s)
- Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Christian Sordo-Bahamonde
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Inmunología Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Alejandro Álvarez-Artime
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/ Julián Clavería 6, 33006, Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
9
|
Mattig I, Hewing B, Knebel F, Meisel C, Ludwig A, Konietschke F, Stangl V, Stangl K, Laule M, Dreger H. Effect of inferior caval valve implantation on circulating immune cells and inflammatory mediators in severe tricuspid regurgitation. BMC Cardiovasc Disord 2024; 24:373. [PMID: 39026154 PMCID: PMC11256587 DOI: 10.1186/s12872-024-04044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Interventional valve implantation into the inferior vena cava (CAVI) lowers venous congestion in patients with tricuspid regurgitation (TR). We evaluated the impact of a reduction of abdominal venous congestion following CAVI on circulating immune cells and inflammatory mediators. METHODS Patients with severe TR were randomized to optimal medical therapy (OMT) + CAVI (n = 8) or OMT (n = 10). In the OMT + CAVI group, an Edwards Sapien XT valve was implanted into the inferior vena cava. Immune cells and inflammatory mediators were measured in the peripheral blood at baseline and three-month follow-up. RESULTS Leukocytes, monocytes, basophils, eosinophils, neutrophils, lymphocytes, B, T and natural killer cells and inflammatory markers (C-reactive protein, interferon-gamma, interleukin-2, -4, -5, -10, and tumor necrosis factor-alpha) did not change substantially between baseline and three-month follow-up within the OMT + CAVI and OMT group. CONCLUSION The present data suggest that reduction of venous congestion following OMT + CAVI may not lead to substantial changes in systemic inflammation within a short-term follow-up. CLINICAL TRIAL REGISTRATION NCT02387697.
Collapse
Affiliation(s)
- Isabel Mattig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Bernd Hewing
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- Department of Cardiology III - Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Fabian Knebel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Sana Klinikum Lichtenberg, Innere Medizin II: Schwerpunkt Kardiologie, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | | | - Antje Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Frank Konietschke
- Institute for Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Verena Stangl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Karl Stangl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Michael Laule
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Charité Mitte, Charitéplatz 1, Berlin, 10117, Germany
| | - Henryk Dreger
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow-Klinikum Augustenburger Platz 1, Berlin, 13353, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
- Partner Site Berlin, DZHK (German Centre for Cardiovascular Research), Berlin, Germany.
| |
Collapse
|
10
|
Zhou T, Al Muqrin A, Abu-Hilal M. Dupilumab and joint-related adverse effects: A systematic review. J Eur Acad Dermatol Venereol 2024. [PMID: 38953382 DOI: 10.1111/jdv.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Ted Zhou
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Abdullah Al Muqrin
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mohannad Abu-Hilal
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Zhu DX, Yang YL, Yang L, Zhao YY, Xie YY, Wang W, Lv J, Yu WY. Effects of buccal acupuncture on postoperative analgesia in elderly patients undergoing laparoscopic radical gastrectomy: a randomized controlled trial. Front Neurol 2024; 15:1408360. [PMID: 38984037 PMCID: PMC11231956 DOI: 10.3389/fneur.2024.1408360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Objective This study aimed to evaluate the efficacy and safety of buccal acupuncture on postoperative analgesia, perioperative stress response and adverse events in elderly patients undergoing laparoscopic radical gastrectomy. Methods It was a prospective, outcome assessor-blinded, randomized controlled trial, involving 90 patients aged 65-80 years who were treated with an elective laparoscopic radical gastrectomy. They were randomly assigned to buccal acupuncture group (Group B) and control group (Group C). Buccal acupuncture was applied to patients of Group B before the induction of general anesthesia, while no additional application was given to those in Group C. Patient-controlled intravenous analgesia (PCIA) with sufentanil was postoperatively performed in both groups. Sufentanil consumption and the Visual Analog Scale (VAS) score within 48 h postoperatively were assessed as primary outcomes. Secondary outcomes included peripheral levels of stress markers, intraoperative consumptions of anesthetic drugs and postoperative recovery. Results Patients in Group B presented significantly lower VAS scores within 24 h and less consumption of sufentanil within 48 h postoperatively (both p < 0.01). The awaking time, time to extubation and length of stay were significantly shorter in Group B than in Group C (p = 0.005, 0.001 and 0.028, respectively). Compared with Group C, stress response and inflammatory response within 24 h postoperatively were also significantly milder in Group B. Conclusion The use of buccal acupuncture before general anesthesia induction favors the postoperative analgesic effect and recovery in elderly patients undergoing laparoscopic radical gastrectomy, the mechanism of which involves relieving postoperative stress response and inflammatory response. Clinical trial registration This study was registered in the Chinese Clinical Trial Registry (www.chictr.org.cn) on 15/06/2023 (ChiCTR2300072500).
Collapse
Affiliation(s)
- Dong-xue Zhu
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-ling Yang
- Department of Anesthesiology, Wenjiang District People’s Hospital of Chengdu, Chengdu, China
| | - Lei Yang
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-yuan Zhao
- Department of Anesthesiology, Huainan First People’s Hospital, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, China
| | - Ya-yun Xie
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Lv
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Wan-you Yu
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
周 巧, 刘 健, 朱 艳, 汪 元, 王 桂, 齐 亚, 胡 月. [Identification of Osteoarthritis Inflamm-Aging Biomarkers by Integrating Bioinformatic Analysis and Machine Learning Strategies and the Clinical Validation]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:279-289. [PMID: 38645862 PMCID: PMC11026895 DOI: 10.12182/20240360106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/23/2024]
Abstract
Objective To identify inflamm-aging related biomarkers in osteoarthritis (OA). Methods Microarray gene profiles of young and aging OA patients were obtained from the Gene Expression Omnibus (GEO) database and aging-related genes (ARGs) were obtained from the Human Aging Genome Resource (HAGR) database. The differentially expressed genes of young OA and older OA patients were screened and then intersected with ARGs to obtain the aging-related genes of OA. Enrichment analysis was performed to reveal the potential mechanisms of aging-related markers in OA. Three machine learning methods were used to identify core senescence markers of OA and the receiver operating characteristic (ROC) curve was used to assess their diagnostic performance. Peripheral blood mononuclear cells were collected from clinical OA patients to verify the expression of senescence-associated secretory phenotype (SASP) factors and senescence markers. Results A total of 45 senescence-related markers were obtained, which were mainly involved in the regulation of cellular senescence, the cell cycle, inflammatory response, etc. Through the screening with the three machine learning methods, 5 core senescence biomarkers, including FOXO3, MCL1, SIRT3, STAG1, and S100A13, were obtained. A total of 20 cases of normal controls and 40 cases of OA patients, including 20 cases in the young patient group and 20 in the elderly patient group, were enrolled. Compared with those of the young patient group, C-reactive protein (CRP), interleukin (IL)-6, and IL-1β levels increased and IL-4 levels decreased in the elderly OA patient group (P<0.01); FOXO3, MCL1, and SIRT3 mRNA expression decreased and STAG1 and S100A13 mRNA expression increased (P<0.01). Pearson correlation analysis demonstrated that the selected markers were associated with some indicators, including erythrocyte sedimentation rate (ESR), IL-1β, IL-4, CRP, and IL-6. The area under the ROC curve of the 5 core aging genes was always greater than 0.8 and the C-index of the calibration curve in the nomogram prediction model was 0.755, which suggested the good calibration ability of the model. Conclusion FOXO3, MCL1, SIRT3, STAG1, and S100A13 may serve as novel diagnostic biomolecular markers and potential therapeutic targets for OA inflamm-aging.
Collapse
Affiliation(s)
- 巧 周
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
- 安徽中医药大学第一临床医学院 (合肥 230012)First School of Clinical Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - 健 刘
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 艳 朱
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 元 汪
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 桂珍 王
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 亚军 齐
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| | - 月迪 胡
- 安徽中医药大学第二附属医院 老年病一科 (合肥 230061)Department of Geriatrics, The Second Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230061, China
| |
Collapse
|
13
|
Vasilev G, Vasileva V, Ivanova M, Stanilova S, Manolova I, Miteva L. An Elevated IL10 mRNA Combined with Lower TNFA mRNA Level in Active Rheumatoid Arthritis Peripheral Blood. Curr Issues Mol Biol 2024; 46:2644-2657. [PMID: 38534783 DOI: 10.3390/cimb46030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
We aimed to investigate the expression of pro-inflammatory cytokine genes TNFA, IL6, IL12B, IL23, IL18 and immunoregulatory genes FOXP3, TGFB1, and IL10 in the peripheral blood of patients with rheumatoid arthritis (RA) at messenger ribonucleic acid (mRNA) level. The total RNA was isolated from peripheral blood samples. Real-time quantitative PCR was used to perform TaqMan-based assays to quantify mRNAs from 8 target genes. IL23A was upregulated (1.7-fold), whereas IL6 (5-fold), FOXP3 (4-fold), and IL12B (2.56-fold) were downregulated in patients compared to controls. In addition, we found a strong positive correlation between the expression of FOXP3 and TNFA and a moderate correlation between FOXP3 and TGFB1. These data showed the imbalance of the T helper (Th) 1/Th17/ T regulatory (Treg) axis at a systemic level in RA. In cases with active disease, the IL10 gene expression was approximately 2-fold higher; in contrast, the expression of FOXP3 was significantly decreased (3.38-fold). The main part of patients with higher disease activity expressed upregulation of IL10 and downregulation of TNFA. Different disease activity cohorts could be separated based on IL10, TNFA and IL12B expression combinations. In conclusion, our results showed that active disease is associated with an elevated IL10 and lower TNFA mRNA level in peripheral blood cells of RA patients.
Collapse
Affiliation(s)
- Georgi Vasilev
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, Plovdivsko Pole Str. No. 6, 1756 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Viktoria Vasileva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
- Clinical Laboratory, Trakia Hospital, Dunav Str. No. 1, 6000 Stara Zagora, Bulgaria
| | - Mariana Ivanova
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Urvich Str. No. 13, 1612 Sofia, Bulgaria
- Medical Faculty, Medical University-Sofia, Ivan Geshov Blvd. No. 15, 1431 Sofia, Bulgaria
| | - Spaska Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| | - Irena Manolova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| | - Lyuba Miteva
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Armeiska Str. No. 11, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
14
|
Sun Y, Hu T, Zhang M, Song J, Qin Z, Liu M, Ji J, Li Z, Qiu Z, Bian J. Structure-Guided Discovery of Potent and Selective CLK2 Inhibitors for the Treatment of Knee Osteoarthritis. J Med Chem 2024. [PMID: 38500250 DOI: 10.1021/acs.jmedchem.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Osteoarthritis is the most common joint disorder. However, there are no disease-modifying drugs approved for OA treatment. CDC2-like kinase 2 (CLK2) could modulate Wnt signaling via alternative splicing of Wnt target genes and further affect bone differentiation, chondrocyte function, and inflammation, making CLK2 an attractive target for OA therapy. In this study, we designed and synthesized a series of highly potent CLK2 inhibitors based on Indazole 1. Among them, compound LQ23 showed more elevated inhibitory activity against CLK2 than the lead compound (IC50, 1.4 nM) with high CLK2/CLK3 selectivity (>70-fold). Furthermore, LQ23 showed outstanding antiosteoarthritis effects in vitro and in vivo, with the roles specific in decreased inflammatory cytokines, downregulated cartilage degradative enzymes, and increased joint cartilage via suppressing CLK2/Wnt signaling pathway. Overall, these data support LQ23 as a potential candidate for intra-articular knee OA therapy, leveraging its unique mechanism of action for targeted treatment.
Collapse
Affiliation(s)
- Yongqiang Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianxing Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengdi Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaxing Song
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mai Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinliang Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Giannasi C, Della Morte E, Cadelano F, Valenza A, Casati S, Dei Cas M, Niada S, Brini AT. Boosting the therapeutic potential of cell secretome against osteoarthritis: Comparison of cytokine-based priming strategies. Biomed Pharmacother 2024; 170:115970. [PMID: 38042116 DOI: 10.1016/j.biopha.2023.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
The secretome, or conditioned medium (CM), from Mesenchymal Stem/stromal Cells (MSCs) has recently emerged as a promising cell-free therapeutic against osteoarthritis (OA), capable of promoting cartilage regeneration and immunoregulation. Priming MSCs with 10 ng/ml tumor necrosis factor α (TNFα) and/or 10 ng/ml interleukin 1β (IL-1β) aims at mimicking the pathological milieu of OA joints in order to target their secretion towards a pathology-tailored phenotype. Here we compare the composition of the CM obtained after 24 or 72 h from untreated and cytokine-treated adipose-derived MSCs (ASCs). The 72-hour double-primed CM presents a higher total protein yield, a larger number of extracellular vesicles, and a greater concentration of bioactive lipids, in particular sphingolipids, fatty acids, and eicosanoids. Moreover, the levels of several factors involved in immunomodulation and regeneration, such as TGF-β1, PGE2, and CCL-2, are strongly upregulated. Additionally, the differential profiling of 80 bioactive molecules indicates that primed CM is enriched in immune cell chemotaxis and migration factors. Our results indicate that pre-conditioning ASCs with inflammatory cytokines can modulate the composition of their CM, promoting the release of factors with recognized anti-inflammatory, chondroprotective, and immunoregulatory properties.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| | | | - Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
16
|
Anderson KD, Beckmann C, Heermant S, Ko FC, Dulion B, Tarhoni I, Borgia JA, Virdi AS, Wimmer MA, Sumner DR, Ross RD. Zucker Diabetic-Sprague Dawley Rats Have Impaired Peri-Implant Bone Formation, Matrix Composition, and Implant Fixation Strength. JBMR Plus 2023; 7:e10819. [PMID: 38025036 PMCID: PMC10652173 DOI: 10.1002/jbm4.10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
An increasing number of patients with type 2 diabetes (T2DM) will require total joint replacement (TJR) in the next decade. T2DM patients are at increased risk for TJR failure, but the mechanisms are not well understood. The current study used the Zucker Diabetic-Sprague Dawley (ZDSD) rat model of T2DM with Sprague Dawley (SPD) controls to investigate the effects of intramedullary implant placement on osseointegration, peri-implant bone structure and matrix composition, and fixation strength at 2 and 10 weeks post-implant placement. Postoperative inflammation was assessed with circulating MCP-1 and IL-10 2 days post-implant placement. In addition to comparing the two groups, stepwise linear regression modeling was performed to determine the relative contribution of glucose, cytokines, bone formation, bone structure, and bone matrix composition on osseointegration and implant fixation strength. ZDSD rats had decreased peri-implant bone formation and reduced trabecular bone volume per total volume compared with SPD controls. The osseointegrated bone matrix of ZDSD rats had decreased mineral-to-matrix and increased crystallinity compared with SPD controls. Osseointegrated bone volume per total volume was not different between the groups, whereas implant fixation was significantly decreased in ZDSD at 2 weeks but not at 10 weeks. A combination of trabecular mineral apposition rate and postoperative MCP-1 levels explained 55.6% of the variance in osseointegration, whereas cortical thickness, osseointegration mineral apposition rate, and matrix compositional parameters explained 69.2% of the variance in implant fixation strength. The results support the growing recognition that both peri-implant structure and matrix composition affect implant fixation and suggest that postoperative inflammation may contribute to poor outcomes after TJR surgeries in T2DM patients. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kyle D Anderson
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Christian Beckmann
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Saskia Heermant
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Frank C Ko
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Bryan Dulion
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Imad Tarhoni
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Jeffrey A Borgia
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
| | - Amarjit S Virdi
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Markus A Wimmer
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - D Rick Sumner
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
| | - Ryan D Ross
- Department of Anatomy and Cell BiologyRush University Medical CenterChicagoILUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoILUSA
- Department of Microbial Pathogens and ImmunityRush University Medical CenterChicagoILUSA
| |
Collapse
|
17
|
Gärtner Y, Bitar L, Zipp F, Vogelaar CF. Interleukin-4 as a therapeutic target. Pharmacol Ther 2023; 242:108348. [PMID: 36657567 DOI: 10.1016/j.pharmthera.2023.108348] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Interleukin-4 (IL-4) is a pleiotropic cytokine mainly known for its role in type 2 immunity. Therapies antagonizing or blocking IL-4 activity have been developed to counteract diseases such as atopic dermatitis and asthma. In contrast, other disorders experimentally benefit from IL-4-related effects and IL-4 recently demonstrated beneficial activity in experimental stroke, spinal cord injury and the animal model of multiple sclerosis. To exploit IL-4-related activity for therapeutic concepts, current experimental efforts include modifying the pathway without inducing type 2 immune response and targeting of the cytokine to specific tissues. Here, we review different activities of IL-4 as well as therapeutic strategies.
Collapse
Affiliation(s)
- Yvonne Gärtner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|