1
|
Rathnam K, Saju SV, Honey SR. Management of Relapsed and Refractory Multiple Myeloma: Recent advances. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1758537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
AbstractMultiple myeloma (MM) accounts for ∼10% of total hematologic malignancies worldwide. In India, the incidence of MM has increased two-fold with marked heterogeneity. Significant improvements in terms of clinical outcomes have been observed in the management of MM in recent years. However, most patients develop a disease relapse with the first or subsequent treatments. A combination of immunomodulatory drugs (thalidomide and lenalidomide) and proteasome inhibitors (PIs; bortezomib) has been the mainstay for the therapeutic management of relapsed/refractory multiple myeloma (RRMM). This review highlights the management of RRMM with newer agents such as belantamab, carfilzomib, daratumumab, elotuzumab, ixazomib, mafadotin, selinexor, panobinostat, and venetoclax, with more focus on PIs. As a single agent and in combination with other drugs including dexamethasone and carfilzomib has been studied extensively and approved by the United States, European Union, and India. Clinical trials of these newer agents, either alone or in combination, for the treatment of RRMM in Western countries indicate survival, improved outcomes, and overall well-being. However, evidence in Indian patients is evolving from ongoing studies on carfilzomib and daratumumab, which will ascertain their efficacy and safety. Currently, several guidelines recommend carfilzomib-based, daratumumab-based, and panobinostat-based regimens in RRMM patients. Currently, with more accessible generic versions of these drugs, more Indian patients may attain survival benefits and improved quality of life.
Collapse
Affiliation(s)
- Krishnakumar Rathnam
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| | - S V. Saju
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| | - Susan Raju Honey
- Department of Medical Oncology & BMT, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu, India
| |
Collapse
|
2
|
Jiang W, Li F, Jiang Y, Li S, Liu X, Xu Y, Li B, Feng X, Zheng C. Tim-3 Blockade Elicits Potent Anti-Multiple Myeloma Immunity of Natural Killer Cells. Front Oncol 2022; 12:739976. [PMID: 35280800 PMCID: PMC8913933 DOI: 10.3389/fonc.2022.739976] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable plasma cell tumor. Natural killer (NK) cells are characterized by efficient anti-tumor activity, and their activity is one basis of cancer immunotherapeutic strategies. Tim-3, one of the immune checkpoint molecules, negatively regulates NK cell activity. To evaluate roles of the Tim-3 pathway blocking in the regulation of NK cell mediated- anti-MM activity in vitro and in vivo, anti-Tim-3 and/or anti-its ligand (HMGB1, CEACAM1 or Galetin-9) antibodies were applied respectively to block the Tim-3 pathway in the present study. Our results showed that Tim-3 was highly expressed on NK cells, in particular on in vitro expanded NK (exNK) cells. NK cells with Tim-3 blockade displayed a significantly higher degranulation and cytolytic activity against both human MM cell lines and primary MM cells, compared to the isotype control antibody-treated NK cells. The increased NK cell cytolytic activity by Tim-3 blocking was associated with up-regulation of cytotoxicity-related molecules, including perforin, granzyme B, TNF-α and IFN-γ. Ligand (HMGB1, CEACAM1 or Galetin-9) expression on MM cells was at different levels, and accordingly, the improvement in NK cell-mediated killing activity by different ligand blocking were also varying. Tim-3 blocking showed much more efficient enhancement of NK cell cytolytic activity than its ligand blockings. More importantly, exNK cells with Tim-3 blockade significantly inhibited MM tumor growth and prolonged the survival of MM-bearing NOD/SCID mice. Our results also showed that NK cells from peripheral blood and bone marrow of MM patients expressed much higher levels of Tim-3 than their counterparts from controls. Taken together, Tim-3 may be an important target molecule used for developing an antibody and/or NK cell based immunotherapeutic strategies for MM.
Collapse
Affiliation(s)
- Wen Jiang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fanglin Li
- Department of Hematology, The Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiang
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Institute of Biotherapy for Hematological Malignancies, Shandong University, Shandong University-Karolinska College Collaborative Laboratory for Stem Cell Research, Jinan, China
| | - Shengli Li
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Institute of Biotherapy for Hematological Malignancies, Shandong University, Shandong University-Karolinska College Collaborative Laboratory for Stem Cell Research, Jinan, China
| | - Yaqi Xu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Institute of Biotherapy for Hematological Malignancies, Shandong University, Shandong University-Karolinska College Collaborative Laboratory for Stem Cell Research, Jinan, China
| | - Binggen Li
- R&D Department, Weihai Zhengsheng Biotechnology Co., Ltd, Weihai, China
| | - Xiaoli Feng
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chengyun Zheng, ; Xiaoli Feng,
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Institute of Biotherapy for Hematological Malignancies, Shandong University, Shandong University-Karolinska College Collaborative Laboratory for Stem Cell Research, Jinan, China
- *Correspondence: Chengyun Zheng, ; Xiaoli Feng,
| |
Collapse
|
3
|
Yang P, Jiang PW, Li C, Gao MX, Sun YS, Zhang DY, Du WQ, Zhao J, Shi ST, Li Y, Yang T, Cheng L, Li MH. Cdc25C/cdc2/cyclin B, raf/MEK/ERK and PERK/eIF2α/CHOP pathways are involved in forskolin-induced growth inhibition of MM.1S cells by G2/M arrest and mitochondrion-dependent apoptosis. Cell Cycle 2021; 20:2402-2412. [PMID: 34606419 PMCID: PMC8794531 DOI: 10.1080/15384101.2021.1983280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.
Collapse
Affiliation(s)
| | - Pei-Wen Jiang
- School of Basic Medicine
- Center of Science and Research
| | - Chen Li
- School of Basic Medicine
- School of Bioscience and Technology
| | - Ming-Xiang Gao
- Center of Science and Research
- School of Clinical Medicine
| | | | | | | | | | - Song-Ting Shi
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Li
- School of Basic Medicine
- School of Bioscience and Technology
| | | | | | - Min-Hui Li
- School of Basic Medicine
- Center of Science and Research
| |
Collapse
|
4
|
Bird SA, Jackson GH, Pawlyn C. Maintenance Strategies Post-Autologous Stem Cell Transplantation for Newly Diagnosed Multiple Myeloma. Clin Hematol Int 2020; 2:59-68. [PMID: 34595444 PMCID: PMC8432350 DOI: 10.2991/chi.d.200502.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 12/04/2022] Open
Abstract
Multiple myeloma, the second most common hematological malignancy worldwide, has demonstrated dramatic improvements in outcome in the last decade. In newly diagnosed patients, induction chemotherapy followed by autologous stem cell transplantation (ASCT) is the standard of care. After ASCT, the majority of patients experience disease remission but, despite recent therapeutic developments, most will eventually relapse. In this review we consider clinical aspects of maintenance therapies that can be used post-ASCT to prolong remission duration. We discuss the evidence for the effectiveness of each of these drugs as a maintenance therapy, alongside other benefits and drawbacks to their use, for example, route of administration and potential toxicities. We discuss questions which remain unanswered around the optimal use of currently available maintenance therapies and review newer agents being considered for use as maintenance such as emerging immunotherapies.
Collapse
Affiliation(s)
- Sarah A Bird
- The Institute of Cancer Research, London.,The Royal Marsden NHS Foundation Trust, London
| | - Graham H Jackson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, England
| | - Charlotte Pawlyn
- The Institute of Cancer Research, London.,The Royal Marsden NHS Foundation Trust, London
| |
Collapse
|