1
|
Zhang B, Zhang R, Zhao J, Yang J, Xu S. The mechanism of human color vision and potential implanted devices for artificial color vision. Front Neurosci 2024; 18:1408087. [PMID: 38962178 PMCID: PMC11221215 DOI: 10.3389/fnins.2024.1408087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
Collapse
Affiliation(s)
- Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jingjin Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jiarui Yang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| |
Collapse
|
2
|
Klotzsche F, Gaebler M, Villringer A, Sommer W, Nikulin V, Ohl S. Visual short-term memory-related EEG components in a virtual reality setup. Psychophysiology 2023; 60:e14378. [PMID: 37393581 DOI: 10.1111/psyp.14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
Virtual reality (VR) offers a powerful tool for investigating cognitive processes, as it allows researchers to gauge behaviors and mental states in complex, yet highly controlled, scenarios. The use of VR head-mounted displays in combination with physiological measures such as EEG presents new challenges and raises the question whether established findings also generalize to a VR setup. Here, we used a VR headset to assess the spatial constraints underlying two well-established EEG correlates of visual short-term memory: the amplitude of the contralateral delay activity (CDA) and the lateralization of induced alpha power during memory retention. We tested observers' visual memory in a change detection task with bilateral stimulus arrays of either two or four items while varying the horizontal eccentricity of the memory arrays (4, 9, or 14 degrees of visual angle). The CDA amplitude differed between high and low memory load at the two smaller eccentricities, but not at the largest eccentricity. Neither memory load nor eccentricity significantly influenced the observed alpha lateralization. We further fitted time-resolved spatial filters to decode memory load from the event-related potential as well as from its time-frequency decomposition. Classification performance during the retention interval was above-chance level for both approaches and did not vary significantly across eccentricities. We conclude that commercial VR hardware can be utilized to study the CDA and lateralized alpha power, and we provide caveats for future studies targeting these EEG markers of visual memory in a VR setup.
Collapse
Affiliation(s)
- Felix Klotzsche
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Werner Sommer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sven Ohl
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Rozhkova G, Belokopytov A, Gracheva M, Ershov E, Nikolaev P. A simple method for comparing peripheral and central color vision by means of two smartphones. Behav Res Methods 2023; 55:38-57. [PMID: 35260965 DOI: 10.3758/s13428-021-01783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
Information on peripheral color perception is far from sufficient, since it has predominantly been obtained using small stimuli, limited ranges of eccentricities, and sophisticated experimental conditions. Our goal was to consider the possibility of facilitating technical realization of the classical method of asymmetric color matching (ACM) developed by Moreland and Cruz (1959) for assessing appearance of color stimuli in the peripheral visual field (VF). We adopted the ACM method by employing two smartphones to implement matching procedure at various eccentricities. Although smartphones were successfully employed in vision studies, we are aware that some photometric parameters of smartphone displays are not sufficiently precise to ensure accurate color matching in foveal vision; moreover, certain technical characteristics of commercially available devices are variable. In the present study we provided evidence that, despite these shortages, smartphones can be applied for general and wide investigations of the peripheral vision. In our experiments, the smartphones were mounted on a mechanical perimeter to simultaneously present colored stimuli foveally and peripherally. Trying to reduce essential discomfort and fatigue experienced by most observers in peripheral vision studies, we did not apply bite bars, pupil dilatation, and Maxwellian view. The ACM measurements were performed without prior training of observers and in a wide range of eccentricities, varying between 0 and 95°. The results were presented in the HSV (hue, saturation, value) color space coordinates as a function of eccentricity and stimulus luminance. We demonstrated that our easy-to-conduct method provided a convenient means to investigate color appearance in the peripheral vision and to assess inter-individual differences.
Collapse
Affiliation(s)
- Galina Rozhkova
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia.
| | - Alexander Belokopytov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Maria Gracheva
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Egor Ershov
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| | - Petr Nikolaev
- Institute for Information Transmission Problems, RAS, Bolshoy Karetny 19, 127051, Moscow, Russia
| |
Collapse
|
4
|
Hawkins B, Evans D, Preston A, Westmoreland K, Mims CE, Lolo K, Rosario N, Odegaard B. Color diversity judgments in peripheral vision: Evidence against "cost-free" representations. PLoS One 2022; 17:e0279686. [PMID: 36584092 PMCID: PMC9803108 DOI: 10.1371/journal.pone.0279686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Is visual perception "rich" or "sparse?" One finding supporting the "rich" hypothesis shows that a specific visual summary representation, color diversity, is represented "cost-free" outside focally-attended regions in dual-task paradigms [1]. Here, we investigated whether this "cost-free" phenomenon for color diversity perception extends to peripheral vision. After replicating previous findings and verifying that color diversity is represented "cost-free" in central vision, we performed two experiments: in our first experiment, we extended the paradigm to peripheral vision and found that in minimally-attended regions of space, color diversity perception was impaired. In a second and final experiment, we added confidence judgments to our task, and found that participants maintained high levels of metacognitive awareness of impaired performance in minimally-attended visual areas in the periphery. These findings provide evidence that color perception may be partially attention-dependent in peripheral vision, and challenge previous views on both sides of the rich vs. sparse debate.
Collapse
Affiliation(s)
- Brylee Hawkins
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Dee Evans
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Anya Preston
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Kendra Westmoreland
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Callie E. Mims
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
- Department of Psychology, University of South Alabama, Mobile, Alabama, United States of America
| | - Kiara Lolo
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Nicholas Rosario
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Brian Odegaard
- Department of Psychology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ludwig D. The functional contributions of consciousness. Conscious Cogn 2022; 104:103383. [PMID: 35963081 DOI: 10.1016/j.concog.2022.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
The most widely endorsed philosophical and scientific theories of consciousness assume that it contributes a single functional capacity to an organism's information processing toolkit. However, conscious processes are a heterogeneous class of psychological phenomena supported by a variety of neurobiological mechanisms. This suggests a plurality of functional contributions of consciousness (FCCs), in the sense that conscious experience facilitates different functional capacities in different psychological domains. In this paper, I first develop a general methodological framework for isolating the psychological functions that are associated with conscious experience. I then use this to show that the leading accounts-Global Workspace Theories, Higher Order Thought Theory and Information Integration Theory-all fail to acknowledge this functional pluralism, which limits their applicability as theories of consciousness.
Collapse
Affiliation(s)
- Dylan Ludwig
- York University, (1) 636 Euclid Ave., Toronto, Ontario M6G 2T5, Canada.
| |
Collapse
|
6
|
Tsuchiya N, Saigo H. A relational approach to consciousness: categories of level and contents of consciousness. Neurosci Conscious 2021; 2021:niab034. [PMID: 34659799 PMCID: PMC8517618 DOI: 10.1093/nc/niab034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Characterizing consciousness in and of itself is notoriously difficult. Here, we propose an alternative approach to characterize, and eventually define, consciousness through exhaustive descriptions of consciousness' relationships to all other consciousness. This approach is founded in category theory. Indeed, category theory can prove that two objects A and B in a category can be equivalent if and only if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers. Along the way, we propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple examples. We propose to use the categorical structure of consciousness as a gold standard to formalize empirical research (e.g. color qualia structure at fovea and periphery) and, especially, the empirical testing of theories of consciousness.
Collapse
Affiliation(s)
- Naotsugu Tsuchiya
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC 3800, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Hayato Saigo
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
7
|
Haun AM. What is visible across the visual field? Neurosci Conscious 2021; 2021:niab006. [PMID: 34084558 PMCID: PMC8167368 DOI: 10.1093/nc/niab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/09/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
It is sometimes claimed that because the resolution and sensitivity of visual perception are better in the fovea than in the periphery, peripheral vision cannot support the same kinds of colour and sharpness percepts as foveal vision. The fact that a scene nevertheless seems colourful and sharp throughout the visual field then poses a puzzle. In this study, I use a detailed model of human spatial vision to estimate the visibility of certain properties of natural scenes, including aspects of colourfulness, sharpness, and blurriness, across the visual field. The model is constructed to reproduce basic aspects of human contrast and colour sensitivity over a range of retinal eccentricities. I apply the model to colourful, complex natural scene images, and estimate the degree to which colour and edge information are present in the model's representation of the scenes. I find that, aside from the intrinsic drift in the spatial scale of the representation, there are not large qualitative differences between foveal and peripheral representations of 'colourfulness' and 'sharpness'.
Collapse
Affiliation(s)
- Andrew M Haun
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
8
|
Abstract
We have compared two explanations for poor peripheral binding. Binding is the ability to assign the correct features (e.g., color, direction of motion, orientation) to objects. Wu, Kanai, and Shimojo (Nature, 429(6989), 262, 2004) showed that subjects performed poorly on binding dot color with direction of motion in the periphery. Suzuki, Wolfe, Horowitz, and Noguchi (Vision Research, 82, 58-65, 2013) similarly showed that subjects had trouble binding color with line orientation in the periphery. These authors concluded that performance in the periphery was poor because binding is poor in the periphery. However, both studies used red and green stimuli. We tested an alternative hypothesis, that poor peripheral binding is in part due to poor peripheral red/green color vision. Eccentricity-dependent changes in visual processing cause peripheral red/green vision to be worse than foveal vision. In contrast, blue/yellow vision remains centrifugally more stable. We tested 9 subjects in a replication and extension of Suzuki and colleagues' line orientation judgment, in red and green, and in blue and yellow. There were three central conditions: (1) red (or blue) all horizontal, green (or yellow) all vertical; (2) red (or blue) all vertical, green (or yellow) all horizontal; or (3) random pairing of color and orientation. In both the red/green and the blue/yellow color schemes, peripheral performance was influenced by central line orientation, replicating Suzuki and colleagues. However, the effect with blue/yellow lines was smaller, indicating that poor peripheral "binding," as hypothesized by both Wu and colleagues and Suzuki and colleagues, is due in part to their use of red and green stimuli.
Collapse
|
9
|
Cohen MA, Botch TL, Robertson CE. The limits of color awareness during active, real-world vision. Proc Natl Acad Sci U S A 2020; 117:13821-13827. [PMID: 32513698 PMCID: PMC7306755 DOI: 10.1073/pnas.1922294117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color ignites visual experience, imbuing the world with meaning, emotion, and richness. As soon as an observer opens their eyes, they have the immediate impression of a rich, colorful experience that encompasses their entire visual world. Here, we show that this impression is surprisingly inaccurate. We used head-mounted virtual reality (VR) to place observers in immersive, dynamic real-world environments, which they naturally explored via saccades and head turns. Meanwhile, we monitored their gaze with in-headset eye tracking and then systematically altered the visual environments such that only the parts of the scene they were looking at were presented in color and the rest of the scene (i.e., the visual periphery) was entirely desaturated. We found that observers were often completely unaware of these drastic alterations to their visual world. In the most extreme case, almost a third of observers failed to notice when less than 5% of the visual display was presented in color. This limitation on perceptual awareness could not be explained by retinal neuroanatomy or previous studies of peripheral visual processing using more traditional psychophysical approaches. In a second study, we measured color detection thresholds using a staircase procedure while a set of observers intentionally attended to the periphery. Still, we found that observers were unaware when a large portion of their field of view was desaturated. Together, these results show that during active, naturalistic viewing conditions, our intuitive sense of a rich, colorful visual world is largely incorrect.
Collapse
Affiliation(s)
- Michael A Cohen
- Department of Psychology, Program in Neuroscience, Amherst College, Amherst, MA 01002;
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Thomas L Botch
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Caroline E Robertson
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
10
|
Abid G. Deflating inflation: the connection (or lack thereof) between decisional and metacognitive processes and visual phenomenology. Neurosci Conscious 2019; 2019:niz015. [PMID: 31749989 PMCID: PMC6857601 DOI: 10.1093/nc/niz015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023] Open
Abstract
Vision presents us with a richly detailed world. Yet, there is a range of limitations in the processing of visual information, such as poor peripheral resolution and failures to notice things we do not attend. This raises a natural question: How do we seem to see so much when there is considerable evidence indicating otherwise? In an elegant series of studies, Lau and colleagues have offered a novel answer to this long-standing question, proposing that our sense of visual richness is an artifact of decisional and metacognitive deficits. I critically evaluate this proposal and conclude that it rests on questionable presuppositions concerning the relationship between decisional and metacognitive processes, on one hand, and visual phenomenology, on the other.
Collapse
Affiliation(s)
- Greyson Abid
- Department of Philosophy, University of California, Berkeley, 314 Moses Hall, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Block N. If perception is probabilistic, why does it not seem probabilistic? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0341. [PMID: 30061455 DOI: 10.1098/rstb.2017.0341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2018] [Indexed: 11/12/2022] Open
Abstract
The success of the Bayesian perspective in explaining perceptual phenomena has motivated the view that perceptual representation is probabilistic. But if perceptual representation is probabilistic, why does normal conscious perception not reflect the full probability functions that the probabilistic point of view endorses? For example, neurons in cortical area MT that respond to the direction of motion are broadly tuned: a patch of cortex that is tuned to vertical motion also responds to horizontal motion, but when we see vertical motion, foveally, in good conditions, it does not look at all horizontal. The standard solution in terms of sampling runs into the problem that sampling is an account of perceptual decision rather than perception. This paper argues that the best Bayesian approach to this problem does not require probabilistic representation.This article is part of the theme issue 'Perceptual consciousness and cognitive access'.
Collapse
Affiliation(s)
- Ned Block
- Department of Philosophy, New York University, New York, NY, USA
| |
Collapse
|
12
|
Haun AM, Tononi G, Koch C, Tsuchiya N. Are we underestimating the richness of visual experience? Neurosci Conscious 2017; 2017:niw023. [PMID: 30042833 PMCID: PMC6007133 DOI: 10.1093/nc/niw023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/29/2016] [Accepted: 12/04/2016] [Indexed: 11/14/2022] Open
Abstract
It has been argued that the bandwidth of perceptual experience is low-that the richness of experience is illusory and that the amount of visual information observers can perceive and remember is extremely limited. However, the evidence suggests that this postulated poverty of experiential content is illusory and that visual phenomenology is immensely rich. To properly estimate perceptual content, experimentalists must move beyond the limitations of binary alternative-forced choice procedures and analyze reports of experience more broadly. This will open our eyes to the true richness of experience and to its neuronal substrates.
Collapse
Affiliation(s)
- Andrew M Haun
- Department of Psychiatry, University of Wisconsin-Madison, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, USA
| | | | - Naotsugu Tsuchiya
- School of Psychological Sciences, Monash University, Australia
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia
| |
Collapse
|