1
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200291. [PMID: 35306751 DOI: 10.1002/smll.202200291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) describe abnormal vascular system conditions affecting the brain and heart. Among these, ischemic heart disease and ischemic stroke are the leading causes of death worldwide, resulting in 16% and 11% of deaths globally. Although several therapeutic approaches are presented over the years, the continuously increasing mortality rates suggest the need for more advanced strategies for their treatment. One of these strategies lies in the use of stimuli-responsive biomaterials. These "smart" biomaterials can specifically target the diseased tissue, and after "reading" the altered environmental cues, they can respond by altering their physicochemical properties and/or their morphology. In this review, the progress in the field of stimuli-responsive biomaterials for CCVDs in the last five years, aiming at highlighting their potential as early-stage therapeutics in the preclinical scenery, is described.
Collapse
Affiliation(s)
- Christos Tapeinos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Tomás Bauleth-Ramos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomedical Engineeringand and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
4
|
Okano S, Shiba Y. Therapeutic Potential of Pluripotent Stem Cells for Cardiac Repair after Myocardial Infarction. Biol Pharm Bull 2019; 42:524-530. [PMID: 30930411 DOI: 10.1248/bpb.b18-00257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction occurs as a result of acute arteriosclerotic plaque rupture in the coronary artery, triggering strong inflammatory responses. The necrotic cardiomyocytes are gradually replaced with noncontractile scar tissue that eventually manifests as heart failure. Pluripotent stem cells (PSCs) show great promise for widespread clinical applications, particularly for tissue regeneration, and are being actively studied around the world to help elucidate disease mechanisms and in the development of new drugs. Human induced PSCs also show potential for regeneration of the myocardial tissue in experiments with small animals and in in vitro studies. Although emerging evidence points to the effectiveness of these stem cell-derived cardiomyocytes in cardiac regeneration, several challenges remain before clinical application can become a reality. Here, we provide an overview of the present state of PSC-based heart regeneration and highlight the remaining hurdles, with a particular focus on graft survival, immunogenicity, posttransplant arrhythmia, maintained function, and tumor formation. Rapid progress in this field along with advances in biotechnology are expected to resolve these issues, which will require international collaboration and standardization.
Collapse
Affiliation(s)
- Satomi Okano
- Department of Regenerative Science and Medicine, Shinshu University.,Institute for Biomedical Sciences, Shinshu University
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University.,Institute for Biomedical Sciences, Shinshu University.,Department of Cardiovascular Medicine, Shinshu University
| |
Collapse
|
5
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Lee JH, Kim HW. Emerging properties of hydrogels in tissue engineering. J Tissue Eng 2018; 9:2041731418768285. [PMID: 29623184 PMCID: PMC5881958 DOI: 10.1177/2041731418768285] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Hydrogels are three-dimensional polymeric networks filled with water and mimic tissue environments. Therefore, they are considered optimal to deliver cells and engineer damaged tissues. The hydrogel networks have been significantly modified to endow biochemical functionality with adhesive ligands, growth factors, or degradable sites that are helpful to drive proper cell functions. Recently, some of the biophysical properties of hydrogels have emerged as key players in dictating cell fate. Beyond static stiffness, time-dependent stress/strain changes in the interaction with cells and the cell-mediated degradation and matrix synthesis have been demonstrated to shape cell status and tissue repair process. We highlight here the emerging biophysical properties of hydrogels that can motivate tissue engineers to design and develop hydrogels optimally for tissue regeneration.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Buitrago JO, Patel KD, El-Fiqi A, Lee JH, Kundu B, Lee HH, Kim HW. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomater 2018; 69:218-233. [PMID: 29410166 DOI: 10.1016/j.actbio.2017.12.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Cell encapsulating hydrogels with tunable mechanical and biological properties are of special importance for cell delivery and tissue engineering. Silk fibroin and collagen, two typical important biological proteins, are considered potential as cell culture hydrogels. However, both have been used individually, with limited properties (e.g., collagen has poor mechanical properties and cell-mediated shrinkage, and silk fibroin from Bombyx mori (mulberry) lacks cell adhesion motifs). Therefore, the combination of them is considered to achieve improved mechanical and biological properties with respect to individual hydrogels. Here, we show that the cell-encapsulating hydrogels of mulberry silk fibroin / collagen are implementable over a wide range of compositions, enabled simply by combining the different gelation mechanisms. Not only the gelation reaction but also the structural characteristics, consequently, the mechanical properties and cellular behaviors are accelerated significantly by the silk fibroin / collagen hybrid hydrogel approach. Of note, the mechanical and biological properties are tunable to represent the combined merits of individual proteins. The shear storage modulus is tailored to range from 0.1 to 20 kPa along the iso-compositional line, which is considered to cover the matrix stiffness of soft-to-hard tissues. In particular, the silk fibroin / collagen hydrogels are highly elastic, exhibiting excellent resistance to permanent deformation under different modes of stress; without being collapsed or water-squeezed out (vs. not possible in individual proteins) - which results from the mechanical synergism of interpenetrating networks of both proteins. Furthermore, the role of collagen protein component in the hybrid hydrogels provides adhesive sites to cells, stimulating anchorage and spreading significantly with respect to mulberry silk fibroin gel, which lacks cell adhesion motifs. The silk fibroin / collagen hydrogels can encapsulate cells while preserving the viability and growth over a long 3D culture period. Our findings demonstrate that the silk / collagen hydrogels possess physical and biological properties tunable and significantly improved (vs. the individual protein gels), implying their potential uses for cell delivery and tissue engineering. STATEMENT OF SIGNIFICANCE Development of cell encapsulating hydrogels with excellent physical and biological properties is important for the cell delivery and cell-based tissue engineering. Here we communicate for the first time the novel protein composite hydrogels comprised of 'Silk' and 'Collagen' and report their outstanding physical, mechanical and biological properties that are not readily achievable with individual protein hydrogels. The properties include i) gelation accelerated over a wide range of compositions, ii) stiffness levels covering 0.1 kPa to 20 kPa that mimic those of soft-to-hard tissues, iii) excellent elastic behaviors under various stress modes (bending, twisting, stretching, and compression), iv) high resistance to cell-mediated gel contraction, v) rapid anchorage and spreading of cells, and vi) cell encapsulation ability with a long-term survivability. These results come from the synergism of individual proteins of alpha-helix and beta-sheet structured networks. We consider the current elastic cell-encapsulating hydrogels of silk-collagen can be potentially useful for the cell delivery and tissue engineering in a wide spectrum of soft-to-hard tissues.
Collapse
Affiliation(s)
- Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea; Glass Research Department, National Research Centre, Cairo, 12622, Egypt
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea
| | - Banani Kundu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, South Korea.
| |
Collapse
|
8
|
Li C, Matsushita S, Li Z, Guan J, Amano A. c-kit Positive Cardiac Outgrowth Cells Demonstrate Better Ability for Cardiac Recovery Against Ischemic Myopathy. ACTA ACUST UNITED AC 2017; 7. [PMID: 29238626 PMCID: PMC5726283 DOI: 10.4172/2157-7633.1000402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Resident cardiac stem cells are expected to be a therapeutic option for patients who suffer from severe heart failure. However, uncertainty remains over whether sorting cells for c-kit, a stem cell marker, improves therapeutic outcomes. Materials and methods Cardiac outgrowth cells cultured from explants of rat heart atrium were sorted according to their positivity (+) or negativity (−) for c-kit. These cells were exposed to hypoxia for 3 d, and subsequently harvested for mRNA expression measurement. The cell medium was also collected to assess cytokine secretion. To test for a functional benefit in animals, myocardial infarction (MI) was induced in rats, and c-kit+ or c-kit− cells were injected. The left ventricular ejection fraction (LVEF) was measured for up to 4 weeks, after which the heart was harvested for biological and histological analyses. Results and conclusion Expression of the angiogenesis-related genes, VEGF and ANGPTL2, was significantly higher in c-kit+ cells after 3 d of hypoxic culture, although we found no such difference prior to hypoxia. Secretion of VEGF and ANGPTL2 was greater in the c-kit+ group than in the c-kit− group, while hypoxia tended to increase cytokine expression in both groups. In addition, IGF-1 was significantly increased in the c-kit+ group, consistent with the relatively low expression of cleaved-caspase 3 revealed by western blot assay, and the relatively low count of apoptotic cells revealed by histochemical analysis. Administration of c-kit+cells into the MI heart improved the LVEF and increased neovascularization. These results indicate that c-kit+cells may be useful in cardiac stem cell therapy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoshi Matsushita
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhengqing Li
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, Ohio State University, Columbus, USA
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Jamaiyar A, Wan W, Ohanyan V, Enrick M, Janota D, Cumpston D, Song H, Stevanov K, Kolz CL, Hakobyan T, Dong F, Newby BMZ, Chilian WM, Yin L. Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Res Cardiol 2017; 112:41. [PMID: 28540527 DOI: 10.1007/s00395-017-0631-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.
Collapse
Affiliation(s)
- Anurag Jamaiyar
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Weiguo Wan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Danielle Janota
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Devan Cumpston
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Hokyung Song
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kelly Stevanov
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Christopher L Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tatev Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Bi-Min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
10
|
Hydrogel based approaches for cardiac tissue engineering. Int J Pharm 2017; 523:454-475. [DOI: 10.1016/j.ijpharm.2016.10.061] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2023]
|
11
|
MacArthur JW, Steele AN, Goldstone AB, Cohen JE, Hiesinger W, Woo YJ. Injectable Bioengineered Hydrogel Therapy in the Treatment of Ischemic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:30. [PMID: 28337717 DOI: 10.1007/s11936-017-0530-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OPINION STATEMENT Over the past two decades, the field of cardiovascular medicine has seen the rapid development of multiple different modalities for the treatment of ischemic myocardial disease. Most research efforts have focused on strategies aimed at coronary revascularization, with significant technological advances made in percutaneous coronary interventions as well as coronary artery bypass graft surgery. However, recent research efforts have shifted towards ways to address the downstream effects of myocardial infarction on both cellular and molecular levels. To this end, the broad application of injectable hydrogel therapy after myocardial infarction has stimulated tremendous interest. In this article, we will review what hydrogels are, how they can be bioengineered in unique ways to optimize therapeutic potential, and how they can be used as part of a treatment strategy after myocardial infarction.
Collapse
Affiliation(s)
- John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Amanda N Steele
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Andrew B Goldstone
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Jeffrey E Cohen
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Bldg, 2nd Floor, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
| |
Collapse
|
12
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|