1
|
Calder D, Oveissi F, Maleknia S, Huang T, Koong B, Abrams T, Oar A, Chrzanowski W, Dehghani F, Fathi A. Universal Hydrogel Carrier Enhances Bone Graft Success: Preclinical and Clinical Evaluation. Adv Healthc Mater 2025:e2403930. [PMID: 39840481 DOI: 10.1002/adhm.202403930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced. The potential synergistic effect of the carrier is investigated in combination with particulate demineralized bone matrix (DBM) in a standard muscle pouch nude mice model (n = 24) as well as in a rabbit femoral critical-sized cortico-cancellous bone defect model (n = 9). Finally, the clinical usability, safety, and efficacy of the carrier for the delivery of deproteinized bovine bone mineral (DBBM) are evaluated in a controlled clinical trial for extraction socket alveolar ridge preservation (ARP) (n = 11 participants). Overall, the TX carrier improved the delivery of different types of BGMs, maintaining these spatially at the implantation site with minimal inflammatory responses, resulting in favorable bone regenerative outcomes.
Collapse
Affiliation(s)
- Dax Calder
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
- Dental School, University of Western Australia, Perth, WA, 6009, Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
| | - Simin Maleknia
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
| | - Tom Huang
- Envision Medical Imaging, Wembley, WA, 6014, Australia
| | - Bernard Koong
- Envision Medical Imaging, Wembley, WA, 6014, Australia
| | - Terence Abrams
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
| | - Andrew Oar
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
- Gold Coast University Hospital, Southport, 4215, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, 75105, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Upsala, 75105, Sweden
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Tetratherix Technology Pty Ltd, Sydney, NSW, 2000, Australia
| |
Collapse
|
2
|
Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol 2023; 11:1105248. [PMID: 36761294 PMCID: PMC9902883 DOI: 10.3389/fbioe.2023.1105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Although tissue engineering offered new approaches to repair bone defects, it remains a great challenge to create a bone-friendly microenvironment and rebuild bone tissue rapidly by a scaffold with a bionic structure. In this study, a multifunctional structurally optimized hydrogel scaffold was designed by integrating polyvinyl alcohol (PVA), gelatin (Gel), and sodium alginate (SA) with aspirin (ASA) and nano-hydroxyapatite (nHAP). The fabrication procedure is through a dual-crosslinking process. The chemical constitution, crystal structure, microstructure, porosity, mechanical strength, swelling and degradation property, and drug-release behavior of the hydrogel scaffold were analyzed. Multi-hydrogen bonds, electrostatic interactions, and strong "egg-shell" structure contributed to the multi-network microstructure, bone tissue-matched properties, and desirable drug-release function of the hydrogel scaffold. The excellent performance in improving cell viability, promoting cell osteogenic differentiation, and regulating the inflammatory microenvironment of the prepared hydrogel scaffold was verified using mouse pre-osteoblasts (MC3T3-E1) cells. And the synergistic osteogenic and anti-inflammatory functions of aspirin and nano-hydroxyapatite were also verified. This study provided valuable insights into the design, fabrication, and biological potential of multifunctional bone tissue engineering materials with the premise of constructing a bone-friendly microenvironment.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Libo Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Yifan Sun
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Lulu Yin
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhiyu Chen,
| |
Collapse
|
3
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Wu Y, Sun Z, Song J, Mo L, Wang X, Liu H, Ma Y. Preparation of multifunctional mesoporous SiO 2nanoparticles and anti-tumor action. NANOTECHNOLOGY 2022; 34:055101. [PMID: 36317264 DOI: 10.1088/1361-6528/ac9e5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials.In vitroandin vivoantitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.
Collapse
Affiliation(s)
- Yijun Wu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Zhiqiang Sun
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Jinfeng Song
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Liufang Mo
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Xiaochen Wang
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Hanhan Liu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| |
Collapse
|
5
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
6
|
Katoh S, Yoshioka H, Senthilkumar R, Preethy S, Abraham SJK. Enhanced expression of hyaluronic acid in osteoarthritis-affected knee-cartilage chondrocytes during three-dimensional in vitro culture in a hyaluronic-acid-retaining polymer scaffold. Knee 2021; 29:365-373. [PMID: 33690017 DOI: 10.1016/j.knee.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chondrocyte transplantation to address cartilage damage is an established solution. Because hyaluronic acid (HA) is an essential component for homeostasis of the cartilage, in order to arrive at methodologies to utilize its advantages in cell-based therapies, we compared the HA retention capability of a thermoreversible gelation polymer scaffold-based environment (3D-TGP) with conventional in vitro cell culture methodologies. METHODS Chondrocytes derived from osteoarthritis-affected knee joint cartilage of elderly patients were used and accomplished in three phases. In Phase I, the levels of HA secreted by chondrocytes were measured in culture supernatant. In Phase II, retention capacity of externally added HA was quantified indirectly by measuring the HA released in culture supernatant, and in Phase III, the expression of CD44 on cells was analysed by immunohistochemistry. RESULTS In Phase I, the average HA in the 3D supernatant was 3% that of 2D. In phase II, 80% of externally added HA was detected in the 2D on day 7, while in 3D-TGP, only 0.1% was released until day 21. In Phase III, 2D yielded individual cells that started degenerating from the third week; in 3D-TGP cells grew for a longer duration, formed a tissue-like architecture with extracellular matrix with significantly intense staining of CD44 than 2D. CONCLUSION The capability of the 3D-TGP culture environment to retain HA and support chondrocytes to grow with a tissue-like architecture expressing higher HA content is considered advantageous as it serves as an in vitro culture platform that enables tissue engineering of cartilage tissue with native hyaline phenotype and higher HA expression. The in vitro environment being conducive, based on this data, we also recommend that the TGP be tried as an encapsulation material in clinical studies of chondrocyte implantation for optimal clinical outcome.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, Edogawa-Ku, Tokyo, Japan; Department of Orthopaedic Surgery, Edogawa Hospital, Edogawa-Ku, Tokyo, Japan
| | | | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India
| | - Samuel J K Abraham
- II Department of Surgery & CACR, Yamanashi University-Faculty of Medicine, Yamanashi, Japan; The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, Tamil Nadu, India; JBM Inc., Edogawa-Ku, Tokyo, Japan; GN Corporation Co. Ltd., Yamanashi, Japan.
| |
Collapse
|
7
|
Hyaluronan alkyl derivatives-based electrospun membranes for potential guided bone regeneration: Fabrication, characterization and in vitro osteoinductive properties. Colloids Surf B Biointerfaces 2020; 197:111438. [PMID: 33166935 DOI: 10.1016/j.colsurfb.2020.111438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 10/19/2020] [Indexed: 01/16/2023]
Abstract
The aim of the work was to determine the effects of the chemical functionalization of hyaluronic acid (HA) with pendant aliphatic tails at different lengths and free amino groups in terms of chemical reactivity, degradation rate, drug-eluting features, and surface properties when processed as electrospun membranes (EM) evaluating the osteoinductive potential for a possible application as guided bone regeneration (GBR). To this end, a series of HA derivatives with different aliphatic tails (DD-Cx mol% ≈ 12.0 mol%) and decreasing derivatization of free amino groups (DDEDA mol% from 70.0 to 30.0 mol%) were first synthesized, namely Hn. Then dexamethasone-loaded Hn EM, i.e. HnX were prepared from aqueous polymeric solutions with polyvinyl alcohol (PVA), as a non-ionogenic linear flexible polymeric carrier, and the multifunctional 2-hydroxypropyl- cyclodextrin (HPCD) which acted as a rheological modifier, a stabilizer of Taylor's cone, and a solubilizing agent. A comprehensive characterization of the membranes was carried out through ATR-IR, XRD, and WCA measurements. According to the in vitro hydrolytic and enzymatic degradation and drug release in different aqueous media for two months, the insertion of alkyl pendant grafts and the crosslinking process provided tuneable additional resistance to the whole membrane suitably for the final application of the membranes. Cell culture showed the cytocompatibility and cell proliferation until 7 days. Osteogenic differentiation and mineralization of pre-osteoblastic MC3T3 cells occurred for most of membranes after 35 days as valued by measuring ALP activity (50 nmol 4-np/h/nf DNA) and the deposition of calcium (120-140 μg ml-1).
Collapse
|
8
|
Hong SY, Tran TVT, Kang HJ, Tripathi G, Lee BT, Bae SH. Synthesis and characterization of biphasic calcium phosphate laden thiolated hyaluronic acid hydrogel based scaffold: physical and in-vitro biocompatibility evaluations. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:337-354. [PMID: 33026287 DOI: 10.1080/09205063.2020.1833816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study focused on the combination of biphasic calcium phosphate (BCP) nanoparticles into the modified hyaluronic acid based injectable hydrogels for bone tissue engineering. Self-cross-linked thiolated hyaluronic acid (HA-HS) injectable hydrogels loaded with biphasic calcium phosphate (BCP) nanoparticles were prepared by disulfide cross-linking to mimic the extracellular matrix as a potential material for bone treatment. Varying concentration of HA-HS ranging between 1 and 5w/v% was tested to optimize the optimum concentration and were further modified with varying BCP concentrations for final optimization. Physico-chemical characterizations of the prepared hydrogel such as SEM, EDS, FT-IR, and XRD confirmed that the BCP has effectively loaded and distributed homogeneously in the HA-HS hydrogel. The results showed that the 3% (w/v) HA-HS hydrogel exhibits the appropriate properties for injectable hydrogel system such as gelation times, swelling rate and in vitro degradation behavior among all tested concentrations. Cell viability and cell proliferation using osteoblast cells (MC3T3-E1) demonstrated that the BCP laden modified hydrogel are biocompatible in vitro. In light of the encouraging results obtained, BCP laden HA-HS hydrogels might offer the potential to be used as injectable hydrogel in bone tissue engineering.
Collapse
Affiliation(s)
- Suk Young Hong
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Tuong Van Thi Tran
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hoe Jin Kang
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Garima Tripathi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
9
|
Liu J, Liang N, Li S, Han Y, Yan P, Kawashima Y, Cui F, Sun S. Tumor-targeting and redox-sensitive micelles based on hyaluronic acid conjugate for delivery of paclitaxel. J Biomater Appl 2020; 34:1458-1469. [PMID: 32046573 DOI: 10.1177/0885328220905256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiyang Liu
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Na Liang
- Department of Pharmaceutical Engineering, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, China
| | - Shupeng Li
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Yang Han
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Pengfei Yan
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| | - Yoshiaki Kawashima
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Fude Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaoping Sun
- Department of Pharmaceutical Engineering, School of Chemistry and Material Science, Heilongjiang University, Harbin, China
| |
Collapse
|