1
|
Kim B, Lee J, Berhane H, Freed BH, Shah SJ, Thomas JD. Differences in Pulmonary Artery Flow Hemodynamics Between PAH and PH-HFpEF: Insights From 4D-Flow CMR. Pulm Circ 2025; 15:e70022. [PMID: 39749111 PMCID: PMC11693845 DOI: 10.1002/pul2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary artery (PA) flow analysis is crucial for understanding the progression of pulmonary hypertension (PH). We hypothesized that PA flow characteristics vary according to PH etiology. In this study, we used 4D flow cardiovascular magnetic resonance imaging (CMR) to compare PA flow velocity and wall shear stress (WSS) between patients with pulmonary arterial hypertension (PAH) and those with heart failure with preserved ejection fraction and pulmonary hypertension (PH-HFpEF). We enrolled 13 PAH and 15 PH-HFpEF patients. All participants underwent echocardiography, 4D flow CMR, and right heart catheterization. We compared right ventricular outflow tract (RVOT) flow and main pulmonary artery (MPA) hemodynamics, including peak velocity and mean and maximum WSS, between groups. PH-HFpEF patients were older and more likely to have hypertension. PAH patients had higher mean PA pressure (47.8 ± 8.8 vs. 32.9 ± 6.9 mmHg, p < 0.001) and pulmonary vascular resistance (PVR) (8.6 ± 4.6 vs. 2.6 ± 2.2 wood unit, p < 0.001). RVOT systolic notching was more common in PAH patients (8 of 13 vs. 0 of 15), and they had shorter RVOT acceleration time (85.5 ± 20.9 vs. 135.0 ± 21.7 ms, p < 0.001). PAH patients had lower MPA Vmax (0.8 ± 0.2 vs. 1.1 ± 0.4 m/s, p = 0.032), mean WSS (0.29 ± 0.09 vs. 0.36 ± 0.06 Pa, p = 0.035), and maximal WSS (0.99 ± 0.18 vs. 1.21 ± 0.19 Pa, p = 0.011). Anterior MPA analysis confirmed lower WSS in PAH patients. PVR was negatively correlated with MPA mean WSS (r = -0.630, p = 0.002). PAH patients had lower MPA Vmax and lower mean MPA WSS in 4D flow CMR compared to PH-HFpEF patients. These distinct PA flow characteristics suggest that the flow hemodynamics of the PA remodeling process differ depending on the underlying etiology of PH.
Collapse
Affiliation(s)
- Bong‐Joon Kim
- Division of CardiologyNorthwestern UniversityChicagoIllinoisUSA
- Division of CardiologyKosin University College of MedicineBusanKorea
| | - Jeesoo Lee
- Division of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Haben Berhane
- Division of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | | | - Sanjiv J. Shah
- Division of CardiologyNorthwestern UniversityChicagoIllinoisUSA
| | - James D. Thomas
- Division of CardiologyNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
2
|
Cheng LH, Sun X, Elliot C, Condliffe R, Kiely DG, Alabed S, Swift AJ, van der Geest RJ. Mean pulmonary artery pressure prediction with explainable multi-view cardiovascular magnetic resonance cine series deep learning model. J Cardiovasc Magn Reson 2024; 27:101133. [PMID: 39645082 PMCID: PMC11782807 DOI: 10.1016/j.jocmr.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a heterogeneous condition and regardless of etiology impacts negatively on survival. Diagnosis of PH is based on hemodynamic parameters measured invasively at right heart catheterization (RHC); however, a non-invasive alternative would be clinically valuable. Our aim was to estimate RHC parameters non-invasively from cardiac magnetic resonance (MR) data using deep learning models and to identify key contributing imaging features. METHODS We constructed an explainable convolutional neural network (CNN) taking cardiac MR cine series from four different views as input to predict mean pulmonary artery pressure (mPAP). The model was trained and evaluated on 1646 examinations. The model's attention weight and predictive performance associated with each frame, view, or phase were used to judge its importance. Additionally, the importance of each cardiac chamber was inferred by perturbing part of the input pixels. RESULTS The model achieved a Pearson correlation coefficient of 0.80 and R2 of 0.64 in predicting mPAP and identified the right ventricle region on short-axis view to be especially informative. CONCLUSION Hemodynamic parameters can be estimated non-invasively with a CNN, using MR cine series from four views, revealing key contributing features at the same time.
Collapse
Affiliation(s)
- Li-Hsin Cheng
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical, Center, the Netherlands
| | - Xiaowu Sun
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical, Center, the Netherlands
| | - Charlie Elliot
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation, Trust, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation, Trust, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation, Trust, UK; National Institute for Health and Care Research (NIHR) Sheffield Biomedical Research Centre, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Rob J van der Geest
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical, Center, the Netherlands.
| |
Collapse
|
3
|
Brito J, Alves da Silva P, Inácio Cazeiro D, Azaredo Raposo M, Lousada N, Inácio J, Guimarães T, Almeida AG, Pinto FJ, Plácido R. Multidimensional CT approach to predict hemodynamics in pulmonary hypertension. Clin Radiol 2024; 79:921-930. [PMID: 39237392 DOI: 10.1016/j.crad.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
AIM Computed tomographic pulmonary angiography (CTPA) allows an excellent visualization of heart chambers and vessels, which may be associated with hemodynamic status in pulmonary hypertension, obviating the need for repetitive right heart catheterization (RHC). In this study, we aimed to evaluate the capacity of CTPA to predict severe hemodynamics and to correlate with clinical status and events. MATERIAL AND METHODS Retrospective study with 51 patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) in whom a CTPA and RHC were performed within 6 months. The primary endpoint was to evaluate the CTPA performance to predict severe hemodynamics, defined as the best mPAP threshold with clinical impact. Secondary endpoints were the correlation of CTPA measurements with clinical outcomes. RESULTS The right ventricle (RV) and right atrium (RA) areas, RV-free wall thickness, septal angle and pulmonary artery diameter assessed by CTPA revealed a good capacity to predict severe hemodynamic status. A CTPA model, incorporating both an RV area above 23 cm2 and an RA area above 21 cm2, increased the prediction capacity to detect severe hemodynamic status. The presence of both parameters above the threshold predicted severe PH with a 100% specificity and a 52% sensitivity and conveyed a 5-fold increased risk of mortality during follow-up. CTPA-altered parameters were directly associated with higher NT-proBNP levels and worse WHO-FC at baseline and follow-up. CONCLUSION In this pilot study, a CTPA model was able to predict severe PH hemodynamic status and worse clinical events during follow-up.
Collapse
Affiliation(s)
- J Brito
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - P Alves da Silva
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - D Inácio Cazeiro
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - M Azaredo Raposo
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - N Lousada
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - J Inácio
- Radiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - T Guimarães
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - A G Almeida
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - F J Pinto
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - R Plácido
- Cardiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Kellenberger CJ. Magnetic resonance imaging of pulmonary hypertension. Pediatr Radiol 2024:10.1007/s00247-024-06099-w. [PMID: 39545959 DOI: 10.1007/s00247-024-06099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Pulmonary hypertension is a rare but serious disease in children with potentially poor prognosis in the long term. Direct measurement of increased pressure in the pulmonary circulation requires right-heart catheterisation. Echocardiography is the imaging modality commonly used for suggesting the presence of pulmonary hypertension and estimating its severity. Recognition of structural and haemodynamic signs of increased pulmonary arterial pressure and pressure overload of the right ventricle at magnetic resonance (MR) imaging may contribute to the diagnosis of pulmonary hypertension and management of these patients. In this article, the structural, functional, and haemodynamic cardiovascular MR findings of paediatric pulmonary hypertension are reviewed. Typical diagnostic MR scenarios in children with suspected pulmonary hypertension or in children with disease associated with pulmonary hypertension are presented and discussed.
Collapse
|
5
|
Rajagopal S, Bogaard HJ, Elbaz MSM, Freed BH, Remy-Jardin M, van Beek EJR, Gopalan D, Kiely DG. Emerging multimodality imaging techniques for the pulmonary circulation. Eur Respir J 2024; 64:2401128. [PMID: 39209480 PMCID: PMC11525339 DOI: 10.1183/13993003.01128-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) remains a challenging condition to diagnose, classify and treat. Current approaches to the assessment of PH include echocardiography, ventilation/perfusion scintigraphy, cross-sectional imaging using computed tomography and magnetic resonance imaging, and right heart catheterisation. However, these approaches only provide an indirect readout of the primary pathology of the disease: abnormal vascular remodelling in the pulmonary circulation. With the advent of newer imaging techniques, there is a shift toward increased utilisation of noninvasive high-resolution modalities that offer a more comprehensive cardiopulmonary assessment and improved visualisation of the different components of the pulmonary circulation. In this review, we explore advances in imaging of the pulmonary vasculature and their potential clinical translation. These include advances in diagnosis and assessing treatment response, as well as strategies that allow reduced radiation exposure and implementation of artificial intelligence technology. These emerging modalities hold the promise of developing a deeper understanding of pulmonary vascular disease and the impact of comorbidities. They also have the potential to improve patient outcomes by reducing time to diagnosis, refining classification, monitoring treatment response and improving our understanding of disease mechanisms.
Collapse
Affiliation(s)
| | - Harm J Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
6
|
Sharkey MJ, Checkley EW, Swift AJ. Applications of artificial intelligence in computed tomography imaging for phenotyping pulmonary hypertension. Curr Opin Pulm Med 2024; 30:464-472. [PMID: 38989815 PMCID: PMC11309337 DOI: 10.1097/mcp.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Pulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing treatment strategies. Many artificial intelligence tools have been developed in this modality for the assessment of pulmonary hypertension. This article reviews the latest CT artificial intelligence applications in pulmonary hypertension and related diseases. RECENT FINDINGS Multistructure segmentation tools have been developed in both pulmonary hypertension and nonpulmonary hypertension cohorts using state-of-the-art UNet architecture. These segmentations correspond well with those of trained radiologists, giving clinically valuable metrics in significantly less time. Artificial intelligence lung parenchymal assessment accurately identifies and quantifies lung disease patterns by integrating multiple radiomic techniques such as texture analysis and classification. This gives valuable information on disease burden and prognosis. There are many accurate artificial intelligence tools to detect acute pulmonary embolism. Detection of chronic pulmonary embolism proves more challenging with further research required. SUMMARY There are numerous artificial intelligence tools being developed to identify and quantify many clinically relevant parameters in both pulmonary hypertension and related disease cohorts. These potentially provide accurate and efficient clinical information, impacting clinical decision-making.
Collapse
Affiliation(s)
- Michael J. Sharkey
- Department of Clinical Medicine, University of Sheffield
- 3D Imaging Lab, Sheffield Teaching Hospitals NHS Foundation Trust
| | | | - Andrew J. Swift
- Department of Clinical Medicine, University of Sheffield
- Insigneo Institute for in Silico Medicine, University of Sheffield
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
7
|
Ghani H, Weir-McCall JR, Ruggiero A, Pepke-Zaba J. Imaging in chronic thromboembolic pulmonary disease: Current practice and advances. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 17:100536. [PMID: 39711768 PMCID: PMC11657945 DOI: 10.1016/j.ijcchd.2024.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) occurs when thromboemboli in pulmonary arteries fail to resolve completely. Pulmonary artery obstructions due to chronic thrombi and secondary microvasculopathy can increase pulmonary arterial pressure and resistance leading to chronic thromboembolic PH (CTEPH). Mechanical interventions and/or PH medications can improve cardiopulmonary haemodynamic, alleviate symptoms, and decrease mortality risk. Imaging is pivotal throughout the CTEPD management journey, spanning diagnosis, treatment planning, and assessing treatment outcome. With just computed tomography (CT) pulmonary angiogram and right heart catheterisation, an experienced multidisciplinary team can determine surgical candidacy in most cases. Dual energy CT, lung subtraction iodine mapping CT, and dynamic contrast-enhanced magnetic resonance imaging (MRI) offer comparable sensitivities with ventilation-perfusion scintigraphy in diagnosing CTEPD. Pulmonary angiogram with digital subtraction angiography although considered the gold standard for assessing thrombi extent and vasculature morphology is now mostly used to assess targets for balloon pulmonary angioplasty. Advancements in CT modalities and innovative MRI metrics offer better insight into CTEPD management but are limited by the availability of technology and expertise. Learning from current artificial intelligence application in medical imaging, there is promise in tapping the wealth of data provided by CTEPD imaging through automating cardiopulmonary and vascular morphology analysis.
Collapse
Affiliation(s)
- Hakim Ghani
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| | - Jonathan R. Weir-McCall
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Royal Papworth Hospital, Cambridge, UK
| | | | - Joanna Pepke-Zaba
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Abdulaal L, Maiter A, Salehi M, Sharkey M, Alnasser T, Garg P, Rajaram S, Hill C, Johns C, Rothman AMK, Dwivedi K, Kiely DG, Alabed S, Swift AJ. A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography. FRONTIERS IN RADIOLOGY 2024; 4:1335349. [PMID: 38654762 PMCID: PMC11035730 DOI: 10.3389/fradi.2024.1335349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Background Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation.There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted.
Collapse
Affiliation(s)
- Lojain Abdulaal
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Maiter
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Respiratory Physiology Department, Sheffield Pulmonary Vascular Disease Unit, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Mahan Salehi
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Sharkey
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Turki Alnasser
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Pankaj Garg
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Smitha Rajaram
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Respiratory Physiology Department, Sheffield Pulmonary Vascular Disease Unit, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Catherine Hill
- Respiratory Physiology Department, Sheffield Pulmonary Vascular Disease Unit, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Christopher Johns
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Respiratory Physiology Department, Sheffield Pulmonary Vascular Disease Unit, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Alex Matthew Knox Rothman
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Respiratory Physiology Department, Sheffield Pulmonary Vascular Disease Unit, Sheffield, United Kingdom
| | - David G. Kiely
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Faculty of Engineering, INSIGNEO Institute, Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Biomedical Research Centre, National Institute for Health Research, Sheffield, United Kingdom
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Faculty of Engineering, INSIGNEO Institute, Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Andrew James Swift
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- Faculty of Engineering, INSIGNEO Institute, Institute for in Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Biomedical Research Centre, National Institute for Health Research, Sheffield, United Kingdom
| |
Collapse
|
9
|
Durrington C, Hurdman JA, Elliot CA, Maclean R, Van Veen J, Saccullo G, De-Foneska D, Swift AJ, Smitha R, Hill C, Thomas S, Dwivedi K, Alabed S, Wild JM, Charalampopoulos A, Hameed A, Rothman AMK, Watson L, Hamilton N, Thompson AAR, Condliffe R, Kiely DG. Systematic pulmonary embolism follow-up increases diagnostic rates of chronic thromboembolic pulmonary hypertension and identifies less severe disease: results from the ASPIRE Registry. Eur Respir J 2024; 63:2300846. [PMID: 38302154 PMCID: PMC7615743 DOI: 10.1183/13993003.00846-2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Diagnostic rates and risk factors for the subsequent development of chronic thromboembolic pulmonary hypertension (CTEPH) following pulmonary embolism (PE) are not well defined. METHODS Over a 10-year period (2010-2020), consecutive patients attending a PE follow-up clinic in Sheffield, UK (population 554 600) and all patients diagnosed with CTEPH at a pulmonary hypertension (PH) referral centre in Sheffield (referral population estimated 15-20 million) were included. RESULTS Of 1956 patients attending the Sheffield PE clinic 3 months following a diagnosis of acute PE, 41 were diagnosed with CTEPH with a cumulative incidence of 2.10%, with 1.89% diagnosed within 2 years. Of 809 patients presenting with pulmonary hypertension (PH) and diagnosed with CTEPH, 32 were Sheffield residents and 777 were non-Sheffield residents. Patients diagnosed with CTEPH at the PE follow-up clinic had shorter symptom duration (p<0.01), better exercise capacity (p<0.05) and less severe pulmonary haemodynamics (p<0.01) compared with patients referred with suspected PH. Patients with no major transient risk factors present at the time of acute PE had a significantly higher risk of CTEPH compared with patients with major transient risk factors (OR 3.6, 95% CI 1.11-11.91; p=0.03). The presence of three computed tomography (CT) features of PH in combination with two or more out of four features of chronic thromboembolic pulmonary disease at the index PE was found in 19% of patients who developed CTEPH and in 0% of patients who did not. Diagnostic rates and pulmonary endarterectomy (PEA) rates were higher at 13.2 and 3.6 per million per year, respectively, for Sheffield residents compared with 3.9-5.2 and 1.7-2.3 per million per year, respectively, for non-Sheffield residents. CONCLUSIONS In the real-world setting a dedicated PE follow-up pathway identifies patients with less severe CTEPH and increases population-based CTEPH diagnostic and PEA rates. At the time of acute PE diagnosis the absence of major transient risk factors, CT features of PH and chronic thromboembolism are risk factors for a subsequent diagnosis of CTEPH.
Collapse
Affiliation(s)
- Charlotte Durrington
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Judith A Hurdman
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Charlie A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rhona Maclean
- Department of Haematology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Joost Van Veen
- Department of Haematology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Giorgia Saccullo
- Department of Haematology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Duneesha De-Foneska
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew J Swift
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Rajaram Smitha
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Catherine Hill
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Steven Thomas
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Krit Dwivedi
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Samer Alabed
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James M Wild
- Department of Radiology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Alexander M K Rothman
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Lisa Watson
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Neil Hamilton
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - A A Roger Thompson
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- R. Condliffe and D.G. Kiely contributed equally to this work
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- R. Condliffe and D.G. Kiely contributed equally to this work
| |
Collapse
|
10
|
Kay FU, Madhuranthakam AJ. MR Perfusion Imaging of the Lung. Magn Reson Imaging Clin N Am 2024; 32:111-123. [PMID: 38007274 DOI: 10.1016/j.mric.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Lung perfusion assessment is critical for diagnosing and monitoring a variety of respiratory conditions. MRI perfusion provides a radiation-free technique, making it an ideal choice for longitudinal imaging in younger populations. This review focuses on the techniques and applications of MRI perfusion, including contrast-enhanced (CE) MRI and non-CE methods such as arterial spin labeling (ASL), fourier decomposition (FD), and hyperpolarized 129-Xenon (129-Xe) MRI. ASL leverages endogenous water protons as tracers for a non-invasive measure of lung perfusion, while FD offers simultaneous measurements of lung perfusion and ventilation, enabling the generation of ventilation/perfusion mapsHyperpolarized 129-Xe MRI emerges as a novel tool for assessing regional gas exchange in the lungs. Despite the promise of MRI perfusion techniques, challenges persist, including competition with other imaging techniques and the need for additional validation and standardization. In conditions such as cystic fibrosis and lung cancer, MRI has displayed encouraging results, whereas in diseases like chronic obstructive pulmonary disease, further validation remains necessary. In conclusion, while MRI perfusion techniques hold immense potential for a comprehensive, non-invasive assessment of lung function and perfusion, their broader clinical adoption hinges on technological advancements, collaborative research, and rigorous validation.
Collapse
Affiliation(s)
- Fernando U Kay
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Ananth J Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, North Campus 2201 Inwood Road, Dallas, TX 75390-8568, USA
| |
Collapse
|
11
|
Cain MT, Schäfer M, Park S, Barker AJ, Vargas D, Stenmark KR, Yu YRA, Bull TM, Ivy DD, Hoffman JRH. Characterization of pulmonary arterial stiffness using cardiac MRI. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:425-439. [PMID: 37902921 DOI: 10.1007/s10554-023-02989-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Pulmonary arterial stiffness (PAS) is a pathologic hallmark of all types of pulmonary hypertension (PH). Cardiac MRI (CMR), a gold-standard imaging modality for the evaluation of pulmonary flow, biventricular morphology and function has been historically reserved for the longitudinal clinical follow-up, PH phenotyping purposes, right ventricular evaluation, and research purposes. Over the last two decades, numerous indices combining invasive catheterization and non-invasive CMR have been utilized to phenotype the character and severity of PAS in different types of PH and to assess its clinically prognostic potential with encouraging results. Many recent studies have demonstrated a strong role of CMR derived PAS markers in predicting long-term clinical outcomes and improving currently gold standard risk assessment provided by the REVEAL calculator. With the utilization of a machine learning strategies, strong diagnostic and prognostic performance of CMR reported in multicenter studies, and ability to detect PH at early stages, the non-invasive assessment of PAS is on verge of routine clinical utilization. In this review, we focus on appraising important CMR studies interrogating PAS over the last 20 years, describing the benefits and limitations of different PAS indices, and their pathophysiologic relevance to pulmonary vascular remodeling. We also discuss the role of CMR and PAS in clinical surveillance and phenotyping of PH, and the long-term future goal to utilize PAS as a biomarker to aid with more targeted therapeutic management.
Collapse
Affiliation(s)
- Michael T Cain
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Michal Schäfer
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA.
- Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA.
| | - Sarah Park
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Vargas
- Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Kurt R Stenmark
- Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yen-Rei A Yu
- Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd M Bull
- Department of Critical Care and Pulmonary Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - D Dunbar Ivy
- Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA
| | - Jordan R H Hoffman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Dwivedi K, Sharkey M, Delaney L, Alabed S, Rajaram S, Hill C, Johns C, Rothman A, Mamalakis M, Thompson AAR, Wild J, Condliffe R, Kiely DG, Swift AJ. Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT. Radiology 2024; 310:e231718. [PMID: 38319169 PMCID: PMC10902594 DOI: 10.1148/radiol.231718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60-75 years]; 128 women) and 246 (median age, 65 years [IQR, 51-72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Krit Dwivedi
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Michael Sharkey
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Liam Delaney
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Samer Alabed
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Smitha Rajaram
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Catherine Hill
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Christopher Johns
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Alexander Rothman
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Michail Mamalakis
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - A. A. Roger Thompson
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Jim Wild
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Robin Condliffe
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - David G. Kiely
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| | - Andrew J. Swift
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Glossop Rd, Sheffield S10 2JF, England (K.D., L.D., A.R., M.M., A.A.R.T., J.W., R.C., D.G.K., A.J.S.); Department of Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (M.S., S.A., S.R., C.H., C.J.); and Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England (R.C., D.G.K.)
| |
Collapse
|
13
|
Pienn M, Gertz RJ, Gerhardt F, Kröger JR, Zaytoun H, Reimer RP, Kaplan A, Wissmüller M, Kovacs G, Rosenkranz S, Olschewski H, Bunck AC. CT-derived lung vessel morphology correlates with prognostic markers in precapillary pulmonary hypertension. J Heart Lung Transplant 2024; 43:54-65. [PMID: 37619642 DOI: 10.1016/j.healun.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND While computed tomography pulmonary angiography (CTPA) is an integral part of the work-up in patients with suspected pulmonary hypertension (PH), there is no established CTPA-derived prognostic marker. We aimed to assess whether quantitative readouts of lung vessel morphology correlate with established prognostic indicators in PH. METHODS We applied a fully-automatic in-house developed algorithm for segmentation of arteries and veins to determine lung vessel morphology in patients with precapillary PH who underwent right heart catheterization and CTPA between May 2016 and May 2019. Primary endpoint of this retrospective study was the calculation of receiver operating characteristics for identifying low and high mortality risk according to the 3-strata risk assessment model presented in the current guidelines. RESULTS We analyzed 73 patients, median age 65 years (interquartile range (IQR): 54-76), female/male ratio 35/38, median mean pulmonary arterial pressure 37 mm Hg (IQR: 30-46), and found significant correlations with important prognostic factors in pulmonary arterial hypertension. N-terminal pro-brain natriuretic peptide, cardiac index, mixed venous oxygen saturation, and 6-minute walking distance were correlated with the ratio of the number of arteries over veins with vessel diameters of 6-10 mm (Spearman correlation coefficients ρ = 0.64, p < 0.001; ρ = -0.60, p < 0.001; ρ = -0.47, p = 0.005; ρ = -0.45, p = 0.001, respectively). This ratio predicted a low- and high-risk score with an area under the curve of 0.73 (95% confidence interval (CI): 0.56-0.90) and 0.86 (95% CI: 0.74-0.97), respectively. CONCLUSIONS The ratio of the number of arteries over veins with diameters between 6 and 10 mm is significantly correlated with prognostic markers in pulmonary hypertension and predicts low and high mortality risk.
Collapse
Affiliation(s)
- Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Roman J Gertz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Gerhardt
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan R Kröger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Hasan Zaytoun
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robert P Reimer
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anil Kaplan
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Wissmüller
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Stephan Rosenkranz
- Department of Cardiology and Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander C Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Gothwal SK, Goyal K, Garg AS, Sahu BK, Agrawal M, Mishra A, Singh Y, Subramaniyan V, Singla N, Hussain MS, Gupta G. A Rare Case of Brucellosis with Multivalvular Endocarditis and Complete Heart Block. Curr Cardiol Rev 2024; 20:e030724231559. [PMID: 38963101 PMCID: PMC11440329 DOI: 10.2174/011573403x290326240703100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Brucellosis is a public health concern that affects multiple organs. However, cardiovascular problems arise infrequently, affecting fewer than 2% of cases, typically presenting as endocarditis. CASE PRESENTATION A 50-year male was admitted with low-grade fever, night sweats, weight loss (13 kg), malaise, and generalized weakness for the past 6 months. On clinical examination, he was febrile with 39.0°C, an average heart rate of 54 bpm, and 100/40 mmHg blood pressure. On cardiovascular examination, S1 and S2 were soft with pan systolic murmur present in the mitral area, and the early diastolic murmur was present in the left third intercostal space. Electrocardiography was suggestive of third-degree heart block with AV dissociation. Transthoracic echocardiography showed mobile vegetations attached to multiple valves- an aortic valve (18.2x11.9 mm) and a mitral valve (2.9x7.5 mm) with perivalvular abscess. He was given oral doxycycline (100 mg B.D.) and rifampicin (600 mg/day); the patient responded, but the AV block did not resolve. CONCLUSION This report has drawn attention to multivalvular involvement and cardiac rhythm abnormalities in Brucellosis (in this case, A.V. dissociation was present) because early diagnosis and treatment can cause a significant decrease in morbidity as well as mortality by appropriate treatment.
Collapse
Affiliation(s)
- Sunil Kumar Gothwal
- Department of Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Kanika Goyal
- Department of Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Ajay Shankar Garg
- Department of Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Bharat Kumar Sahu
- Department of Medicine, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, G.D. Goenka University, Gurugram, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University, Jaipur, India
| | - Yogendra Singh
- Department of Pharmacology, Maharishi Arvind College of Pharmacy, Ambabari Circle, Ambabari, Jaipur, 302023, India
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine & Health Sciences, Monash University, Petaling Jaya, Malaysia
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, Rajasthan, 302017, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
15
|
Verbelen T, Godinas L, Dorfmüller P, Gopalan D, Condliffe R, Delcroix M. Clinical-radiological-pathological correlation in chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2023; 32:230149. [PMID: 38123236 PMCID: PMC10731457 DOI: 10.1183/16000617.0149-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare and potentially life-threatening complication of acute pulmonary embolism. It is characterised by persistent fibro-thrombotic pulmonary vascular obstructions and elevated pulmonary artery pressure leading to right heart failure. The diagnosis is based on two steps, as follows: 1) suspicion based on symptoms, echocardiography and ventilation/perfusion scan and 2) confirmation with right heart catheterisation, computed tomography pulmonary angiography and, in most cases, digital subtraction angiography. The management of CTEPH requires a multimodal approach, involving medical therapy, interventional procedures and surgical intervention. This clinical-radiological-pathological correlation paper illustrates the diagnostic and therapeutic management of two patients. The first had chronic thromboembolic pulmonary disease without pulmonary hypertension at rest but with significant physical limitation and was successfully treated with pulmonary endarterectomy. The second patient had CTEPH associated with splenectomy and was considered unsuitable for surgery because of exclusive subsegmental lesions combined with severe pulmonary hypertension. The patient benefited from multimodal treatment involving medical therapy followed by multiple sessions of balloon pulmonary angioplasty. Both patients had normalised functional capacity and pulmonary haemodynamics 3-6 months after the interventional treatment. These two examples show that chronic thromboembolic pulmonary diseases are curable if diagnosed promptly and referred to CTEPH centres for specialist treatment.
Collapse
Affiliation(s)
- Tom Verbelen
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laurent Godinas
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| | - Peter Dorfmüller
- Institut für Pathologie, Universitätsklinikum Giessen/Marburg and Deutsches Zentrum für Lungenforschung (DZL), Giessen, Germany
| | - Deepa Gopalan
- Department of Radiology, Imperial College Hospital NHS Trust, London, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Condliffe R, Durrington C, Hameed A, Lewis RA, Venkateswaran R, Gopalan D, Dorfmüller P. Clinical-radiological-pathological correlation in pulmonary arterial hypertension. Eur Respir Rev 2023; 32:230138. [PMID: 38123231 PMCID: PMC10731450 DOI: 10.1183/16000617.0138-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by the presence of a mean pulmonary arterial pressure >20 mmHg. Current guidelines describe five groups of PH with shared pathophysiological and clinical features. In this paper, the first of a series covering all five PH classification groups, the clinical, radiological and pathological features of pulmonary arterial hypertension (PAH) will be reviewed. PAH may develop in the presence of associated medical conditions or a family history, following exposure to certain medications or drugs, or may be idiopathic in nature. Although all forms of PAH share common histopathological features, the presence of certain pulmonary arterial abnormalities, such as plexiform lesions, and extent of co-existing pulmonary venous involvement differs between the different subgroups. Radiological investigations are key to diagnosing the correct form of PH and a systematic approach to interpretation, especially of computed tomography, is essential.
Collapse
Affiliation(s)
- Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research Sheffield Biomedical Research Centre, Sheffield, UK
- These authors contributed equally to this work
| | - Charlotte Durrington
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Robert A Lewis
- Department of Respiratory Medicine, Middlemore Hospital, Auckland, New Zealand
| | - Rajamiyer Venkateswaran
- Department of Heart and Lung Transplantation, Manchester University NHS Foundation Trust, Manchester, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
- These authors contributed equally to this work
| | - Peter Dorfmüller
- Department of Pathology, University Hospital of Giessen and Marburg, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
- These authors contributed equally to this work
| |
Collapse
|
17
|
Condliffe R, Newton R, Bauchmuller K, Bonnett T, Kerry R, Mannings A, Nair A, Selby K, Skinner PP, Wilson VJ, Kiely DG. Surgery and Anesthesia in Patients with Pulmonary Hypertension. Semin Respir Crit Care Med 2023; 44:797-809. [PMID: 37729924 DOI: 10.1055/s-0043-1772753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pulmonary hypertension is characterized by right ventricular impairment and a reduced ability to compensate for hemodynamic insults. Consequently, surgery can be challenging but is increasingly considered in view of available specific therapies and improved longer term survival. Optimal management requires a multidisciplinary patient-centered approach involving surgeons, anesthetists, pulmonary hypertension clinicians, and intensivists. The optimal pathway involves risk:benefit assessment for the proposed operation, optimization of pulmonary hypertension and any comorbidities, the appropriate anesthetic approach for the specific procedure and patient, and careful monitoring and management in the postoperative period. Where patients are carefully selected and meticulously managed, good outcomes can be achieved.
Collapse
Affiliation(s)
- Robin Condliffe
- Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Newton
- Department of Anaesthesia, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Kris Bauchmuller
- Department of Critical Care, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Tessa Bonnett
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Robert Kerry
- Department of Orthopaedics, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Alexa Mannings
- Department of Anaesthesia, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Amanda Nair
- Department of Anaesthesia, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Karen Selby
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Paul P Skinner
- Department of Surgery, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Victoria J Wilson
- Department of Anaesthesia, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - David G Kiely
- Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Tamura Y, Tamura Y, Shigeta A, Hosokawa K, Taniguchi Y, Inami T, Adachi S, Tsujino I, Nakanishi N, Sato K, Sakamoto J, Tanabe N, Takama N, Nakamura K, Kubota K, Komura N, Kato S, Yamashita J, Takei M, Joho S, Ishii S, Takemura R, Sugimura K, Tatsumi K. Adult-onset idiopathic peripheral pulmonary artery stenosis. Eur Respir J 2023; 62:2300763. [PMID: 38061784 PMCID: PMC10733597 DOI: 10.1183/13993003.00763-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Peripheral pulmonary artery stenosis (PPS) refers to stenosis of the pulmonary artery from the trunk to the peripheral arteries. Although paediatric PPS is well described, the clinical characteristics of adult-onset idiopathic PPS have not been established. Our objectives in this study were to characterise the disease profile of adult-onset PPS. METHODS We collected data in Japanese centres. This cohort included patients who underwent pulmonary angiography (PAG) and excluded patients with chronic thromboembolic pulmonary hypertension or Takayasu arteritis. Patient backgrounds, right heart catheterisation (RHC) findings, imaging findings and treatment profiles were collected. RESULTS 44 patients (median (interquartile range) age 39 (29-57) years; 29 females (65.9%)) with PPS were enrolled from 20 centres. In PAG, stenosis of segmental and peripheral pulmonary arteries was observed in 41 (93.2%) and 36 patients (81.8%), respectively. 35 patients (79.5%) received medications approved for pulmonary arterial hypertension (PAH) and 22 patients (50.0%) received combination therapy. 25 patients (56.8%) underwent transcatheter pulmonary angioplasty. RHC data showed improvements in both mean pulmonary arterial pressure (44 versus 40 mmHg; p<0.001) and pulmonary vascular resistance (760 versus 514 dyn·s·cm-5; p<0.001) from baseline to final follow-up. The 3-, 5- and 10-year survival rates of patients with PPS were 97.5% (95% CI 83.5-99.6%), 89.0% (95% CI 68.9-96.4%) and 67.0% (95% CI 41.4-83.3%), respectively. CONCLUSIONS In this study, patients with adult-onset idiopathic PPS presented with segmental and peripheral pulmonary artery stenosis. Although patients had severe pulmonary hypertension at baseline, they showed a favourable treatment response to PAH drugs combined with transcatheter pulmonary angioplasty.
Collapse
Affiliation(s)
- Yudai Tamura
- Cardiovascular Center, International University of Health and Welfare School of Medicine, Narita, Japan
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Yuichi Tamura
- Cardiovascular Center, International University of Health and Welfare School of Medicine, Narita, Japan
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Ayako Shigeta
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Hosokawa
- Faculty of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takumi Inami
- Department of Cardiovascular Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Shiro Adachi
- Department of Cardiology, Nagoya University Hospital, Aichi, Japan
| | - Ichizo Tsujino
- Division of Respiratory and Cardiovascular Innovative Research, Faculty of Medicine, Hokkaido University, Hokkaido, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kimi Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jiro Sakamoto
- Department of Cardiology, Tenri Hospital, Tenri, Japan
| | - Nobuhiro Tanabe
- Pulmonary Hypertension Center, Chibaken Saiseikai Narashino Hospital, Narashino, Japan
| | - Noriaki Takama
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuto Nakamura
- Department of Cardiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kayoko Kubota
- Departments of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiro Komura
- Department of Cardiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Jun Yamashita
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Takei
- Department of Cardiology, Saiseikai Central Hospital, Tokyo, Japan
| | - Shuji Joho
- The Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Shunsuke Ishii
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ryo Takemura
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Koichiro Sugimura
- Department of Cardiology, International University of Health and Welfare, Narita Hospital, Narita, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
19
|
Celant LR, Wessels JN, Kianzad A, Marcus JT, Meijboom LJ, Bogaard HJ, de Man FS, Vonk Noordegraaf A. Restoration of right ventricular function in the treatment of pulmonary arterial hypertension. Heart 2023; 109:1844-1850. [PMID: 37527919 DOI: 10.1136/heartjnl-2023-322742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
OBJECTIVE A 45% threshold of right ventricular ejection fraction (RVEF) is proposed clinically relevant in patients with pulmonary arterial hypertension (PAH). We aim to determine treatment response, long-term right ventricular (RV) functional stability and prognosis of patients with PAH reaching or maintaining the RVEF 45% threshold. METHODS Incident, treatment-naive, adult PAH patients with cardiac magnetic resonance imaging at baseline and first follow-up were included (total N=127) and followed until date of censoring or death/lung transplantation. Patients were categorised into two groups based on 45% RVEF. Baseline predictors, treatment response and prognosis were assessed with logistic regression analyses, two-way analysis of variance and log-rank tests. RESULTS Patients were 50±17 years old, 73% female, of which N=75 reached or maintained the 45% RVEF threshold at follow-up (RVEF≥45%@FU), while N=52 patients did not (RVEF<45%@FU). RV end-diastolic volume and N-terminal pro-B-type natriuretic peptide at baseline were multivariable predictors of an RVEF ≥45% at follow-up. A 40% pulmonary vascular resistance (PVR) reduction resulted in greater improvement in RV function (ΔRVEF 17±11 vs. 5±8; pinteraction<0.001) compared to a PVR reduction <40%, but did not guarantee an RVEF ≥45%. Finally, the 45% RVEF threshold was associated with stable RV function during long-term follow-up and better survival (HR: 1.91 (95% CI: 1.11 to 3.27)). Patients failing to reach or maintain the 45% RVEF threshold at first follow-up mostly stayed below this threshold over the next consecutive visits. CONCLUSION After treatment initiation, 60% of patients with PAH reach or maintain the 45% RVEF threshold, which is associated with a long-term stable RV function and favourable prognosis.
Collapse
Affiliation(s)
- Lucas R Celant
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jeroen N Wessels
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Azar Kianzad
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| | - J Tim Marcus
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
| | - Lilian J Meijboom
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
- Pulmonary Hypertension and Thrombosis, Cardiovascular Sciences, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Halank M, Zeder KE, Sommer N, Ulrich S, Held M, Köhler T, Foris V, Heberling M, Neurohr C, Ronczka J, Holt S, Skowasch D, Kneidinger N, Behr J. [Pulmonary hypertension associated with lung disease]. Pneumologie 2023; 77:916-925. [PMID: 37963481 DOI: 10.1055/a-2145-4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Lung diseases and hypoventilation syndromes are often associated with pulmonary hypertension (PH). In most cases, PH is not severe. This is defined hemodynamically by a mean pulmonary arterial pressure (PAPm) > 20 mmHg, a pulmonary arterial wedge pressure (PAWP) ≤ 15 mmHg and a pulmonary vascular resistance of ≤ 5 Wood units (WU). Both the non-severe (PVR ≤ 5 WU) and much more the severe PH (PVR > 5 WU) have an unfavorable prognosis.If PH is suspected, it is recommended to primarily check whether risk factors for pulmonary arterial hypertension (PAH, group 1 PH) or chronic thromboembolic pulmonary hypertension (CTEPH, group 4 PH) are present. If risk factors are present or there is a suspicion of severe PH in lung patients, it is recommended that the patient should be presented to a PH outpatient clinic promptly.For patients with severe PH associated with lung diseases, personalized, individual therapy is recommended - if possible within the framework of therapy studies. Currently, a therapy attempt with PH specific drugs should only be considered in COPD patients if the associated PH is severe and a "pulmonary vascular" phenotype (severe precapillary PH, but typically only mild to moderate airway obstruction, no or mild hypercapnia and DLCO < 45 % of predicted value) is present. In patients with severe PH associated with interstitial lung disease phosphodiesterase-5-inhibitors may be considered in individual cases. Inhaled treprostinil may be considered also in non-severe PH in this patient population.
Collapse
Affiliation(s)
- Michael Halank
- Universitätsklinikum Carl Gustav Carus an der TU Dresden, Med. Klinik I, Bereich Pneumologie, Dresden, Deutschland
| | - Katarina E Zeder
- Klinische Abteilung für Pulmonologie, Med. Universität Graz, Österreich
- Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
| | - Natascha Sommer
- Justus-Liebig-Universitätsklinikum Gießen, Medizinische Klinik II, Pneumologie
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC)
| | | | - Matthias Held
- Klinikum Würzburg Mitte, Medizinische Klinik Schwerpunkt Pneumologie & Beatmungsmedizin
| | - Thomas Köhler
- Universitätsklinikum Freiburg, Department Innere Medizin, Klinik für Pneumologie, Freiburg, Deutschland
| | - Vasile Foris
- Klinische Abteilung für Pulmonologie, Med. Universität Graz, Österreich
- Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
| | - Melanie Heberling
- Universitätsklinikum Carl Gustav Carus an der TU Dresden, Med. Klinik I, Bereich Pneumologie, Dresden, Deutschland
| | - Claus Neurohr
- RBK Lungenzentrum Stuttgart am Robert-Bosch-Krankenhaus, Abteilung Pneumologie und Beatmungsmedizin, Stuttgart, Deutschland
| | - Julia Ronczka
- Universitätsklinikum Carl Gustav Carus an der TU Dresden, Med. Klinik I, Bereich Pneumologie, Dresden, Deutschland
| | | | - Dirk Skowasch
- Universitätsklinikum Bonn, Med. Klinik und Poliklinik II, Sektion Pneumologie, Bonn, Deutschland
| | - Nikolaus Kneidinger
- Medizinische Klinik und Poliklinik V, LMU Klinikum, LMU München, Comprehensive Pneumology Center, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München, Deutschland
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum, LMU München, Comprehensive Pneumology Center, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
21
|
Cain MT, Schäfer M, Ross LK, Ivy DD, Mitchell MB, Fenster BE, Bull TM, Barker AJ, Vargas D, Hoffman JRH. 4D-Flow MRI intracardiac flow analysis considering different subtypes of pulmonary hypertension. Pulm Circ 2023; 13:e12307. [PMID: 37941938 PMCID: PMC10628368 DOI: 10.1002/pul2.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Intracardiac flow hemodynamic patterns have been considered to be an early sign of diastolic dysfunction. In this study we investigated right ventricular (RV) diastolic dysfunction between patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension with chronic lung disease (PH-CLD) via 4D-Flow cardiac MRI (CMR). Patients underwent prospective, comprehensive CMR for function and size including 4D-Flow CMR protocol for intracardiac flow visualization and analysis. RV early filling phase and peak atrial phase vorticity (E-vorticity and A-vorticity) values were calculated in all patients. Patients further underwent comprehensive Doppler and tissue Doppler evaluation for the RV diastolic dysfunction. In total 13 patients with PAH, 15 patients with PH-CLD, and 10 control subjects underwent the 4D-Flow CMR and echocardiography evaluation for RV diastolic dysfunction. Reduced E-vorticity differentiated PAH and PH-CLD from healthy controls (both p < 0.01) despite the same Doppler E values. E-vorticity was further decreased in PAH patients when compared to PH-CLD group (p < 0.05) with similar Doppler and tissue Doppler markers of diastolic dysfunction. A-vorticity was decreased in both PAH and PH-CLD groups compared to controls but with no difference between the disease groups. E-vorticity correlated with ejection fraction (R = 0.60, p < 0.001), end-systolic volume (R = 0.50, p = 0.001), stroke volume (R = 0.42, p = 0.007), and cardiac output (R = 0.30, p = 0.027). Intracardiac flow analysis using 4D-Flow CMR derived vorticity is a sensitive method to differentiate diastolic dysfunction in patients with different PH etiology and similar Doppler echocardiography profile.
Collapse
Affiliation(s)
- Michael T. Cain
- Division of Cardiothoracic Surgery, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Michal Schäfer
- Division of Cardiothoracic Surgery, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Lexie K. Ross
- Division of Pediatric Cardiology, Children's Hospital Colorado, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - David D. Ivy
- Division of Pediatric Cardiology, Children's Hospital Colorado, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Max B. Mitchell
- Division of Pediatric Cardiology, Children's Hospital Colorado, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Brett E. Fenster
- Division of CardiologyColorado Kaiser Permanente Medical GroupDenverColoradoUSA
| | - Todd M. Bull
- Department of Critical Care and Pulmonary Medicine, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Alex J. Barker
- Department of Radiology, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Daniel Vargas
- Department of Radiology, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| | - Jordan R. H. Hoffman
- Division of Cardiothoracic Surgery, Anschutz Medical CampusUniversity of Colorado DenverAuroraColoradoUSA
| |
Collapse
|
22
|
Lacharie M, Villa A, Milidonis X, Hasaneen H, Chiribiri A, Benedetti G. Role of pulmonary perfusion magnetic resonance imaging for the diagnosis of pulmonary hypertension: A review. World J Radiol 2023; 15:256-273. [PMID: 37823020 PMCID: PMC10563854 DOI: 10.4329/wjr.v15.i9.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Among five types of pulmonary hypertension, chronic thromboembolic pulmonary hypertension (CTEPH) is the only curable form, but prompt and accurate diagnosis can be challenging. Computed tomography and nuclear medicine-based techniques are standard imaging modalities to non-invasively diagnose CTEPH, however these are limited by radiation exposure, subjective qualitative bias, and lack of cardiac functional assessment. This review aims to assess the methodology, diagnostic accuracy of pulmonary perfusion imaging in the current literature and discuss its advantages, limitations and future research scope.
Collapse
Affiliation(s)
- Miriam Lacharie
- Oxford Centre of Magnetic Resonance Imaging, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Adriana Villa
- Department of Diagnostic and Interventional Radiology, German Oncology Centre, Limassol 4108, Cyprus
| | - Xenios Milidonis
- Deep Camera MRG, CYENS Centre of Excellence, Nicosia, Cyprus, Nicosia 1016, Cyprus
| | - Hadeer Hasaneen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London WC2R 2LS, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Kings Coll London, Div Imaging Sci, St Thomas Hospital, London WC2R 2LS, United Kingdom
| | - Giulia Benedetti
- Department of Cardiovascular Imaging and Biomedical Engineering, King’s College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
23
|
Gulhane A, Ordovas K. Cardiac magnetic resonance assessment of cardiac involvement in autoimmune diseases. Front Cardiovasc Med 2023; 10:1215907. [PMID: 37808881 PMCID: PMC10556673 DOI: 10.3389/fcvm.2023.1215907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiac magnetic resonance (CMR) is emerging as the modality of choice to assess early cardiovascular involvement in patients with autoimmune rheumatic diseases (ARDs) that often has a silent presentation and may lead to changes in management. Besides being reproducible and accurate for functional and volumetric assessment, the strength of CMR is its unique ability to perform myocardial tissue characterization that allows the identification of inflammation, edema, and fibrosis. Several CMR biomarkers may provide prognostic information on the severity and progression of cardiovascular involvement in patients with ARDs. In addition, CMR may add value in assessing treatment response and identification of cardiotoxicity related to therapy with immunomodulators that are commonly used to treat these conditions. In this review, we aim to discuss the following objectives: •Illustrate imaging findings of multi-parametric CMR approach in the diagnosis of cardiovascular involvement in various ARDs;•Review the CMR signatures for risk stratification, prognostication, and guiding treatment strategies in ARDs;•Describe the utility of routine and advanced CMR sequences in identifying cardiotoxicity related to immunomodulators and disease-modifying agents in ARDs;•Discuss the limitations of CMR, recent advances, current research gaps, and potential future developments in the field.
Collapse
Affiliation(s)
- Avanti Gulhane
- Department of Radiology, University of Washington, School of Medicine, Seattle, WA, United States
| | | |
Collapse
|
24
|
Alabed S, Garg P, Alandejani F, Dwivedi K, Maiter A, Karunasaagarar K, Rajaram S, Hill C, Thomas S, Gossling R, Sharkey MJ, Salehi M, Wild JM, Watson L, Hameed A, Charalampopoulos A, Lu H, Rothman AMK, Thompson AAR, Elliot CA, Hamilton N, Johns CS, Armstrong I, Condliffe R, van der Geest RJ, Swift AJ, Kiely DG. Establishing minimally important differences for cardiac MRI end-points in pulmonary arterial hypertension. Eur Respir J 2023; 62:2202225. [PMID: 37414419 PMCID: PMC10397469 DOI: 10.1183/13993003.02225-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) is the gold standard technique to assess biventricular volumes and function, and is increasingly being considered as an end-point in clinical studies. Currently, with the exception of right ventricular (RV) stroke volume and RV end-diastolic volume, there is only limited data on minimally important differences (MIDs) reported for CMR metrics. Our study aimed to identify MIDs for CMR metrics based on US Food and Drug Administration recommendations for a clinical outcome measure that should reflect how a patient "feels, functions or survives". METHODS Consecutive treatment-naïve patients with pulmonary arterial hypertension (PAH) between 2010 and 2022 who had two CMR scans (at baseline prior to treatment and 12 months following treatment) were identified from the ASPIRE registry. All patients were followed up for 1 additional year after the second scan. For both scans, cardiac measurements were obtained from a validated fully automated segmentation tool. The MID in CMR metrics was determined using two distribution-based (0.5sd and minimal detectable change) and two anchor-based (change difference and generalised linear model regression) methods benchmarked to how a patient "feels" (emPHasis-10 quality of life questionnaire), "functions" (incremental shuttle walk test) or "survives" for 1-year mortality to changes in CMR measurements. RESULTS 254 patients with PAH were included (mean±sd age 53±16 years, 79% female and 66% categorised as intermediate risk based on the 2022 European Society of Cardiology/European Respiratory Society risk score). We identified a 5% absolute increase in RV ejection fraction and a 17 mL decrease in RV end-diastolic or end-systolic volumes as the MIDs for improvement. Conversely, a 5% decrease in RV ejection fraction and a 10 mL increase in RV volumes were associated with worsening. CONCLUSIONS This study establishes clinically relevant CMR MIDs for how a patient "feels, functions or survives" in response to PAH treatment. These findings provide further support for the use of CMR as a clinically relevant clinical outcome measure and will aid trial size calculations for studies using CMR.
Collapse
Affiliation(s)
- Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Ahmed Maiter
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Kavita Karunasaagarar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Smitha Rajaram
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Catherine Hill
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Steven Thomas
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Rebecca Gossling
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Michael J Sharkey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Mahan Salehi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Lisa Watson
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Haiping Lu
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Alex M K Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Charlie A Elliot
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Neil Hamilton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Christopher S Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Iain Armstrong
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Robin Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Joint senior authors
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK
- Joint senior authors
| |
Collapse
|
25
|
Caccamo M, Harrell FE, Hemnes AR. Evolution and optimization of clinical trial endpoints and design in pulmonary arterial hypertension. Pulm Circ 2023; 13:e12271. [PMID: 37554146 PMCID: PMC10405062 DOI: 10.1002/pul2.12271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Selection of endpoints for clinical trials in pulmonary arterial hypertension (PAH) is challenging because of the small numbers of patients and the changing expectations of patients, clinicians, and regulators in this evolving therapy area. The most commonly used primary endpoint in PAH trials has been 6-min walk distance (6MWD), leading to the approval of several targeted therapies. However, single surrogate endpoints such as 6MWD or hemodynamic parameters may not correlate with clinical outcomes. Composite endpoints of clinical worsening have been developed to reflect patients' overall condition more accurately, although there is no standard definition of worsening. Recently there has been a shift to composite endpoints assessing clinical improvement, and risk scores developed from registry data are increasingly being used. Biomarkers are another area of interest, although brain natriuretic peptide and its N-terminal prohormone are the only markers used for risk assessment or as endpoints in PAH. A range of other genetic, metabolic, and immunologic markers is currently under investigation, along with conventional and novel imaging modalities. Patient-reported outcomes are an increasingly important part of evaluating new therapies, and several PAH-specific tools are now available. In the future, alternative statistical techniques and trial designs, such as patient enrichment strategies, will play a role in evaluating PAH-targeted therapies. In addition, modern sequencing techniques, imaging analyses, and high-dimensional statistical modeling/machine learning may reveal novel markers that can play a role in the diagnosis and monitoring of PAH.
Collapse
Affiliation(s)
- Marco Caccamo
- Division of CardiologyWVU Heart and Vascular InstituteMorgantownWest VirginiaUSA
| | - Frank E. Harrell
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
26
|
Schüssler A, Lug Q, Kremer N, Harth S, Kriechbaum SD, Richter MJ, Guth S, Wiedenroth CB, Tello K, Steiner D, Seeger W, Krombach GA, Roller FC. Evaluation of diagnostic accuracy of dual-energy computed tomography in patients with chronic thromboembolic pulmonary hypertension compared to V/Q-SPECT and pulmonary angiogram. Front Med (Lausanne) 2023; 10:1194272. [PMID: 37425315 PMCID: PMC10324648 DOI: 10.3389/fmed.2023.1194272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose The relevance of dual-energy computed tomography (DECT) for the detection of chronic thromboembolic pulmonary hypertension (CTEPH) still lies behind V/Q-SPECT in current clinical guidelines. Therefore, our study aimed to assess the diagnostic accuracy of DECT compared to V/Q-SPECT with invasive pulmonary angiogram (PA) serving as the reference standard. Methods A total of 28 patients (mean age 62.1 years ± 10.6SD; 18 women) with clinically suspected CTEPH were retrospectively included. All patients received DECT with the calculation of iodine maps, V/Q-SPECT, and PA. Results of DECT and V/Q-SPECT were compared, and the percent of agreement, concordance (utilizing Cohen's kappa), and accuracy (kappa2) to PA were calculated. Furthermore, radiation doses were analyzed and compared. Results In total, 18 patients were diagnosed with CTEPH (mean age 62.4 years ± 11.0SD; 10 women) and 10 patients had other diseases. Compared to PA, accuracy and concordance for DECT were superior to V/Q-SPECT in all patients (88.9% vs. 81.3%; k = 0.764 vs. k = 0.607) and in CTEPH patients (82.4% vs. 70.1%; k = 0.694 vs. k = 0.560). Furthermore, the mean radiation dose was significantly lower for DECT vs. V/Q-SPECT (p = 0.0081). Conclusion In our patient cohort, DECT is at least equivalent to V/Q-SPECT in diagnosing CTEPH and has the added advantage of significantly lower radiation doses in combination with simultaneous assessment of lung and heart morphology. Hence, DECT should be the subject of ongoing research, and if our results are further confirmed, it should be implemented in future diagnostic PH algorithms at least on par with V/Q-SPECT.
Collapse
Affiliation(s)
- Armin Schüssler
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Quirin Lug
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Nils Kremer
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Sebastian Harth
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | | | - Manuel J. Richter
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Thorax Centre, Bad Nauheim, Germany
| | | | - Khodr Tello
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
| | - Dagmar Steiner
- Department of Nuclear Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Member of the German Center for Lung Research, Giessen, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute, Giessen, Germany
- DZHK (German Centre for Cardiovascular Research), Frankfurt am Main, Germany
| | - Gabriele Anja Krombach
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| | - Fritz Christian Roller
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University Giessen, Giessen, Germany
- Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
27
|
Hameed A, Condliffe R, Swift AJ, Alabed S, Kiely DG, Charalampopoulos A. Assessment of Right Ventricular Function-a State of the Art. Curr Heart Fail Rep 2023; 20:194-207. [PMID: 37271771 PMCID: PMC10256637 DOI: 10.1007/s11897-023-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW The right ventricle (RV) has a complex geometry and physiology which is distinct from the left. RV dysfunction and failure can be the aftermath of volume- and/or pressure-loading conditions, as well as myocardial and pericardial diseases. RECENT FINDINGS Echocardiography, magnetic resonance imaging and right heart catheterisation can assess RV function by using several qualitative and quantitative parameters. In pulmonary hypertension (PH) in particular, RV function can be impaired and is related to survival. An accurate assessment of RV function is crucial for the early diagnosis and management of these patients. This review focuses on the different modalities and indices used for the evaluation of RV function with an emphasis on PH.
Collapse
Affiliation(s)
- Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK.
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
28
|
Alkhanfar D, Dwivedi K, Alandejani F, Shahin Y, Alabed S, Johns C, Garg P, Thompson AAR, Rothman AMK, Hameed A, Charalampopoulos A, Wild JM, Condliffe R, Kiely DG, Swift AJ. Non-invasive detection of severe PH in lung disease using magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1016994. [PMID: 37139140 PMCID: PMC10149807 DOI: 10.3389/fcvm.2023.1016994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Severe pulmonary hypertension (mean pulmonary artery pressure ≥35 mmHg) in chronic lung disease (PH-CLD) is associated with high mortality and morbidity. Data suggesting potential response to vasodilator therapy in patients with PH-CLD is emerging. The current diagnostic strategy utilises transthoracic Echocardiography (TTE), which can be technically challenging in some patients with advanced CLD. The aim of this study was to evaluate the diagnostic role of MRI models to diagnose severe PH in CLD. Methods 167 patients with CLD referred for suspected PH who underwent baseline cardiac MRI, pulmonary function tests and right heart catheterisation were identified. In a derivation cohort (n = 67) a bi-logistic regression model was developed to identify severe PH and compared to a previously published multiparameter model (Whitfield model), which is based on interventricular septal angle, ventricular mass index and diastolic pulmonary artery area. The model was evaluated in a test cohort. Results The CLD-PH MRI model [= (-13.104) + (13.059 * VMI)-(0.237 * PA RAC) + (0.083 * Systolic Septal Angle)], had high accuracy in the test cohort (area under the ROC curve (0.91) (p < 0.0001), sensitivity 92.3%, specificity 70.2%, PPV 77.4%, and NPV 89.2%. The Whitfield model also had high accuracy in the test cohort (area under the ROC curve (0.92) (p < 0.0001), sensitivity 80.8%, specificity 87.2%, PPV 87.5%, and NPV 80.4%. Conclusion The CLD-PH MRI model and Whitfield model have high accuracy to detect severe PH in CLD, and have strong prognostic value.
Collapse
Affiliation(s)
- Dheyaa Alkhanfar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Chris Johns
- Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Pankaj Garg
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - A. A. Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Alexander M. K. Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Jim M. Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - David G. Kiely
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Andrew J. Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO, Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Hyde B, Paoli CJ, Panjabi S, Bettencourt KC, Bell Lynum KS, Selej M. A claims-based, machine-learning algorithm to identify patients with pulmonary arterial hypertension. Pulm Circ 2023; 13:e12237. [PMID: 37287599 PMCID: PMC10243208 DOI: 10.1002/pul2.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023] Open
Abstract
Many patients with pulmonary arterial hypertension (PAH) experience substantial delays in diagnosis, which is associated with worse outcomes and higher costs. Tools for diagnosing PAH sooner may lead to earlier treatment, which may delay disease progression and adverse outcomes including hospitalization and death. We developed a machine-learning (ML) algorithm to identify patients at risk for PAH earlier in their symptom journey and distinguish them from patients with similar early symptoms not at risk for developing PAH. Our supervised ML model analyzed retrospective, de-identified data from the US-based Optum® Clinformatics® Data Mart claims database (January 2015 to December 2019). Propensity score matched PAH and non-PAH (control) cohorts were established based on observed differences. Random forest models were used to classify patients as PAH or non-PAH at diagnosis and at 6 months prediagnosis. The PAH and non-PAH cohorts included 1339 and 4222 patients, respectively. At 6 months prediagnosis, the model performed well in distinguishing PAH and non-PAH patients, with area under the curve of the receiver operating characteristic of 0.84, recall (sensitivity) of 0.73, and precision of 0.50. Key features distinguishing PAH from non-PAH cohorts were a longer time between first symptom and the prediagnosis model date (i.e., 6 months before diagnosis); more diagnostic and prescription claims, circulatory claims, and imaging procedures, leading to higher overall healthcare resource utilization; and more hospitalizations. Our model distinguishes between patients with and without PAH at 6 months before diagnosis and illustrates the feasibility of using routine claims data to identify patients at a population level who might benefit from PAH-specific screening and/or earlier specialist referral.
Collapse
Affiliation(s)
- Bethany Hyde
- Janssen Business Technology Commercial Data Insights & Data ScienceTitusvilleNew JerseyUSA
| | | | | | | | | | - Mona Selej
- Janssen R&D Data ScienceSouth San FranciscoCaliforniaUSA
| |
Collapse
|
30
|
Kizhakke Puliyakote AS, Prisk GK, Elliott AR, Kim NH, Pazar B, Sá RC, Asadi AK, Hopkins SR. The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension. J Appl Physiol (1985) 2023; 134:969-979. [PMID: 36861672 PMCID: PMC10085549 DOI: 10.1152/japplphysiol.00463.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Global fluctuation dispersion (FDglobal), a spatial-temporal metric derived from serial images of the pulmonary perfusion obtained with MRI-arterial spin labeling, describes temporal fluctuations in the spatial distribution of perfusion. In healthy subjects, FDglobal is increased by hyperoxia, hypoxia, and inhaled nitric oxide. We evaluated patients with pulmonary arterial hypertension (PAH, 4F, aged 47 ± 15, mean pulmonary artery pressure 48 ± 7 mmHg) and healthy controls (CON, 7F, aged 47 ± 12) to test the hypothesis that FDglobal is increased in PAH. Images were acquired at ∼4-5 s intervals during voluntary respiratory gating, inspected for quality, registered using a deformable registration algorithm, and normalized. Spatial relative dispersion (RD = SD/mean) and the percent of the lung image with no measurable perfusion signal (%NMP) were also assessed. FDglobal was significantly increased in PAH (PAH = 0.40 ± 0.17, CON = 0.17 ± 0.02, P = 0.006, a 135% increase) with no overlap in values between the two groups, consistent with altered vascular regulation. Both spatial RD and %NMP were also markedly greater in PAH vs. CON (PAH RD = 1.46 ± 0.24, CON = 0.90 ± 0.10, P = 0.0004; PAH NMP = 13.4 ± 6.1%; CON = 2.3 ± 1.4%, P = 0.001 respectively) consistent with vascular remodeling resulting in poorly perfused regions of lung and increased spatial heterogeneity. The difference in FDglobal between normal subjects and patients with PAH in this small cohort suggests that spatial-temporal imaging of perfusion may be useful in the evaluation of patients with PAH. Since this MR imaging technique uses no injected contrast agents and has no ionizing radiation it may be suitable for use in diverse patient populations.NEW & NOTEWORTHY Using proton MRI-arterial spin labeling to obtain serial images of pulmonary perfusion, we show that global fluctuation dispersion (FDglobal), a metric of temporal fluctuations in the spatial distribution of perfusion, was significantly increased in female patients with pulmonary arterial hypertension (PAH) compared with healthy controls. This potentially indicates pulmonary vascular dysregulation. Dynamic measures using proton MRI may provide new tools for evaluating individuals at risk of PAH or for monitoring therapy in patients with PAH.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, California, United States
| | - Beni Pazar
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Amran K Asadi
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| |
Collapse
|
31
|
Zhou D, Li X, Yin G, Li S, Zhao S, Liu Z, Lu M. Risk Stratification and Outcomes in Patients With Pulmonary Hypertension: Insights into Right Ventricular Strain by MRI Feature tracking. J Magn Reson Imaging 2023; 57:545-556. [PMID: 35713378 DOI: 10.1002/jmri.28291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite a recommended multidimensional approach for pulmonary hypertension (PH) risk stratification and guidance of treatment decisions, this may not always be achievable in patients with advanced disease. One issue is the lack of an imaging modality to assess right ventricular (RV) structure and function abnormalities. PURPOSE To explore the risk stratification and prognostic value of cardiac MR feature tracking (MR-FT)-derived RV strain. STUDY TYPE Retrospective. POPULATION A total of 80 patients with idiopathic pulmonary artery hypertension (N = 52) or chronic thromboembolic PH (N = 28). FIELD STRENGTH A 1.5 T or 3.0 T, balanced steady-state free precession sequence. ASSESSMENT All patients underwent laboratory testing, right heart catheterization, and MR imaging (and in 37 cases, a cardiopulmonary exercise test was also performed) within a 1-month period. Cardiac functional parameters and both global longitudinal strain (GLS) and global circumferential strain (GCS) were analyzed. Patients were stratified into low, intermediate, and high-risk groups by guideline suggested stratified values of risk factors. The combined endpoint was death or hospitalization for congestive heart failure assessed during follow-up since the date of MR examination. STATISTICAL TESTS Kolmogorov-Smirnov's test, independent-sample t-tests, Wilcoxon's rank-sum tests, one-way analysis of variance, χ2 tests or Fisher's exact test, receiver operating characteristic analysis, Kaplan-Meier survival analysis, and Cox regression analysis. A P value < 0.05 was considered statistically significant. RESULTS The median follow-up duration was 3.4 years. Thirty-five patients presented with combined endpoint including 10 cardiac deaths. RV structural and deformation impairments were significantly associated with combined endpoint (ejection fraction: 31.3% ± 13.2% vs. 38.0% ± 14.8%, hazard ratio [HR: 0.974; GLS: -14.5 [-18.6, -10.9] % vs. -20.4 [-26.0, -13.2] %, HR: 1.071; GCS: -9.8 [-14.5, -7.3] % vs. -12.3 [-19.9, -8.4] %, HR: 1.059). There were significant differences in RVGLS among low, intermediate, and high-risk groups (-19.3% ± 7.2% vs. -17.3% ± 9.4% vs. -11.5% ± 4.4% by cardiac functional class, -21.8% ± 7.3% vs. -19.4% ± 8.2% vs. -12.7 ± 5.3% by NT-proBNP, -19.7% ± 7.7 vs. -15.8% ± 6.5% vs. -12.6% ± 8.2% by cardiac index). DATA CONCLUSION RV deformation may aid risk stratification in patients with PH, providing crucial information for RV remodeling, pulmonary hemodynamic condition and exercise capacity. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Li
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2023; 61:13993003.00879-2022. [PMID: 36028254 DOI: 10.1183/13993003.00879-2022] [Citation(s) in RCA: 680] [Impact Index Per Article: 340.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Gabor Kovacs
- University Clinic of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Marius M Hoeper
- Respiratory Medicine, Hannover Medical School, Hanover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease (BREATH), member of the German Centre of Lung Research (DZL), Hanover, Germany
| | - Roberto Badagliacca
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Roma, Italy
- Dipartimento Cardio-Toraco-Vascolare e Chirurgia dei Trapianti d'Organo, Policlinico Umberto I, Roma, Italy
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, Dept of Paediatric Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margarita Brida
- Department of Sports and Rehabilitation Medicine, Medical Faculty University of Rijeka, Rijeka, Croatia
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton and Harefield Hospitals, Guys and St Thomas's NHS Trust, London, UK
| | - Jørn Carlsen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J S Coats
- Faculty of Medicine, University of Warwick, Coventry, UK
- Faculty of Medicine, Monash University, Melbourne, Australia
| | - Pilar Escribano-Subias
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- CIBER-CV (Centro de Investigaciones Biomédicas En Red de enfermedades CardioVasculares), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pisana Ferrari
- ESC Patient Forum, Sophia Antipolis, France
- AIPI, Associazione Italiana Ipertensione Polmonare, Bologna, Italy
| | - Diogenes S Ferreira
- Alergia e Imunologia, Hospital de Clinicas, Universidade Federal do Parana, Curitiba, Brazil
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
- Department of Pneumology, Kerckhoff Klinik, Bad Nauheim, Germany
- Department of Medicine, Imperial College London, London, UK
| | - George Giannakoulas
- Cardiology Department, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Eckhard Mayer
- Thoracic Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gergely Meszaros
- ESC Patient Forum, Sophia Antipolis, France
- European Lung Foundation (ELF), Sheffield, UK
| | - Blin Nagavci
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Karen M Olsson
- Clinic of Respiratory Medicine, Hannover Medical School, member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, Cambridge, UK
| | | | - Göran Rådegran
- Department of Cardiology, Clinical Sciences Lund, Faculty of Medicine, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO. Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Gerald Simonneau
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Centre de Référence de l'Hypertension Pulmonaire, Hopital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- Faculté Médecine, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mark Toshner
- Dept of Medicine, Heart Lung Research Institute, University of Cambridge, Royal Papworth NHS Trust, Cambridge, UK
| | - Jean-Luc Vachiery
- Department of Cardiology, Pulmonary Vascular Diseases and Heart Failure Clinic, HUB Hôpital Erasme, Brussels, Belgium
| | | | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Centre of Pulmonary Vascular Diseases, University Hospitals of Leuven, Leuven, Belgium
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | - Stephan Rosenkranz
- Clinic III for Internal Medicine (Department of Cardiology, Pulmonology and Intensive Care Medicine), and Cologne Cardiovascular Research Center (CCRC), Heart Center at the University Hospital Cologne, Köln, Germany
- The two chairpersons (M. Delcroix and S. Rosenkranz) contributed equally to the document and are joint corresponding authors
| | | |
Collapse
|
33
|
Richter MJ, Fortuni F, Alenezi F, D'Alto M, Badagliacca R, Brunner NW, van Dijk AP, Douschan P, Gall H, Ghio S, Giudice FL, Grünig E, Haddad F, Howard L, Rajagopal S, Stens N, Stolfo D, Thijssen DHJ, Vizza CD, Zamanian RT, Zhong L, Seeger W, Ghofrani HA, Tello K. Imaging the right atrium in pulmonary hypertension: A systematic review and meta-analysis. J Heart Lung Transplant 2022; 42:433-446. [PMID: 36610927 DOI: 10.1016/j.healun.2022.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Right atrial (RA) imaging has emerged as a promising tool for the evaluation of patients with pulmonary hypertension (PH), albeit without systematic validation. METHODS PubMed, Web of Science and the Cochrane library were searched for studies investigating the prognostic value of RA imaging assessment in patients with PH from 2000 to June 2021 (PROSPERO Identifier: CRD42020212850). An inverse variance-weighted meta-analysis of univariable hazard ratios (HRs) was performed using a random effects model. RESULTS Thirty-five studies were included (3,476 patients with PH; 74% female, 86% pulmonary arterial hypertension). Risk of bias was low/moderate (Quality of Prognosis Studies checklist). RA area (HR 1.06; 95% confidence interval [CI] 1.04-1.08), RA indexed area (HR 1.09; 95% CI 1.04-1.14), RA peak longitudinal strain (PLS; HR 0.94; 95% CI 0.91-0.97) and RA total emptying fraction (HR 0.96; 95% CI 0.94-0.98) were significantly associated with combined end-points including death, clinical worsening and/or lung transplantation; RA volume and volume index showed marginal significant associations. RA area (HR 1.06; 95% CI 1.04-1.07), RA indexed area (HR 1.12; 95% CI 1.07-1.17) and RA PLS (HR 0.98; 95% CI 0.97-0.99) showed significant associations with mortality; RA total emptying fraction showed a marginal association. CONCLUSIONS Imaging-based RA assessment qualifies as a relevant prognostic marker in PH. RA area reliably predicts composite end-points and mortality, which underscores its clinical utility. RA PLS emerged as a promising imaging measure, but is currently limited by the number of studies and different acquisition methods.
Collapse
Affiliation(s)
- Manuel J Richter
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany.
| | - Federico Fortuni
- Department of Cardiology, San Giovanni Battista Hospital, Foligno, Italy; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michele D'Alto
- Cardiology, Second University of Naples, Monaldi Hospital, Naples, Italy
| | - Roberto Badagliacca
- Department of Cardiovascular and Respiratory Science, Sapienza University of Rome, Italy
| | - Nathan W Brunner
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arie P van Dijk
- Department of Cardiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philipp Douschan
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Henning Gall
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Lo Giudice
- National Pulmonary Hypertension Service, Department of Cardiology, Hammersmith Hospital, Imperial College NHS Trust, London, UK
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic Heidelberg GmbH at Heidelberg University Hospital, Heidelberg, Germany
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Luke Howard
- National Pulmonary Hypertension Service, Department of Cardiology, Hammersmith Hospital, Imperial College NHS Trust, London, UK
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Niels Stens
- Department of Cardiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Davide Stolfo
- Department of Cardiology, Azienda Sanitaria Universitaria Integrata, Trieste, Italy; Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dick H J Thijssen
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carmine Dario Vizza
- Department of Cardiovascular and Respiratory Science, Sapienza University of Rome, Italy
| | - Roham T Zamanian
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, California, USA
| | - Liang Zhong
- National Heart Centre Singapore, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Research on Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| | - Hossein A Ghofrani
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany; Department of Medicine, Imperial College London, London, UK
| | - Khodr Tello
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Cardio-Pulmonary Institute (CPI), Institute for Lung Health (ILH), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
34
|
Shahin Y, Alabed S, Alkhanfar D, Tschirren J, Rothman AMK, Condliffe R, Wild JM, Kiely DG, Swift AJ. Quantitative CT Evaluation of Small Pulmonary Vessels Has Functional and Prognostic Value in Pulmonary Hypertension. Radiology 2022; 305:431-440. [PMID: 35819325 PMCID: PMC9619204 DOI: 10.1148/radiol.210482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/11/2022]
Abstract
Background The in vivo relationship between peel pulmonary vessels, small pulmonary vessels, and pulmonary hypertension (PH) is not fully understood. Purpose To quantitatively assess peel pulmonary vessel volumes (PPVVs) and small pulmonary vessel volumes (SPVVs) as estimated from CT pulmonary angiography (CTPA) in different subtypes of PH compared with controls, their relationship to pulmonary function and right heart catheter metrics, and their prognostic value. Materials and Methods In this retrospective single-center study performed from January 2008 to February 2018, quantitative CTPA analysis of total SPVV (TSPVV) (0.4- to 2-mm vessel diameter) and PPVV (within 15, 30, and 45 mm from the lung surface) was performed. Results A total of 1823 patients (mean age, 69 years ± 13 [SD]; 1192 women [65%]) were retrospectively analyzed; 1593 patients with PH (mean pulmonary arterial pressure [mPAP], 43 mmHg ± 13 [SD]) were compared with 230 patient controls (mPAP, 19 mm Hg ± 3). The mean vessel volumes in pulmonary peels at 15-, 30-, and 45-mm depths were higher in pulmonary arterial hypertension (PAH) and PH secondary to lung disease compared with chronic thromboembolic PH (45-mm peel, mean difference: 6.4 mL [95% CI: 1, 11] [P < .001] vs 6.8 mL [95% CI: 1, 12] [P = .01]). Mean small vessel volumes at a diameter of less than 2 mm were lower in PAH and PH associated with left heart disease compared with controls (1.6-mm vessels, mean difference: -4.3 mL [95% CI: -8, -0.1] [P = .03] vs -6.8 mL [95% CI: -11, -2] [P < .001]). In patients with PH, the most significant positive correlation was noted with forced vital capacity percentage predicted (r = 0.30-0.40 [all P < .001] for TSPVVs and r = 0.21-0.25 [all P < .001] for PPVVs). Conclusion The volume of pulmonary small vessels is reduced in pulmonary arterial hypertension and pulmonary hypertension (PH) associated with left heart disease, with similar volume of peel vessels compared with controls. For chronic thromboembolic PH, the volume of peel vessels is reduced. In PH, small pulmonary vessel volume is associated with pulmonary function tests. Clinical trial registration no. NCT02565030 Published under a CC BY 4.0 license Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yousef Shahin
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Samer Alabed
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Dheyaa Alkhanfar
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Juerg Tschirren
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Alex M. K. Rothman
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Robin Condliffe
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - James M. Wild
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - David G. Kiely
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| | - Andrew J. Swift
- From the Department of Infection, Immunity and Cardiovascular Disease
(Y.S., S.A., D.A., A.M.K.R., J.M.W., D.G.K., A.J.S.) and INSIGNEO, Institute for
in silico Medicine (D.G.K., A.J.S.), University of Sheffield, Glossop Rd,
Sheffield S10 2JF, England; Department of Clinical Radiology, Sheffield
Teaching Hospitals, Sheffield, England (Y.S., S.A., A.J.S.); VIDA Diagnostics,
Coralville, Iowa (J.T.); and Sheffield Pulmonary Vascular Disease Unit, Royal
Hallamshire Hospital, Sheffield, England (R.C., D.G.K.)
| |
Collapse
|
35
|
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; 43:3618-3731. [PMID: 36017548 DOI: 10.1093/eurheartj/ehac237] [Citation(s) in RCA: 1476] [Impact Index Per Article: 492.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
36
|
Chen R, Liao H, Deng Z, He Z, Zheng Z, Lu J, Jiang M, Wu X, Guo W, Huang Z, Chen H, Hong C, Zhong N. Efficacy of computed tomography in diagnosing pulmonary hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:966257. [PMID: 36277788 PMCID: PMC9579375 DOI: 10.3389/fcvm.2022.966257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This study seeks to evaluate the diagnostic value of computed tomography (CT) in pulmonary hypertension. Method PubMed, Embase, Scopus, and Web of Science databases were searched to obtain the relevant English literature, and the retrieval time until June 2022. The quality of the included studies is evaluated using the QUADAS-2 tool. The quality of the included studies was assessed, followed by a meta-analysis, analyze heterogeneity, summarize sensitivity and specificity, draw the comprehensive subject working characteristics (sROC) curve, calculate the area under the curve and conduct subgroup analysis and sensitivity analysis to find the source of the heterogeneity. Results A total of 12 articles were included, all with pulmonary artery diameter/liter aortic diameter >1 or 1 as the diagnostic criteria for pulmonary hypertension, and a total of 1,959 patients were included. Deek’s funnel plot analysis suggests that there is no significant publication bias (P = 0.102). The combined sensitivity was 0.652 (95% CI: 0.579, 0.719), combined specificity was 0.830 (95% CI: 0.796, 0.880), positive likelihood ratio was 3.837 (95% CI: 3.215, 4.579), negative likelihood ratio was 0.419 (95% CI: 0.346, 0.507), diagnostic odds ratio was 9.157 (95% CI: 6.748, 12.427) and area under the summary receiver operating characteristic (SROC) curve was 0.84 (95% CI: 0.81, 0.87). Conclusion The CT examination of pulmonary artery diameter/aortic artery hypertension is worthy of clinical application.
Collapse
Affiliation(s)
- Riken Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huizhao Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenfeng He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenzhen Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianmin Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mei Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenliang Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zijie Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Chen
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China,Huimin Chen,
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Cheng Hong,
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Nanshan Zhong,
| |
Collapse
|
37
|
Sharkey MJ, Taylor JC, Alabed S, Dwivedi K, Karunasaagarar K, Johns CS, Rajaram S, Garg P, Alkhanfar D, Metherall P, O'Regan DP, van der Geest RJ, Condliffe R, Kiely DG, Mamalakis M, Swift AJ. Fully automatic cardiac four chamber and great vessel segmentation on CT pulmonary angiography using deep learning. Front Cardiovasc Med 2022; 9:983859. [PMID: 36225963 PMCID: PMC9549370 DOI: 10.3389/fcvm.2022.983859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Computed tomography pulmonary angiography (CTPA) is an essential test in the work-up of suspected pulmonary vascular disease including pulmonary hypertension and pulmonary embolism. Cardiac and great vessel assessments on CTPA are based on visual assessment and manual measurements which are known to have poor reproducibility. The primary aim of this study was to develop an automated whole heart segmentation (four chamber and great vessels) model for CTPA. Methods A nine structure semantic segmentation model of the heart and great vessels was developed using 200 patients (80/20/100 training/validation/internal testing) with testing in 20 external patients. Ground truth segmentations were performed by consultant cardiothoracic radiologists. Failure analysis was conducted in 1,333 patients with mixed pulmonary vascular disease. Segmentation was achieved using deep learning via a convolutional neural network. Volumetric imaging biomarkers were correlated with invasive haemodynamics in the test cohort. Results Dice similarity coefficients (DSC) for segmented structures were in the range 0.58-0.93 for both the internal and external test cohorts. The left and right ventricle myocardium segmentations had lower DSC of 0.83 and 0.58 respectively while all other structures had DSC >0.89 in the internal test cohort and >0.87 in the external test cohort. Interobserver comparison found that the left and right ventricle myocardium segmentations showed the most variation between observers: mean DSC (range) of 0.795 (0.785-0.801) and 0.520 (0.482-0.542) respectively. Right ventricle myocardial volume had strong correlation with mean pulmonary artery pressure (Spearman's correlation coefficient = 0.7). The volume of segmented cardiac structures by deep learning had higher or equivalent correlation with invasive haemodynamics than by manual segmentations. The model demonstrated good generalisability to different vendors and hospitals with similar performance in the external test cohort. The failure rates in mixed pulmonary vascular disease were low (<3.9%) indicating good generalisability of the model to different diseases. Conclusion Fully automated segmentation of the four cardiac chambers and great vessels has been achieved in CTPA with high accuracy and low rates of failure. DL volumetric biomarkers can potentially improve CTPA cardiac assessment and invasive haemodynamic prediction.
Collapse
Affiliation(s)
- Michael J. Sharkey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- 3D Imaging Lab, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Jonathan C. Taylor
- 3D Imaging Lab, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Kavitasagary Karunasaagarar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Radiology Department, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Christopher S. Johns
- Radiology Department, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Smitha Rajaram
- Radiology Department, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Dheyaa Alkhanfar
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Peter Metherall
- 3D Imaging Lab, Sheffield Teaching Hospitals NHSFT, Sheffield, United Kingdom
| | - Declan P. O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | | | - Robin Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - David G. Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Trust, Sheffield, United Kingdom
| | - Michail Mamalakis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J. Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Badagliacca R, Vizza CD, Lang I, Sadushi-Kolici R, Papa S, Manzi G, Filomena D, Ogawa A, Shimokawahara H, Matsubara H. Pulmonary pressure recovery in idiopathic, hereditary and drug and toxin-induced pulmonary arterial hypertension: Determinants and clinical impact. Vascul Pharmacol 2022; 146:107099. [PMID: 36058492 DOI: 10.1016/j.vph.2022.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Over the past two decades randomized controlled trials of combination treatments for Pulmonary Arterial Hypertension (PAH) have demonstrated improvements of clinical status but only modest reductions in mean pulmonary pressure (mPAP). Recent experiences with upfront combination treatments including parenteral prostacyclins have shown more substantial mPAP reductions, and have provided grounds for reconsiderations of treatment. OBJECTIVES To evaluate the possibility of achieving mPAP <25 mmHg with current treatments, its determinants and the prognostic impact of mPAP reduction. METHODS 267 consecutive idiopathic, hereditary and drug and toxin-induced PAH patients treated with targeted therapies from three expert centers were followed with periodic clinical and hemodynamic assessments for survival detection. RESULTS Fifty-four (20.2%) patients achieved a mPAP <25 mmHg over 58 months (IQR 27-90) of treatment. Determinants of mPAP <25 mmHg were mPAP at diagnosis (HR 0.96, 95C.I. 0.93-0.98, p = 0.002) and an upfront combination strategy (double oral combination: HR 2.3, 95C.I. 1.10-4.76, p = 0.02; one oral plus parenteral prostanoid: HR 3.6, 95C.I. 1.39-9.37, p = 0.008; triple combination employing parenteral prostanoids: HR 12.9, 95C.I. 4.9-33.2, p = 0.0001). Seventy-three patients (27.3%) died. Survival rates were 90%, 79%, 70%, 55%, and 42% at 1, 3, 5, 10, and 15 years, respectively. Mean PAP during follow-up, days from diagnosis to prostanoid initiation and prostanoid maximum dose emerged as independent predictors of survival (Uno-C-index: 0.85). A mPAP ≤35 mmHg during follow-up was identified as the best cutoff value for prediction of survival. CONCLUSIONS Reduction to a mean PAP ≤ 35 mmHg appears to be a meaningful treatment target in idiopathic, hereditary and drug and toxin-induced pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Roberto Badagliacca
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy.
| | - Carmine Dario Vizza
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Irene Lang
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Silvia Papa
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Giovanna Manzi
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Aiko Ogawa
- Department of Clinical Science, Okayama Medical Center, Japan
| | | | | |
Collapse
|
39
|
Tsarova K, Morgan AE, Melendres-Groves L, Ibrahim MM, Ma CL, Pan IZ, Hatton ND, Beck EM, Ferrel MN, Selzman CH, Ingram D, Alamri AK, Ratcliffe MB, Wilson BD, Ryan JJ. Imaging in Pulmonary Vascular Disease-Understanding Right Ventricle-Pulmonary Artery Coupling. Compr Physiol 2022; 12:3705-3730. [PMID: 35950653 DOI: 10.1002/cphy.c210017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of "uncoupling." Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.
Collapse
Affiliation(s)
- Katsiaryna Tsarova
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley E Morgan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Lana Melendres-Groves
- Division of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Majd M Ibrahim
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irene Z Pan
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA
| | - Nathan D Hatton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Emily M Beck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Meganne N Ferrel
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Dominique Ingram
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ayedh K Alamri
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Brent D Wilson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
40
|
Vos JL, Leiner T, van Dijk APJ, van der Zwaan HB, Sieswerda GT, Snijder RJ, Post MC, Vonk MC, van Leuven S, Vart P, Snoeren M, Hirsch A, El Messaoudi S, Nijveldt R, Driessen MMP. Right atrial and ventricular strain detects subclinical changes in right ventricular function in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 2022; 38:1699-1710. [PMID: 35190941 PMCID: PMC10509049 DOI: 10.1007/s10554-022-02555-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 01/29/2023]
Abstract
Right ventricular (RV) ejection fraction (EF) by cardiac magnetic resonance (CMR) correlates to outcome in precapillary pulmonary hypertension (pPH) patients, but is insensitive to early changes. Strain might provide incremental information. In this study, we compare right atrial (RA) and RV strain in pPH patients to healthy controls, and evaluate the prognostic value of strain in pPH. In this cross-sectional study, 45 pPH patients and 20 healthy controls underwent CMR, and feature-tracking derived RA and RV strain were evaluated. pPH patients had impaired RA reservoir and conduit strain, and RV longitudinal strain (LS), compared to healthy controls. In pPH patients with preserved RVEF (≥ 50%, n = 18), RA reservoir (35% ± 9 vs. 41% ± 6, p = 0.02) and conduit strain (16% ± 8 vs. 23% ± 5, p = 0.004), and RV-LS (-25% ± 4 vs. -31% ± 4, p < 0.001) remained impaired, compared to healthy controls. The association of strain with the primary endpoint (combination of all-cause death, lung transplantation, and heart failure hospitalization) was evaluated using a multivariable Cox regression model. RV-LS (HR 1.18, 95%-CI 1.04-1.34, p = 0.01) and RA strain (reservoir: HR 0.87, 95%-CI 0.80-0.94, p = 0.001; conduit: HR 0.85, 95%-CI 0.75-0.97, p = 0.02, booster: HR 0.81, 95%-CI 0.71-0.92, p = 0.001) were independent predictors of outcome, beyond clinical and imaging features. In conclusion, pPH patients have impaired RA strain and RV-LS, even when RVEF is preserved. In addition, RA strain and RV-LS were independent predictors of adverse prognosis. These results emphasize the incremental value of RA and RV strain analyses, to detect alterations in RV function, even before RVEF declines.
Collapse
Affiliation(s)
- J L Vos
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - T Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A P J van Dijk
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - H B van der Zwaan
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Tj Sieswerda
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R J Snijder
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - M C Post
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - M C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S van Leuven
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Vart
- Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Snoeren
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Hirsch
- Department of Cardiology and Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - R Nijveldt
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - M M P Driessen
- Department of Cardiology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Xu W, Sun X, Tao X, Wang D, Zhen Y, Liu X, An J, Xie W, Liu M. Characteristics of Right Ventricular Blood Flow in Patients With Chronic Thromboembolic Pulmonary Hypertension: An Analysis With 4-Dimensional Flow Cardiovascular Magnetic Resonance Imaging. Front Cardiovasc Med 2022; 9:900301. [PMID: 35783864 PMCID: PMC9240307 DOI: 10.3389/fcvm.2022.900301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBlood flow is closely related to function, but currently, the relationship of right ventricular (RV) blood flow components with RV function and hemodynamics in patients with chronic thromboembolic pulmonary hypertension (CTEPH) remains unclear. Our objective is to qualify RV function with 4-dimensional flow cardiovascular magnetic resonance (4D-Flow CMR) imaging and to investigate the correlation between RV flow and hemodynamics in patients with CTEPH.MethodsRetrospective enrollment included 67 patients with CTEPH (mean age 47.8±14.2 years, 47 men) who underwent CMR and right heart catheterization (RHC) within 2 days. RHC was used to evaluate hemodynamics. RV flow components including the percentages of direct flow (PDF), retained inflow (PRI), delayed ejection flow (PDEF), and residual volume (PRVo) were quantified on 4D-Flow sequence. RV functional metrics were determined with the CINE balanced steady-state free precession sequence. The sum of PDF and PDEF was compared with RV eject fraction (RVEF). The correlation among RV flow components, RV functional metrics and hemodynamics was analyzed with spearman correlation analysis.ResultsThe median (interquartile range) of RVEF, PDF, PDEF, PRI, and PRVo, respectively was 35.5% (18.2, 45.6%), 18% (8.4, 21.4%), 15.1% (13.5, 19.0%), 15.9% (13.8, 20.8%), and 50.6% (35.6, 60.4%). The sum of PDF and PDEF is 35.1% (24.8, 46.6%), which was similar to RVEF (z = 0.58, p = 0.561). PDF negatively correlated with right ventricular end-systolic volume index (RVESVI), right ventricular myocardial mass index (RVMI) and right ventricular global longitudinal strain (r = −0.61, −0.65, −0.64, p < 0.001). PRVo positively correlated with RVESVI and RVMI (r = 0.50, 0.58, p < 0.001). PDF negatively correlated with pulmonary vascular resistance (PVR) (r = −0.72, p < 0.001) while it positively correlated with cardiac output (CO) and cardiac index (CI) (r = 0.64 & 0.52, p < 0.001). PRVo positively correlated with mean pulmonary pressure and PVR (r = 0.57&0.54, p < 0.001). Total five patients died in the perioperative period. RVEF in the deceased patients was similar to survivors (z = −1.163, p = 0.092). In comparison with the survivors, RVPDF in the deceased patients significantly reduced (z = −2.158, p = 0.029) while RVPDEF, RVPRI, and RVPRVo in deceased patients were similar to survivors.Conclusion4D-Flow CMR can provide simultaneous quantification of RV function and hemodynamics in the assessment of CTEPH without breath-holding. The reduced PDF and increased PRVo were the main characteristics of RV flow in CTEPH.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xuebiao Sun
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xincao Tao
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dingyi Wang
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shanghai, China
| | - Wanmu Xie
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Min Liu
| |
Collapse
|
42
|
Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension. J Clin Med 2022; 11:jcm11102717. [PMID: 35628843 PMCID: PMC9143884 DOI: 10.3390/jcm11102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Magnetic resonance imaging (MRI) can be used to measure cardiac output (CO) non-invasively, which is a paramount parameter in pulmonary hypertension (PH) patients. We retrospectively compared stroke volume (SV) obtained with MRI (SVMRI) in six localisations against SV measured with thermodilution (TD) (SVTD) and against each other in 24 patients evaluated in our PH centre using Bland and Altman (BA) agreement analyses, linear correlation, and intraclass correlation (ICC). None of the six tested localisations for SVMRI reached the predetermined criteria for interchangeability with SVTD, with two standard deviations (2SD) of bias between 24.1 mL/beat and 31.1 mL/beat. The SVMRI methods yielded better agreement when compared against each other than the comparison between SVMRI and SVTD, with the best 2SD of bias being 13.8 mL/beat. The inter-observer and intra-observer ICCs for COMRI were excellent (inter-observer ICC between 0.889 and 0.983 and intra-observer ICC between 0.991 and 0.999). We could not confirm the interchangeability of SVMRI with SVTD based on the predetermined interchangeability criteria. The lack of agreement between MRI and TD might be explained because TD is less precise than previously thought. We evaluated a new method to estimate CO through the pulmonary circulation (COp) in PH patients that may be more precise than the previously tested methods.
Collapse
|
43
|
Alabed S, Uthoff J, Zhou S, Garg P, Dwivedi K, Alandejani F, Gosling R, Schobs L, Brook M, Shahin Y, Capener D, Johns CS, Wild JM, Rothman AMK, van der Geest RJ, Condliffe R, Kiely DG, Lu H, Swift AJ. Machine learning cardiac-MRI features predict mortality in newly diagnosed pulmonary arterial hypertension. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2022; 3:265-275. [PMID: 36713008 PMCID: PMC9708011 DOI: 10.1093/ehjdh/ztac022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/19/2022] [Indexed: 02/01/2023]
Abstract
Aims Pulmonary arterial hypertension (PAH) is a rare but serious disease associated with high mortality if left untreated. This study aims to assess the prognostic cardiac magnetic resonance (CMR) features in PAH using machine learning. Methods and results Seven hundred and twenty-three consecutive treatment-naive PAH patients were identified from the ASPIRE registry; 516 were included in the training, and 207 in the validation cohort. A multilinear principal component analysis (MPCA)-based machine learning approach was used to extract mortality and survival features throughout the cardiac cycle. The features were overlaid on the original imaging using thresholding and clustering of high- and low-risk of mortality prediction values. The 1-year mortality rate in the validation cohort was 10%. Univariable Cox regression analysis of the combined short-axis and four-chamber MPCA-based predictions was statistically significant (hazard ratios: 2.1, 95% CI: 1.3, 3.4, c-index = 0.70, P = 0.002). The MPCA features improved the 1-year mortality prediction of REVEAL from c-index = 0.71 to 0.76 (P ≤ 0.001). Abnormalities in the end-systolic interventricular septum and end-diastolic left ventricle indicated the highest risk of mortality. Conclusion The MPCA-based machine learning is an explainable time-resolved approach that allows visualization of prognostic cardiac features throughout the cardiac cycle at the population level, making this approach transparent and clinically interpretable. In addition, the added prognostic value over the REVEAL risk score and CMR volumetric measurements allows for a more accurate prediction of 1-year mortality risk in PAH.
Collapse
Affiliation(s)
| | - Johanna Uthoff
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Shuo Zhou
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Pankaj Garg
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK,Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rebecca Gosling
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Lawrence Schobs
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Martin Brook
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Yousef Shahin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Dave Capener
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Christopher S Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK,Department of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK,INSIGNEO, Institute for in silico medicine, University of Sheffield, UK
| | - Alexander M K Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Robin Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK,INSIGNEO, Institute for in silico medicine, University of Sheffield, UK,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | | |
Collapse
|
44
|
Alenezi F, Covington TA, Mukherjee M, Mathai SC, Yu PB, Rajagopal S. Novel Approaches to Imaging the Pulmonary Vasculature and Right Heart. Circ Res 2022; 130:1445-1465. [PMID: 35482838 PMCID: PMC9060389 DOI: 10.1161/circresaha.121.319990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increased appreciation for the importance of the right heart and pulmonary circulation in several disease states across the spectrum of pulmonary hypertension and left heart failure. However, assessment of the structure and function of the right heart and pulmonary circulation can be challenging, due to the complex geometry of the right ventricle, comorbid pulmonary airways and parenchymal disease, and the overlap of hemodynamic abnormalities with left heart failure. Several new and evolving imaging modalities interrogate the right heart and pulmonary circulation with greater diagnostic precision. Echocardiographic approaches such as speckle-tracking and 3-dimensional imaging provide detailed assessments of regional systolic and diastolic function and volumetric assessments. Magnetic resonance approaches can provide high-resolution views of cardiac structure/function, tissue characterization, and perfusion through the pulmonary vasculature. Molecular imaging with positron emission tomography allows an assessment of specific pathobiologically relevant targets in the right heart and pulmonary circulation. Machine learning analysis of high-resolution computed tomographic lung scans permits quantitative morphometry of the lung circulation without intravenous contrast. Inhaled magnetic resonance imaging probes, such as hyperpolarized 129Xe magnetic resonance imaging, report on pulmonary gas exchange and pulmonary capillary hemodynamics. These approaches provide important information on right ventricular structure and function along with perfusion through the pulmonary circulation. At this time, the majority of these developing technologies have yet to be clinically validated, with few studies demonstrating the utility of these imaging biomarkers for diagnosis or monitoring disease. These technologies hold promise for earlier diagnosis and noninvasive monitoring of right heart failure and pulmonary hypertension that will aid in preclinical studies, enhance patient selection and provide surrogate end points in clinical trials, and ultimately improve bedside care.
Collapse
Affiliation(s)
- Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | | - Steve C. Mathai
- Johns Hopkins Division of Pulmonary and Critical Care Medicine, Baltimore, MD
| | - Paul B. Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
45
|
Alandejani F, Alabed S, Garg P, Goh ZM, Karunasaagarar K, Sharkey M, Salehi M, Aldabbagh Z, Dwivedi K, Mamalakis M, Metherall P, Uthoff J, Johns C, Rothman A, Condliffe R, Hameed A, Charalampoplous A, Lu H, Plein S, Greenwood JP, Lawrie A, Wild JM, de Koning PJH, Kiely DG, Van Der Geest R, Swift AJ. Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. J Cardiovasc Magn Reson 2022; 24:25. [PMID: 35387651 PMCID: PMC8988415 DOI: 10.1186/s12968-022-00855-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality.
Collapse
Affiliation(s)
- Faisal Alandejani
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ze Ming Goh
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Kavita Karunasaagarar
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Sharkey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mahan Salehi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ziad Aldabbagh
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Krit Dwivedi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Michail Mamalakis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Pete Metherall
- Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Johanna Uthoff
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Chris Johns
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Abdul Hameed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Athanasios Charalampoplous
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Haiping Lu
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre (MCRC) &, Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, UK
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre (MCRC) &, Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Patrick J H de Koning
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - David G Kiely
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rob Van Der Geest
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
46
|
Alkhanfar D, Shahin Y, Alandejani F, Dwivedi K, Alabed S, Johns C, Lawrie A, Thompson AAR, Rothman AMK, Tschirren J, Uthoff JM, Hoffman E, Condliffe R, Wild JM, Kiely DG, Swift AJ. Severe pulmonary hypertension associated with lung disease is characterised by a loss of small pulmonary vessels on quantitative computed tomography. ERJ Open Res 2022; 8:00503-2021. [PMID: 35586449 PMCID: PMC9108962 DOI: 10.1183/23120541.00503-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background Pulmonary hypertension (PH) in patients with chronic lung disease (CLD) predicts reduced functional status, clinical worsening and increased mortality, with patients with severe PH-CLD (≥35 mmHg) having a significantly worse prognosis than mild to moderate PH-CLD (21-34 mmHg). The aim of this cross-sectional study was to assess the association between computed tomography (CT)-derived quantitative pulmonary vessel volume, PH severity and disease aetiology in CLD. Methods Treatment-naïve patients with CLD who underwent CT pulmonary angiography, lung function testing and right heart catheterisation were identified from the ASPIRE registry between October 2012 and July 2018. Quantitative assessments of total pulmonary vessel and small pulmonary vessel volume were performed. Results 90 patients had PH-CLD including 44 associated with COPD/emphysema and 46 with interstitial lung disease (ILD). Patients with severe PH-CLD (n=40) had lower small pulmonary vessel volume compared to patients with mild to moderate PH-CLD (n=50). Patients with PH-ILD had significantly reduced small pulmonary blood vessel volume, compared to PH-COPD/emphysema. Higher mortality was identified in patients with lower small pulmonary vessel volume. Conclusion Patients with severe PH-CLD, regardless of aetiology, have lower small pulmonary vessel volume compared to patients with mild-moderate PH-CLD, and this is associated with a higher mortality. Whether pulmonary vessel changes quantified by CT are a marker of remodelling of the distal pulmonary vasculature requires further study.
Collapse
Affiliation(s)
- Dheyaa Alkhanfar
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Yousef Shahin
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Faisal Alandejani
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Krit Dwivedi
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Chris Johns
- Dept of Clinical Radiology, Sheffield Teaching Hospitals, Sheffield, UK
| | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - A A Roger Thompson
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alexander M K Rothman
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Johanna M Uthoff
- Dept of Computer Science, University of Sheffield, Sheffield, UK
| | - Eric Hoffman
- Dept of Radiology, University of Iowa, Iowa City, IA, USA
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.,These authors contributed equally
| | - Andrew J Swift
- Dept of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO, Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.,These authors contributed equally
| |
Collapse
|
47
|
Lichtblau M, Piccari L, Ramjug S, Bokan A, Lechartier B, Jutant EM, Barata M, Garcia AR, Howard LS, Adir Y, Delcroix M, Jara-Palomares L, Bertoletti L, Sitbon O, Ulrich S, Vonk Noordegraaf A. ERS International Congress 2021: highlights from the Pulmonary Vascular Diseases Assembly. ERJ Open Res 2022; 8:00665-2021. [PMID: 35615412 PMCID: PMC9125041 DOI: 10.1183/23120541.00665-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
This article aims to summarise the latest research presented at the virtual 2021 European Respiratory Society (ERS) International Congress in the field of pulmonary vascular disease. In light of the current guidelines and proceedings, knowledge gaps are addressed and the newest findings of the various forms of pulmonary hypertension as well as key points on pulmonary embolism are discussed. Despite the comprehensive coverage of the guidelines for pulmonary embolism at previous conferences, discussions about controversies in the diagnosis and treatment of this condition in specific cases were debated and are addressed in the first section of this article. We then report on an interesting pro-con debate about the current classification of pulmonary hypertension. We further report on presentations on Group 3 pulmonary hypertension, with research exploring pathogenesis, phenotyping, diagnosis and treatment; important contributions on the diagnosis of post-capillary pulmonary hypertension are also included. Finally, we summarise the latest evidence presented on pulmonary vascular disease and COVID-19 and a statement on the new imaging guidelines for pulmonary vascular disease from the Fleischner Society.
Collapse
Affiliation(s)
- Mona Lichtblau
- Dept of Pneumology, University Hospital Zürich, Zürich, Switzerland
- These authors contributed equally
| | - Lucilla Piccari
- Pulmonary Hypertension Unit, Dept of Pulmonary Medicine, Hospital del Mar, Barcelona, Spain
- These authors contributed equally
| | - Sheila Ramjug
- Dept of Respiratory Medicine, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Aleksandar Bokan
- SLK Lungenklinik Loewenstein, Medical Clinic I: Pneumology, Respiratory Medicine and Intensive Medicine, Loewenstein, Germany
| | - Benoit Lechartier
- Service de Pneumologie et Soins Intensifs, Hôpital Bicêtre, Assistance Publique–Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Pulmonary Division, Lausanne University Hospital, Lausanne, Switzerland
| | - Etienne-Marie Jutant
- Université de Poitiers, CHU de Poitiers, Service de Pneumologie, Institut National de la Santé et de la Recherche Médicale CIC 1402, Poitiers, France
| | | | - Agustin Roberto Garcia
- Pulmonary Hypertension Unit, Dept of Pulmonary Medicine, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Luke S. Howard
- National Pulmonary Hypertension Service, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Yochai Adir
- Pulmonology Division, Lady Davis-Carmel Medical Center, Haifa, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - Marion Delcroix
- Clinical Dept of Respiratory Diseases, University Hospitals of Leuven and Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Dept of Chronic Diseases and Metabolism (CHROMETA), KU Leuven – University of Leuven, Leuven, Belgium
| | - Luis Jara-Palomares
- Medical Surgical Unit of Respiratory Diseases, Instituto de Biomedicina de Sevilla (IBiS). Hospital Universitario Virgen del Rocio, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Laurent Bertoletti
- CHU de St-Etienne, Service de Médecine Vasculaire et Thérapeutique; Institut National de la Santé et de la Recherche Médicale, UMR1059, Université Jean-Monnet; Institut National de la Santé et de la Recherche Médicale CIC-1408, CHU de Saint-Etienne; INNOVTE, CHU de Saint-Etienne, Saint-Etienne, France
| | - Olivier Sitbon
- Service de Pneumologie et Soins Intensifs, Hôpital Bicêtre, Assistance Publique–Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Unité Mixte de Recherche S999, Hôpital Marie Lannelongue–Institut National de la Santé et de la Recherche Médicale, Le Plessis-Robinson, France
| | - Silvia Ulrich
- Dept of Pneumology, University Hospital Zürich, Zürich, Switzerland
| | - Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept of Pulmonary Medicine, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Xu J, Desmond EL, Wong TC, Neill CG, Simon MA, Brigham JC. Right Ventricular Shape Feature Quantification for Evaluation of Pulmonary Hypertension: Feasibility and Preliminary Associations With Clinical Outcome Submitted for Publication. J Biomech Eng 2022; 144:1120496. [PMID: 34549255 DOI: 10.1115/1.4052495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/08/2022]
Abstract
This study aimed to demonstrate feasibility of statistical shape analysis techniques to identify distinguishing features of right ventricle (RV) shape as related to hemodynamic variables and outcome data in pulmonary hypertension (PH). Cardiovascular magnetic resonance images were acquired from 50 patients (33 PH, 17 non-PH). Contemporaneous right heart catheterization data were collected for all individuals. Outcome was defined by all-cause mortality and hospitalization for heart failure. RV endocardial borders were manually segmented, and three-dimensional surfaces reconstructed at end diastole and end systole. Registration and harmonic mapping were then used to create a quantitative correspondence between all RV surfaces. Proper orthogonal decomposition was performed to generate modes describing RV shape features. The first 15 modes captured over 98% of the total modal energy. Two shape modes, 8 (free wall expansion) and 13 (septal flattening), stood out as relating to PH state (mode 13: r = 0.424, p = 0.002; mode 8: r = 0.429, p = 0.002). Mode 13 was significantly correlated with outcome (r = 0.438, p = 0.001), more so than any hemodynamic variable. Shape analysis techniques can derive unique RV shape descriptors corresponding to specific, anatomically meaningful features. The modes quantify shape features that had been previously only qualitatively related to PH progression. Modes describing relevant RV features are shown to correlate with clinical measures of RV status, as well as outcomes. These new shape descriptors lay the groundwork for a noninvasive strategy for identification of failing RVs, beyond what is currently available to clinicians.
Collapse
Affiliation(s)
- Jing Xu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | | | - Timothy C Wong
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine Cardiovascular Magnetic Resonance Center, UPMC Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Colin G Neill
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240
| | - Marc A Simon
- Department of Medicine/Division of Cardiology, University of California, San Francisco, CA 94143
| | - John C Brigham
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
49
|
Schiebler ML, Fain S, van Beek E. Vascular imaging of the lung: perspectives on current imaging methods. Br J Radiol 2022; 95:20200759. [PMID: 32795175 PMCID: PMC9153715 DOI: 10.1259/bjr.20200759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This commentary will discuss the use of advanced non-invasive imaging methodology for the pulmonary vascular system with special attention to a rubric for the imaging and clinical team to use for any particular clinical situation.
Collapse
Affiliation(s)
- Mark L. Schiebler
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean Fain
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edwin van Beek
- SINAPSE Chair of Clinical Radiology, Director Edinburgh Imaging facility QMRI, Honorary Consultant Radiologist, NHS Lothian Health Board, CO.19 Edinburgh Imaging, Queen’s Medical Research Institute, Edinburgh Bioquarter, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
50
|
Alatlı T, Köseoğlu C. Significance of pPTT-TAPSE and Mortality Prediction for Acute Pulmonary Thromboembolism in Emergency Department. EURASIAN JOURNAL OF EMERGENCY MEDICINE 2022. [DOI: 10.4274/eajem.galenos.2021.91259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|