1
|
Gulia A, Srivastava M, Kumar P. Elevated troponin levels as a predictor of mortality in patients with acute stroke: a systematic review and meta-analysis. Front Neurol 2024; 15:1351925. [PMID: 38590721 PMCID: PMC10999611 DOI: 10.3389/fneur.2024.1351925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Background and Aim The prognostic potential of cardiac troponin (cTn) in acute stroke patients has been a subject of ongoing debate. Our objective was to provide a comprehensive evidence for predicting mortality in acute stroke patients by using the elevated troponin levels. Methods We conducted an extensive literature search, including PubMed, EMbase, and Trip Databases, covering studies published up to September 30, 2023. We computed risk ratios (RR) with 95% confidence intervals (CIs), performed sensitivity analysis, and conducted trial sequential analysis (TSA). Results In total, 53 studies were analyzed, with 37 focusing on acute ischemic stroke (AIS), 11 on subarachnoid hemorrhage (SAH), and 7 on Intracerebral hemorrhage (ICH). Elevated cTn levels were significantly showed a higher predictive risk for In-hospital mortality in both AIS (RR=3.80, 95% CI; 2.82 to 5.12) as well as SAH (RR=2.23, 95% CI; 1.64 to 3.02). However, no significant predictive risk between elevated cTn levels and in-hospital mortality for ICH patients (RR=1.13, 95% CI: 0.46 to 2.79). A similar pattern was observed for elevated cTn levels, indicating an increased risk of last follow-up mortality for AIS (RR=2.41, 95% CI: 1.98 to 2.93) and SAH (RR=3.08, 95% CI: 2.25 to 4.21). Conclusion Elevated troponin levels can serve as a promising predictive marker for both in-hospital and last follow-up mortality in AIS and SAH patients but not in ICH patients. Further prospective studies are needed to validate our findings along with exploring the preventive management of mortality in acute stroke settings.
Collapse
Affiliation(s)
| | | | - Pradeep Kumar
- Clinical Research Unit, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Jia Y, Lin F, Li R, Chen Y, Yang J, Han H, Wang K, Yuan K, Zhao Y, Lu J, Li T, Nie Z, Zhou Y, Shi G, Li Y, Zhao Y, Chen X, Wang S. Insular cortex Hounsfield units predict postoperative neurocardiogenic injury in patients with aneurysmal subarachnoid hemorrhage. Ann Clin Transl Neurol 2023; 10:2373-2385. [PMID: 37853930 PMCID: PMC10723248 DOI: 10.1002/acn3.51926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Our study aims to investigate the association between the Hounsfield unit (Hu) value of the insular cortex (IC) during emergency admission and the subsequent occurrence of post-operative neurocardiogenic injury (NCI) among patients afflicted with aneurysmal subarachnoid hemorrhage (aSAH). METHODS Patients baseline characteristics were juxtaposed between those with and without NCI. The significant variables were incorporated into a multivariable stepwise logistic regression model. Receiver operating characteristic (ROC) curves were drafted for each significant variable, yielding cutoff values and the area under the curve (AUC). Subgroup and sensitivity analyses were performed to assess the predictive performance across various cohorts and ascertain result stability. Propensity score matching (PSM) was ultimately employed to redress any baseline characteristic disparities. RESULTS Patients displaying a right IC Hu value surpassing 28.65 exhibited an escalated risk of postoperative NCI upon confounder adjustment (p < 0.001). The ROC curve eloquently manifested the predictive capacity of right IC Hu in relation to NCI (AUC = 0.650, 95%CI, 0.591-0.709, p < 0.001). Further subgroup analysis revealed significant interactions between right IC Hu and factors such as age, history of heart disease, and Graeb 5-12 score. Sensitivity analysis further upheld the results' significant (p = 0.002). The discrepancy in NCI incidence between the two groups, both prior (p < 0.002) and post (p = 0.039) PSM, exhibited statistical significance. After PSM implementation, the likelihood of NCI displayed an ascending trend with increasing right IC Hu values, from the Hu1 cohort onward, receding post the Hu4 cohort. CONCLUSION This study definitively establishes an elevated right IC Hu value in the early stages of emergency admission as an autonomous predictor for ensuing NCI subsequent to aSAH.
Collapse
Affiliation(s)
- Yitong Jia
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Fa Lin
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Runting Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Yu Chen
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Jun Yang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Heze Han
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Ke Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Kexin Yuan
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Yang Zhao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryPeking University International HospitalBeijingChina
| | - Junlin Lu
- Department of NeurosurgeryWest China Hospital, Sichuan UniversitySichuanChina
| | - Tu Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Zhaobo Nie
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Beijing Shunyi HospitalShunyi Teaching Hospital of Capital Medical UniversityBeijingPeople's Republic of China
| | - Yunfan Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Guangzhi Shi
- Department of Critical Care MedicineBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Youxiang Li
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yuanli Zhao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Xiaolin Chen
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| | - Shuo Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseaseBeijingChina
| |
Collapse
|
3
|
Deenen S, Ramnarain D, Pouwels S. Subarachnoidal hemorrhage related cardiomyopathy: an overview of Tako-Tsubo cardiomyopathy and related cardiac syndromes. Expert Rev Cardiovasc Ther 2022; 20:733-745. [PMID: 36124824 DOI: 10.1080/14779072.2022.2125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) is caused by a ruptured intracranial aneurysm leading to acute extravasation of blood into the subarachnoid space. SAH has an incidence of 6.3 per 100,000 persons per year in Europe and accounts for 5% of all strokes. SAH occurs at a relatively young age and has poor clinical outcomes and high mortality rates. Cardiac syndromes are regularly seen in patients with acute neurologic disease including SAH. These cardiac complications of SAH are associated with increased morbidity and mortality and present in a large variety and severity. AREAS COVERED The main goal of this review is to describe the SAH-related cardiac syndromes. Secondly, we will provide an overview of the underlying pathophysiology regarding the development of cardiac syndromes. Thirdly, we will describe the impact of cardiac syndromes on patient outcome. EXPERT OPINION Of all neurology patients, SAH patients have the highest risk of developing takotsubo syndrome (TTS), occurring in about 0.8-30% of patients. Both TTS and neurogenic stunned myocardium have many similarities on echocardiographic evaluation. In European Cardiology consensus, SAH is recognized as a primary cause of TTS.
Collapse
Affiliation(s)
- Susan Deenen
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Dharmanand Ramnarain
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of Intensive Care Medicine, Saxenburgh Medical Center, Hardenberg, The Netherlands
| | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands.,Department of General, Abdominal and Minimally Invasive Surgery, Helios Klinikum, Krefeld, Germany
| |
Collapse
|
4
|
Evaluation of Cardiac Troponin and Adverse Outcomes After Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Neurocrit Care 2021; 36:650-661. [PMID: 34686997 DOI: 10.1007/s12028-021-01368-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Several studies have demonstrated the usefulness of cardiac troponin I (cTn) levels in predicting adverse clinical outcomes of patients with anerusmal subarachnoid hemorrhage (aSAH). However, it remains unclear whether cTn levels can be a useful factor in predicting adverse neurologic and cardiovascular outcomes regarding follow-up duration. The study aimed to evaluate the clinical value of cTn elevation among patients with aSAH. A systematic literature search was performed in PubMed and Cochrane to collect original studies that compared the adverse outcomes in patients with aSAH who had elevated cTn levels and those who did not have elevated cTn levels. Data on patient demographics and outcome measurements (mortality, major disability, delayed cerebral ischemia, cardiac dysfunction, and pulmonary edema) were extracted. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were computed by fitting a random effects model. A total of 4,117 patients with aSAH were included in the meta-analysis. Elevated cTn levels was associated with a higher all-cause mortality (OR 3.64; 95% CI 2.68-4.94; I2 = 22.05%), poor major disability (OR 2.27; 95% CI 1.5-3.37; I2 = 52.07%), delayed cerebral ischemia (OR 2.10; 95% CI 1.46-3.03; I2 = 13.80%), cardiac dysfunction (OR 9.20; 95% CI 4.31-19.60; I2 = 39.89), and pulmonary edema (OR 10.32; 95% CI 5.64-18.90; I2 = 0.00%). Additionally, elevated cTn levels was associated with higher mortality in prospective studies (OR 3.66; 95% CI 2.61-5.14) as well as when compared with studies with short-term and long-term follow-up periods. Patients with aSAH who had elevated cTn levels also tended to experience poor short-term major disability (OR 2.36; 95% CI 1.48-3.76). Among patients with aSAH, elevated cTn levels was associated with higher mortality and adverse neurologic and cardiovascular outcomes. Given its clinical value, cardiac troponin levels may be included in the assessment of patients withs aSAH.
Collapse
|
5
|
Parasram M, Parikh NS, Merkler AE, Ch’ang JH, Navi BB, Kamel H, Zhang C, Murthy SB. Long-Term Risk of Ischemic Stroke among Elderly Survivors of Non-Traumatic Subarachnoid Hemorrhage. Cerebrovasc Dis 2021; 51:14-19. [PMID: 34265782 PMCID: PMC8760353 DOI: 10.1159/000517416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Non-traumatic subarachnoid hemorrhage (SAH) is associated with poor long-term functional outcomes, but the risk of ischemic stroke among SAH survivors is poorly understood. OBJECTIVES The aim of this study was to evaluate the risk of ischemic stroke among survivors of SAH. METHODS We performed a retrospective cohort study using claims data from Medicare beneficiaries from 2008 to 2015. The exposure was a diagnosis of SAH, while the outcome was an acute ischemic stroke, both identified using previously validated ICD-9-CM diagnosis codes. We used Cox regression analysis adjusting for demographics and stroke risk factors to evaluate the association between SAH and long-term risk of ischemic stroke. RESULTS Among 1.7 million Medicare beneficiaries, 912 were hospitalized with non-traumatic SAH. During a median follow-up of 5.2 years (IQR, 2.7-6.7), the cumulative incidence of ischemic stroke was 22 per 1,000 patients per year among patients with SAH, and 7 per 1,000 patients per year in those without SAH. In adjusted Cox models, SAH was associated with an increased risk of ischemic stroke (HR, 2.0; 95% confidence interval, 1.4-2.8) as compared to beneficiaries without SAH. Similar results were obtained in sensitivity analyses, when treating death as a competing risk (sub HR, 3.0; 95% CI, 2.8-3.3) and after excluding ischemic stroke within 30 days of SAH discharge (HR, 1.5; 95% CI, 1.1-2.3). CONCLUSIONS In a large, heterogeneous national cohort of elderly patients, survivors of SAH had double the long-term risk of ischemic stroke. SAH survivors should be closely monitored and risk stratified for ischemic stroke.
Collapse
Affiliation(s)
- Melvin Parasram
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Neal S. Parikh
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander E. Merkler
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Judy H. Ch’ang
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Babak B. Navi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cenai Zhang
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Santosh B. Murthy
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Lin F, Chen Y, He Q, Zeng C, Zhang C, Chen X, Zhao Y, Wang S, Zhao J. Prognostic Value of Elevated Cardiac Troponin I After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:677961. [PMID: 34135855 PMCID: PMC8200557 DOI: 10.3389/fneur.2021.677961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
Object: Patients with aneurysmal subarachnoid hemorrhage (aSAH) have an increased incidence of cardiac events and short-term unfavorable neurological outcomes during the acute phase of bleeding. We studied whether troponin I elevation after ictus can predict future major adverse cardiac events (MACEs) and long-term neurological outcomes after 2 years. Methods: Consecutive aSAH patients within 3 days of bleeding were eligible for review from a prospective observational cohort (ClinicalTrials.gov Identifier: NCT04785976). Potential predictors of future MACEs and unfavorable long-term neurological outcomes were calculated by Cox and logistic regression analyses. Additional Kaplan–Meier curves were performed. Results: A total of 213 patients were enrolled with an average follow-up duration of 34.3 months. Individuals were divided into two groups: elevated cTnI group and unelevated cTnI group. By the last available follow-up, 20 patients had died, with an overall all-cause mortality rate of 9.4% and an annual all-cause mortality rate of 3.8%. Patients with elevated cTnI had a significantly higher risk of future MACEs (10.6 vs. 2.1%, p = 0.024, and 95% CI: 1.256–23.875) and unfavorable neurological outcomes at discharge, 3-month, 1-, 2-years, and last follow-up (p = 0.001, p < 0.001, p = 0.001, p < 0.001, and p < 0.001, respectively). In the Cox analysis for future MACE, elevated cTnI was the only independent predictor (HR = 5.980; 95% CI: 1.428–25.407, and p = 0.014). In the multivariable logistic analysis for unfavorable neurological outcomes, peak cTnI was significant (OR = 2.951; 95% CI: 1.376–6.323; p = 0.005). Kaplan–Meier analysis indicated that the elevated cTnI was correlated with future MACE (log-rank test, p = 0.007) and subsequent death (log-rank test, p = 0.004). Conclusion: cTnI elevation after aSAH could predict future MACEs and unfavorable neurological outcomes.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Akkermans A, Vernooij LM, van Klei WA, van Waes JA. Postoperative visits by dedicated anesthesiologists in patients with elevated troponin: a retrospective cohort study evaluating postoperative care utility and early detection of complications. Perioper Med (Lond) 2020; 9:22. [PMID: 32695315 PMCID: PMC7364643 DOI: 10.1186/s13741-020-00152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background An elevated cardiac troponin level after noncardiac surgery is associated with both morbidity and mortality. Guidelines suggest routine troponin monitoring in high-risk patients. We implemented a dedicated anesthesia team to conduct follow-up on patients with postoperative troponin elevation. We hypothesized that these visits would facilitate early detection of complications. Therefore, the aim of this study was to evaluate the effect of postoperative visits by dedicated anesthesiologists on early detection of complications and care utility. Methods This retrospective observational study included patients aged ≥ 60 years with an elevated troponin within the first 3 days after noncardiac surgery. Troponin elevation was detected by routine biomarker monitoring. The primary outcome was early detected myocardial infarctions by the dedicated anesthesiologist. Other outcomes were overall detected complications, additional diagnostic tests and treatment advised by the anesthesiologist, consultation of another medical specialist, and advised postoperative follow-up at the outpatient cardiac clinic within 1 week after surgery. Results Of the 811 patients, 509 (63%) received a postoperative consultation by the anesthesiologist. Anesthesiologists were involved in the early detection of 59% of all myocardial infarctions and in 12% of all complications. Besides cardiac ischemia, patients were also often diagnosed with noncardiac complications, including respiratory failure (8.9%), pneumonia (13.2%), and acute kidney injury (17.5%) within 1 week after surgery. In 75% of patients, anesthesiologists ordered additional diagnostics, most frequently existing of electrocardiograms and additional cardiac enzyme testing. Additionally, change in treatment was advised, most often a medication change, in 16% of patients. Conclusions Standard consultation of a dedicated anesthesiologist resulted in an early detection of 59% of all myocardial infarctions and involved a change in treatment in a considerable number of patients with postoperative troponin elevation. Whether this may improve patient outcomes remains to be elucidated.
Collapse
Affiliation(s)
- Annemarie Akkermans
- Department of Anesthesiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette M Vernooij
- Department of Anesthesiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wilton A van Klei
- Department of Anesthesiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Judith A van Waes
- Department of Anesthesiology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|