1
|
Stürzebecher PE, Laufs U. Proprotein convertase subtilisin/kexin type 9-inhibition across different patient populations. Curr Opin Lipidol 2024; 35:179-186. [PMID: 38547336 DOI: 10.1097/mol.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Monoclonal antibodies (mAb) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have been established in cardiovascular risk prevention. The purpose of this review is to summarize the effects of PCSK9 inhibitors across different patient populations. RECENT FINDINGS Long-term data on the use of evolocumab and alirocumab shows persisting low- density lipoprotein cholesterol (LDL-C) lowering and good tolerability. PCSK9 inhibitors are effective and safe in both sexes, in pediatric patients as well as in the elderly. Initiation of PCSK9 mAb during acute myocardial infarction is safe and leads to beneficial morphological plaque changes. The PCSK9 inhibitors evolocumab, alirocumab and inclisiran lower LDL-C in patients with heterozygous familial hypercholesterolemia (FH), while the response of patients with homozygous FH is heterogeneous. New areas of application beyond lipid lowering are currently investigated. SUMMARY PCSK9 inhibitors are safe, well tolerated, and effective in primary and secondary prevention in a wide range of patient populations.
Collapse
|
2
|
Mercep I, Strikic D, Hrabac P, Pecin I, Reiner Ž. PCSK9 inhibition: from effectiveness to cost-effectiveness. Front Cardiovasc Med 2024; 11:1339487. [PMID: 38988669 PMCID: PMC11234837 DOI: 10.3389/fcvm.2024.1339487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Dyslipidaemia is a complex disorder characterised by abnormal lipid levels in the blood, including cholesterol and triglycerides, and plays an important role in the development of atherosclerotic cardiovascular disease. Most risk factors for cardiovascular disease are modifiable, and dyslipidaemia is a key factor among them. It can result from a combination of genetic and environmental factors. A distinction is made between primary dyslipidaemia, which is mainly caused by inherited genetic changes, and secondary dyslipidaemia, which is due to underlying diseases or certain medications. The treatment of dyslipidaemia has evolved over the years. In the past, statins were the first choice, but newer drugs, such as proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors, have gained prominence due to their effectiveness in lowering lipids. Although recent guidelines recommend PCSK9 inhibitors for high-risk patients and patients who cannot tolerate statins, their widespread use is limited because of cost. Several meta-analyses have confirmed the efficacy and safety of PCSK9 inhibitors and have shown a significant reduction in low-density lipoprotein (LDL) cholesterol levels. However, the long-term side effects and interactions with other risk factors for cardiovascular disease remain uncertain. In addition, cost-effectiveness analyses have shown mixed results, with some countries considering PCSK9 inhibitors to be cost-effective for certain patient groups, while others consider them less economical. Meanwhile, initial data from patients using PCSK9 inhibitors support the results of the clinical trials. To summarise, PCSK9 inhibitors represent a revolutionary solution for lowering LDL cholesterol, but their cost-effectiveness remains controversial. Despite the controversy, they offer clear benefits for high-risk patients and should therefore be considered in the treatment of dyslipidaemia.
Collapse
Affiliation(s)
- Iveta Mercep
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dominik Strikic
- Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Pero Hrabac
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Pecin
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
3
|
Ai JY, Zhao PC, Zhang W, Rao GW. Research Progress in the Clinical Treatment of Familial Hypercholesterolemia. Curr Med Chem 2024; 31:1082-1106. [PMID: 36733200 DOI: 10.2174/0929867330666230202111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Jacob EO, McIntyre AD, Wang J, Hegele RA. Lipoprotein(a) in Familial Hypercholesterolemia. CJC Open 2024; 6:40-46. [PMID: 38313344 PMCID: PMC10837708 DOI: 10.1016/j.cjco.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 02/06/2024] Open
Abstract
Background Low density lipoprotein (LDL) and Lipoprotein (Lp)(a) are proatherogenic apolipoprotein (apo) B-containing members of the non-high-density lipoprotein (non-HDL) family of particles. Elevated plasma levels of LDL cholesterol (C), non-HDL-C, and apo B are defining features of heterozygous familial hypercholesterolemia (HeFH), but reports of elevated plasma Lp(a) concentration are inconsistent. Methods We performed retrospective chart reviews of 256 genetically characterized patients with hypercholesterolemia and 272 control subjects from the Lipid Genetics Clinic at University Hospital in London, Ontario. We evaluated pairwise correlations between plasma levels of Lp(a) and those of LDL-C, non-HDL-C and apo B. Results Mean Lp(a) levels were not different between individuals with hypercholesterolemia and control subjects. No correlations were found between Lp(a) and LDL-C or non-HDL-C levels in controls or patients with hypercholesterolemia; all r values < 0.079 and all P values > 0.193. Borderline weak correlations between Lp(a) and apo B were identified in patients r = 0.103; P = 0.112) and controls (r = 0.175; P = 0.005). Results were similar across genotypic subgroups. Conclusions Lp(a) levels are independent of LDL-C and non-HDL-C; in particular Lp(a) levels are not increased in patients with hypercholesterolemia and molecularly proven HeFH. Apo B was only weakly associated with Lp(a). Elevated Lp(a) does not cause FH in our clinic patients. Genetic variants causing HeFH that raise LDL-C do not affect Lp(a), confirming that these lipoproteins are metabolically distinct. Lp(a) cannot be predicted from LDL-C and must be determined separately to evaluate its amplifying effect on atherosclerotic risk in patients with hypercholesterolemia.
Collapse
Affiliation(s)
- Erin O Jacob
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Alhomoud IS, Talasaz A, Mehta A, Kelly MS, Sisson EM, Bucheit JD, Brown R, Dixon DL. Role of lipoprotein(a) in atherosclerotic cardiovascular disease: A review of current and emerging therapies. Pharmacotherapy 2023; 43:1051-1063. [PMID: 37464942 DOI: 10.1002/phar.2851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Lipoprotein(a), or Lp(a), is structurally like low-density lipoprotein (LDL) but differs in that it contains glycoprotein apolipoprotein(a) [apo(a)]. Due to its prothrombotic and proinflammatory properties, Lp(a) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis. Lp(a) levels are genetically determined, and it is estimated that 20%-25% of the global population has an Lp(a) level ≥50 mg/dL (or ≥125 nmol/L). Diet and lifestyle interventions have little to no effect on Lp(a) levels. Lipoprotein apheresis is the only approved treatment for elevated Lp(a) but is time-intensive for the patient and only modestly effective. Pharmacological approaches to reduce Lp(a) levels and its associated risks are of significant interest; however, currently available lipid-lowering therapies have limited effectiveness in reducing Lp(a) levels. Although statins are first-line agents to reduce LDL cholesterol levels, they modestly increase Lp(a) levels and have not been shown to change Lp(a)-mediated ASCVD risk. Alirocumab, evolocumab, and inclisiran reduce Lp(a) levels by 20-25%, yet the clinical implications of this reduction for Lp(a)-mediated ASCVD risk are uncertain. Niacin also lowers Lp(a) levels; however, its effectiveness in mitigating Lp(a)-mediated ASCVD risk remains unclear, and its side effects have limited its utilization. Recommendations for when to screen and how to manage individuals with elevated Lp(a) vary widely between national and international guidelines and scientific statements. Three investigational compounds targeting Lp(a), including small interfering RNA (siRNA) agents (olpasiran, SLN360) and an antisense oligonucleotide (pelacarsen), are in various stages of development. These compounds block the translation of messenger RNA (mRNA) into apo(a), a key structural component of Lp(a), thereby substantially reducing Lp(a) synthesis in the liver. The purpose of this review is to describe current recommendations for screening and managing elevated Lp(a), describe the effects of currently available lipid-lowering therapies on Lp(a) levels, and provide insight into emerging therapies targeting Lp(a).
Collapse
Affiliation(s)
- Ibrahim S Alhomoud
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Azita Talasaz
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Anurag Mehta
- Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael S Kelly
- Department of Pharmacy Practice, Thomas Jefferson University College of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Evan M Sisson
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John D Bucheit
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Roy Brown
- School of Nursing, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
- Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Wang Z, Li J. Lipoprotein(a) in patients with breast cancer after chemotherapy: exploring potential strategies for cardioprotection. Lipids Health Dis 2023; 22:157. [PMID: 37736722 PMCID: PMC10515253 DOI: 10.1186/s12944-023-01926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Developments in neoadjuvant and adjuvant chemotherapy (CHT) have led to an increase in the number of breast cancer survivors. The determination of an appropriate follow-up for these patients is of increasing importance. Deaths due to cardiovascular disease (CVD) are an important part of mortality in patients with breast cancer.This review suggests that chemotherapeutic agents may influence lipoprotein(a) (Lp(a)) concentrations in breast cancer survivors after CHT based on many convincing evidence from epidemiologic and observational researches. Usually, the higher the Lp(a) concentration, the higher the median risk of developing CVD. However, more clinical trial results are needed in the future to provide clear evidence of a possible causal relationship. This review also discuss the existing and emerging therapies for lowering Lp(a) concentrations in the clinical setting. Hormone replacement therapy, statins, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, Antisense oligonucleotides, small interfering RNA, etc. may reduce circulating Lp(a) or decrease the incidence of CVD.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No.1677 Wutai Mountain Road, Qingdao, 266000, China
| | - Jian Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No.1677 Wutai Mountain Road, Qingdao, 266000, China.
| |
Collapse
|
7
|
Kosmas CE, Bousvarou MD, Papakonstantinou EJ, Tsamoulis D, Koulopoulos A, Echavarria Uceta R, Guzman E, Rallidis LS. Novel Pharmacological Therapies for the Management of Hyperlipoproteinemia(a). Int J Mol Sci 2023; 24:13622. [PMID: 37686428 PMCID: PMC10487774 DOI: 10.3390/ijms241713622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.
Collapse
Affiliation(s)
- Constantine E. Kosmas
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Maria D. Bousvarou
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Donatos Tsamoulis
- First Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Athens, Greece;
| | - Andreas Koulopoulos
- School of Medicine, University of Crete, 710 03 Heraklion, Greece; (M.D.B.); (A.K.)
| | | | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA;
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY 10033, USA;
| | - Loukianos S. Rallidis
- 2nd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital ATTIKON, 124 62 Athens, Greece;
| |
Collapse
|
8
|
Yu Z, Hu L, Sun C, Wang Z, Zhang X, Wu M, Liu L. Effect of Different Types and Dosages of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors on Lipoprotein(a) Levels: A Network Meta-analysis. J Cardiovasc Pharmacol 2023; 81:445-453. [PMID: 36972559 DOI: 10.1097/fjc.0000000000001419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
ABSTRACT Lipoprotein(a) [Lp(a)] has become an important component of the residual risk of cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors display promising effects in controlling Lp(a) levels. However, the effects of different types and dosages of PCSK9 inhibitors on Lp(a) have not been studied in detail. These include 2 monoclonal antibodies, alirocumab and evolocumab, and inclisiran, a small interfering RNA. We searched PubMed, Web of Science, Embase, and Cochrane Library for randomized controlled trials to investigate the efficacy of PCSK9 inhibitors at the Lp(a) level. Although changes in Lp(a) levels were not the primary endpoint in any of these studies, they all described these valuable data. Forty-one randomized controlled trials with 17,601 participants were included, involving 23 unduplicated interventions. Most PCSK9 inhibitors significantly reduced Lp(a) levels compared with placebo. The pairwise comparison demonstrated no significant difference among most PCSK9 inhibitors. However, in the comparison among different dosages of alirocumab, the dosage of 150 mg Q2W showed a significant reduction in Lp(a) levels compared with the dosages of 150, 200, and 300 mg Q4W. In addition, the comparison results demonstrated the significant efficacy of evolocumab 140 mg Q2W compared with alirocumab at a dosage of 150 mg Q4W. The cumulative rank probabilities demonstrated that evolocumab 140 mg Q2W showed the highest efficacy. This study showed that PCSK9 inhibitors reduced Lp(a) levels by up to 25.1%. A biweekly dose of either 140 mg evolocumab or 150 mg alirocumab was the best treatment option. However, the reduction in Lp(a) levels with a single kind of PCSK9 inhibitor alone did not demonstrate sufficient clinical benefit. Therefore, for patients with very high Lp(a) levels who remain at high residual risk in the context of statin administration, it may be acceptable to use a kind of PCSK9 inhibitor, but the clinical benefit needs further investigation.
Collapse
Affiliation(s)
- Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing, China; and
| | - Zeping Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China; and
| | - Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Tsamoulis D, Siountri I, Rallidis LS. Lipoprotein(a): Its Association with Calcific Aortic Valve Stenosis, the Emerging RNA-Related Treatments and the Hope for a New Era in “Treating” Aortic Valve Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10030096. [PMID: 36975859 PMCID: PMC10056331 DOI: 10.3390/jcdd10030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The treatment of patients with aortic valve calcification (AVC) and calcific aortic valve stenosis (CAVS) remains challenging as, until today, all non-invasive interventions have proven fruitless in preventing the disease’s onset and progression. Despite the similarities in the pathogenesis of AVC and atherosclerosis, statins failed to show a favorable effect in preventing AVC progression. The recognition of lipoprotein(a) [Lp(a)] as a strong and potentially modifiable risk factor for the development and, perhaps, the progression of AVC and CAVS and the evolution of novel agents leading in a robust Lp(a) reduction, have rekindled hope for a promising future in the treatment of those patients. Lp(a) seems to promote AVC via a ‘three hit’ mechanism including lipid deposition, inflammation and autotaxin transportation. All of these lead to valve interstitial cells transition into osteoblast-like cells and, thus, to parenchymal calcification. Currently available lipid-lowering therapies have shown a neutral or mild effect on Lp(a), which was proven insufficient to contribute to clinical benefits. The short-term safety and the efficacy of the emerging agents in reducing Lp(a) have been proven; nevertheless, their effect on cardiovascular risk is currently under investigation in phase 3 clinical trials. A positive result of these trials will probably be the spark to test the hypothesis of the modification of AVC’s natural history with the novel Lp(a)-lowering agents.
Collapse
Affiliation(s)
- Donatos Tsamoulis
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 192 00 Athens, Greece
- Society of Junior Doctors, 5 Menalou Str., 151 23 Athens, Greece
| | - Iliana Siountri
- 1st Department of Internal Medicine, General Hospital of Nikaia “Agios Panteleimon”, 184 54 Nikaia, Greece
| | - Loukianos S. Rallidis
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, 124 62 Athens, Greece
- Correspondence:
| |
Collapse
|
10
|
PCSK9 Inhibitors in Cancer Patients Treated with Immune-Checkpoint Inhibitors to Reduce Cardiovascular Events: New Frontiers in Cardioncology. Cancers (Basel) 2023; 15:cancers15051397. [PMID: 36900189 PMCID: PMC10000232 DOI: 10.3390/cancers15051397] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are exposed to a high risk of atherosclerosis and cardiometabolic diseases due to systemic inflammatory conditions and immune-related atheroma destabilization. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein involved in metabolism of low-density lipoprotein (LDL) cholesterol. PCSK9 blocking agents are clinically available and involve monoclonal antibodies, and SiRNA reduces LDL levels in high-risk patients and atherosclerotic cardiovascular disease events in multiple patient cohorts. Moreover, PCSK9 induces peripheral immune tolerance (inhibition of cancer cell- immune recognition), reduces cardiac mitochondrial metabolism, and enhances cancer cell survival. The present review summarizes the potential benefits of PCSK9 inhibition through selective blocking antibodies and siRNA in patients with cancer, especially in those treated with ICIs therapies, in order to reduce atherosclerotic cardiovascular events and potentially improve ICIs-related anticancer functions.
Collapse
|
11
|
Ouyang M, Li C, Hu D, Peng D, Yu B. Mechanisms of unusual response to lipid-lowering therapy: PCSK9 inhibition. Clin Chim Acta 2023; 538:113-123. [PMID: 36403664 DOI: 10.1016/j.cca.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The efficacy of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition has broadened lipid-lowering therapy thus providing decreased risk in atherosclerotic cardiovascular disease. Unfortunately, the widespread use of PCSK9 inhibitors (PCSK9i), ie, monoclonal antibodies, has led to the findings of unusual responsiveness, ie, a phenomenon defined as an LDL-C reduction of <30% vs the average LDL-C reduction efficacy of 50-60%. This unusual responsiveness to PCSK9i is attributable to several factors, ie, lack of adherence, impaired absorption, poor distribution or early elimination as well as abnormal effects of PCSK9i in the presence of anti-antibodies or mutations in PCSK9 and LDLR. Unexpectedly increased lipoprotein (Lp)(a) also appear to contribute to the unusual responsiveness scenario. Identification of these responses and mechanisms underlying them are essential for effective management of LDL-C and cardiovascular risk. In this review, we describe plausible reasons underlying this phenomenon supported by findings of clinical trials. We also elaborate on the need for education and regular follow-up to improve adherence. Collectively, the review provides a summary of the past, present, and future of mechanisms and countermeasures revolving around unusual responses to PCSK9i therapy.
Collapse
Affiliation(s)
- Mingqi Ouyang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
12
|
Durlach V, Bonnefont-Rousselot D, Boccara F, Varret M, Di-Filippo Charcosset M, Cariou B, Valero R, Charriere S, Farnier M, Morange PE, Meilhac O, Lambert G, Moulin P, Gillery P, Beliard-Lasserre S, Bruckert E, Carrié A, Ferrières J, Collet X, Chapman MJ, Anglés-Cano E. Lipoprotein(a): Pathophysiology, measurement, indication and treatment in cardiovascular disease. A consensus statement from the Nouvelle Société Francophone d'Athérosclérose (NSFA). Arch Cardiovasc Dis 2021; 114:828-847. [PMID: 34840125 DOI: 10.1016/j.acvd.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.
Collapse
Affiliation(s)
- Vincent Durlach
- Champagne-Ardenne University, UMR CNRS 7369 MEDyC & Cardio-Thoracic Department, Reims University Hospital, 51092 Reims, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Université de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Franck Boccara
- Sorbonne University, GRC n(o) 22, C(2)MV, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, IHU ICAN, 75012 Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalier Universitaire Xavier Bichat, 75018 Paris, France; Université de Paris, 75018 Paris, France
| | - Mathilde Di-Filippo Charcosset
- Hospices Civils de Lyon, UF Dyslipidémies, 69677 Bron, France; Laboratoire CarMen, INSERM, INRA, INSA, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - René Valero
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Sybil Charriere
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne Franche-Comté, 21079 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Pierre E Morange
- Aix-Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Olivier Meilhac
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Philippe Moulin
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Philippe Gillery
- Laboratory of Biochemistry-Pharmacology-Toxicology, Reims University Hospital, University of Reims Champagne-Ardenne, UMR CNRS/URCA n(o) 7369, 51092 Reims, France
| | - Sophie Beliard-Lasserre
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; IHU ICAN, Sorbonne University, 75013 Paris, France
| | - Alain Carrié
- Sorbonne University, UMR INSERM 1166, IHU ICAN, Laboratory of Endocrine and Oncological Biochemistry, Obesity and Dyslipidaemia Genetic Unit, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Jean Ferrières
- Department of Cardiology and INSERM UMR 1295, Rangueil University Hospital, TSA 50032, 31059 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil University Hospital, BP 84225, 31432 Toulouse, France
| | - M John Chapman
- Sorbonne University, Hôpital Pitié-Salpêtrière and National Institute for Health and Medical Research (INSERM), 75013 Paris, France
| | - Eduardo Anglés-Cano
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France.
| |
Collapse
|
13
|
Nurmohamed NS, Kaiser Y, Schuitema PCE, Ibrahim S, Nierman M, Fischer JC, Chamuleau SAJ, Knaapen P, Stroes ESG. Finding very high lipoprotein(a): the need for routine assessment. Eur J Prev Cardiol 2021; 29:769-776. [PMID: 34632502 DOI: 10.1093/eurjpc/zwab167] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/09/2021] [Indexed: 12/23/2022]
Abstract
AIMS To validate the reported increased atherosclerotic cardiovascular disease (ASCVD) risk associated with very high lipoprotein(a) [Lp(a)] and to investigate the impact of routine Lp(a) assessment on risk reclassification. METHODS AND RESULTS We performed a cross-sectional case-control study in the Amsterdam UMC, a tertiary hospital in The Netherlands. All patients in whom a lipid blood test was ordered between October 2018 and October 2019 were included. Individuals with Lp(a) >99th percentile were age and sex matched to individuals with Lp(a) ≤20th percentile. We computed odds ratios (ORs) for myocardial infarction (MI) and ASCVD using multivariable logistic regression adjusted for age, sex, and systolic blood pressure. Furthermore, we assessed the additive value of Lp(a) to established ASCVD risk algorithms. Lipoprotein(a) levels were determined in 12 437 individuals, out of whom 119 cases [Lp(a) >99th percentile; >387.8 nmol/L] and 119 matched controls [Lp(a) ≤20th percentile; ≤7 nmol/L] were included. Mean age was 58 ± 15 years, 56.7% were female, and 30.7% had a history of ASCVD. Individuals with Lp(a) levels >99th percentile had an OR of 2.64 for ASCVD [95% confidence interval (CI) 1.45-4.89] and 3.39 for MI (95% CI 1.56-7.94). Addition of Lp(a) to ASCVD risk algorithms led to 31% and 63% being reclassified into a higher risk category for Systematic Coronary Risk Evaluation (SCORE) and Second Manifestations of ARTerial disease (SMART), respectively. CONCLUSION The prevalence of ASCVD is nearly three-fold higher in adults with Lp(a) >99th percentile compared with matched subjects with Lp(a) ≤20th percentile. In individuals with very high Lp(a), addition of Lp(a) resulted in one-third of patients being reclassified in primary prevention, and over half being reclassified in secondary prevention.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.,Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Pauline C E Schuitema
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Melchior Nierman
- Atalmedial Medical Diagnostic Centers, Jan Tooropstraat 138, 1061 AD Amsterdam, the Netherlands
| | - Johan C Fischer
- Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
14
|
Handhle A, Viljoen A, Wierzbicki AS. Elevated Lipoprotein(a): Background, Current Insights and Future Potential Therapies. Vasc Health Risk Manag 2021; 17:527-542. [PMID: 34526771 PMCID: PMC8436116 DOI: 10.2147/vhrm.s266244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipoprotein(a) forms a subfraction of the lipid profile and is characterized by the addition of apolipprotein(a) (apo(a)) to apoB100 derived particles. Its levels are mostly genetically determined inversely related to the number of protein domain (kringle) repeats in apo(a). In epidemiological studies, it shows consistent association with cardiovascular disease (CVD) and most recently with extent of aortic stenosis. Issues with standardizing the measurement of Lp(a) are being resolved and consensus statements favor its measurement in patients at high risk of, or with family histories of CVD events. Major lipid-lowering therapies such as statin, fibrates, and ezetimibe have little effect on Lp(a) levels. Therapies such as niacin or cholesterol ester transfer protein (CETP) inhibitors lower Lp(a) as well as reducing other lipid-related risk factors but have failed to clearly reduce CVD events. Proprotein convertase subtilisin kexin-9 (PCSK9) inhibitors reduce cholesterol and Lp(a) as well as reducing CVD events. New antisense therapies specifically targeting apo(a) and hence Lp(a) have greater and more specific effects and will help clarify the extent to which intervention in Lp(a) levels will reduce CVD events.
Collapse
Affiliation(s)
- Ahmed Handhle
- Department of Metabolic Medicine/Chemical Pathology, Addenbrookes Hospital, Cambridge, UK
| | - Adie Viljoen
- Department of Metabolic Medicine/Chemical Pathology, North & East Hertfordshire Hospitals Trust, Lister Hospital, Hertfordshire, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas', Hospitals, London, SE1 7EH, UK
| |
Collapse
|
15
|
Littmann K, Hagström E, Häbel H, Bottai M, Eriksson M, Parini P, Brinck J. Plasma lipoprotein(a) measured in the routine clinical care is associated to atherosclerotic cardiovascular disease during a 14-year follow-up. Eur J Prev Cardiol 2021; 28:2038-2047. [PMID: 34343284 DOI: 10.1093/eurjpc/zwab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
AIMS To investigate plasma lipoprotein(a) [Lp(a)] levels measured in routine clinical care and their association with mortality and cardiovascular disease. METHODS AND RESULTS This retrospective registry-based observational cohort study includes all individuals with plasma Lp(a) results measured at the Karolinska University Laboratory 2003-17. Outcome data were captured in national outcome registries. Levels of Lp(a) expressed in mass or molar units were examined separately. In adjusted Cox regression models, association between deciles of plasma Lp(a) concentrations, mortality, and cardiovascular outcomes were assessed. A total of 23 398 individuals [52% females, mean (standard deviation) age 55.5 (17.2) years, median Lp(a) levels 17 mg/dL or 19.5 nmol/L] were included. Individuals with an Lp(a) level >90th decile (>90 mg/dL or >180 nmol/L) had hazard ratios (95% confidence interval) of 1.25 (1.05-1.50) for major adverse cardiovascular events (P = 0.013), 1.37 (1.14-1.64) for atherosclerotic cardiovascular disease (P = 0.001), and 1.62 (1.28-2.05) for coronary artery disease (P ≤ 0.001), compared to individuals with Lp(a) ≤50th decile. No association between Lp(a) and mortality, peripheral artery disease, or ischaemic stroke was observed. CONCLUSION High Lp(a) levels are associated with adverse cardiovascular disease outcomes also in individuals with Lp(a) measured in routine clinical care. This supports the 2019 ESC/EAS recommendation to measure Lp(a) at least once during lifetime to assess cardiovascular risk and implies the need for intensive preventive therapy in patients with elevated Lp(a).
Collapse
Affiliation(s)
- Karin Littmann
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, H7 Medicine Huddinge, 171 77 Stockholm, Sweden.,Medical Unit of Endocrinology, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Emil Hagström
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Henrike Häbel
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Eriksson
- Department of Medicine Huddinge, Karolinska Institutet, H7 Medicine Huddinge, 171 77 Stockholm, Sweden.,Medical Unit of Endocrinology, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, H7 Medicine Huddinge, 171 77 Stockholm, Sweden.,Medical Unit of Endocrinology, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Department of Medicine Huddinge, Karolinska Institutet, H7 Medicine Huddinge, 171 77 Stockholm, Sweden.,Medical Unit of Endocrinology, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Blanchard V, Chemello K, Hollstein T, Hong-Fong CC, Schumann F, Grenkowitz T, Nativel B, Coassin S, Croyal M, Kassner U, Lamina C, Steinhagen-Thiessen E, Lambert G. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc Res 2021; 118:2103-2111. [PMID: 34314498 DOI: 10.1093/cvr/cvab247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Lipoprotein (a) [Lp(a)] is a lipoprotein species causatively associated with atherosclerosis. Unlike statins, PCSK9 inhibitors (PCSK9i) reduce Lp(a), but this reduction is highly variable. Levels of Lp(a) are chiefly governed by the size of its signature protein, apolipoprotein (a) [apo(a)]. Whether this parameter determines some of the reduction in Lp(a) induced by PCSK9i remains unknown. We aimed to investigate if the Lp(a) lowering efficacy of PCSK9i is modulated by the size of apo(a), which is genetically determined by the variable number of KIV domains present on that protein. METHODS AND RESULTS The levels of Lp(a) and the size of apo(a) were assessed in plasma samples from 268 patients before and after treatment with PCSK9i. Patients were recruited at the Outpatient Lipid Clinic of the Charité Hospital (Berlin) between 2015 and 2020. They were hypercholesterolemic at very high CVD risk with LDL-cholesterol levels above therapeutic targets despite maximally tolerated lipid-lowering therapy. Patients received either Alirocumab (75 or 150 mg) or Evolocumab (140 mg) every 2 weeks. Apo(a), apoB100, and apoE concentrations as well as apoE major isoforms were determined by liquid chromatography high-resolution mass spectrometry. Apo(a) isoforms sizes were determined by Western Blot. PCSK9i sharply reduced LDL-cholesterol (-57%), apoB100 (-47%) and Lp(a) (-36%). There was a positive correlation between the size of apo(a) and the relative reduction in Lp(a) induced by PCSK9i (r = 0.363, p = 0.0001). The strength of this association remained unaltered after adjustment for baseline Lp(a) levels and all other potential confounding factors. In patients with two detectable apo(a) isoforms, there was also a positive correlation between the size of apo(a) and the reduction in Lp(a), separately for the smaller (r = 0.350, p = 0.0001) and larger (r = 0.324, p = 0.0003) isoforms. The relative contribution of the larger isoform to the total concentration of apo(a) was reduced from 29% to 15% (p < 0.0001). CONCLUSIONS The size of apo(a) is an independent determinant of the response to PCSK9i. Each additional kringle domain is associated with a 3% additional reduction in Lp(a). This explains in part the variable efficacy of PCSK9i and allows to identify patients who will benefit most from these therapies in terms of Lp(a) lowering. TRANSLATIONAL PERSPECTIVE Unlike statins, PCSK9 inhibitors reduce the circulating levels of the highly atherogenic Lipoprotein (a). The underlying mechanism remains a matter of considerable debate. The size of apo(a), the signature protein of Lp(a), is extremely variable (300 to more than 800 kDa) and depends on its number of kringle domains. We now show that each increase in apo(a) size by one kringle domain is associated with a 3% additional reduction in Lp(a) following PCSK9i treatment and that apo(a) size polymorphism is an independent predictor of the reduction in Lp(a) induced by these drugs. In an era of personalized medicine, this allows to identify patients who will benefit most from PCSK9i in terms of Lp(a) lowering.
Collapse
Affiliation(s)
- Valentin Blanchard
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France.,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada; Department of Medicine, UBC, Vancouver, Canada
| | - Kévin Chemello
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Tim Hollstein
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany.,Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Kiel, Germany
| | | | - Friederike Schumann
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Grenkowitz
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Brice Nativel
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | - Mikaël Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France
| | - Ursula Kassner
- Department of Endocrinology, Campus Virchow-Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbrück, Innsbrück, Austria
| | | | - Gilles Lambert
- Université de La Réunion, INSERM UMR 1188 DéTROI, Sainte-Clotilde, France
| |
Collapse
|
17
|
Rhainds D, Brodeur MR, Tardif JC. Lipoprotein (a): When to Measure and How to Treat? Curr Atheroscler Rep 2021; 23:51. [PMID: 34235598 DOI: 10.1007/s11883-021-00951-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review current evidence for lipoprotein (a) (Lp(a)) as a risk factor for multiple cardiovascular (CV) disease phenotypes, provide a rationale for Lp(a) lowering to reduce CV risk, identify therapies that lower Lp(a) levels that are available clinically and under investigation, and discuss future directions. RECENT FINDINGS Mendelian randomization and epidemiological studies have shown that elevated Lp(a) is an independent and causal risk factor for atherosclerosis and major CV events. Lp(a) is also associated with non-atherosclerotic endpoints such as venous thromboembolism and calcific aortic valve disease. It contributes to residual CV risk in patients receiving standard-of-care LDL-lowering therapy. Plasma Lp(a) levels present a skewed distribution towards higher values and vary widely between individuals and according to ethnic background due to genetic variants in the LPA gene, but remain relatively constant throughout a person's life. Thus, elevated Lp(a) (≥50 mg/dL) is a prevalent condition affecting >20% of the population but is still underdiagnosed. Treatment guidelines have begun to advocate measurement of Lp(a) to identify patients with very high levels that have a family history of premature CVD or elevated Lp(a). Lipoprotein apheresis (LA) efficiently lowers Lp(a) and was recently associated with a reduction of incident CV events. Statins have neutral or detrimental effects on Lp(a), while PCSK9 inhibitors significantly reduce its level by up to 30%. Specific lowering of Lp(a) with antisense oligonucleotides (ASO) shows good safety and strong efficacy with up to 90% reductions. The ongoing CV outcomes study Lp(a)HORIZON will provide a first answer as to whether selective Lp(a) lowering with ASO reduces the risk of major CV events. Given the recently established association between Lp(a) level and CV risk, guidelines now recommend Lp(a) measurement in specific clinical conditions. Accordingly, Lp(a) is a current target for drug development to reduce CV risk in patients with elevated levels, and lowering Lp(a) with ASO represents a promising avenue.
Collapse
Affiliation(s)
- David Rhainds
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Mathieu R Brodeur
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute Research Center, 5000 Belanger Street, Montréal, Canada. .,Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
18
|
Chakraborty A, Pang J, Chan DC, Barnett W, Woodward AM, Vorster M, Watts GF. Effectiveness of proprotein convertase subtilisin/kexin-9 monoclonal antibody treatment on plasma lipoprotein(a) concentrations in patients with elevated lipoprotein(a) attending a clinic. Clin Cardiol 2021; 44:805-813. [PMID: 33955565 PMCID: PMC8207967 DOI: 10.1002/clc.23607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lipoprotein(a) (Lp[a]) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin-9 monoclonal antibodies (PCSK9mAbs) can lower Lp(a) levels in clinical trials, but their effects in patients with elevated Lp(a) in clinical practice remain unclear. AIMS To investigate the effectiveness and safety of PCSK9mAbs in lowering plasma Lp(a) in patients with elevated Lp(a) concentrations in a lipid clinic. METHODS This was an open-label study of 53 adult patients with elevated Lp(a) concentration (≥0.5 g/L). Clinical, biochemical, and safety data were collected before and on treatment with evolocumab or alirocumab over a mean period of 11 months. RESULTS Treatment with a PCSK9mAb resulted in a significant reduction of 0.29 g/L (-22%) in plasma Lp(a) concentration (p<.001). There were also significant reductions in low-density lipoprotein-cholesterol (LDL-C) (-53%), remnant-cholesterol (-12%) and apolipoprotein B (-43%) concentrations. The change in Lp(a) concentration was significantly different from a comparable group of 35 patients with elevated Lp(a) who were not treated with a PCSK9mAb (-22% vs. -2%, p<.001). The reduction in Lp(a) concentration was not associated with the corresponding changes in LDL-C, remnant-cholesterol, and apolipoprotein B (p>.05 in all). 7.5% and 47% of the patients attained a target concentration of Lp(a) <0.5 g/L and LDL-C <1.8 mmol/L, respectively. PCSK9mAbs were well tolerated, the common adverse effects being pharyngitis (9.4%), nasal congestion (7.6%), myalgia (9.4%), diarrhoea (7.6%), arthralgia (9.4%) and injection site reactions (11%). CONCLUSION PCSK9mAbs can effectively and safely lower plasma Lp(a) concentrations in patients with elevated Lp(a) in clinical practice; the impact of the fall in Lp(a) on ASCVD outcomes requires further investigation.
Collapse
Affiliation(s)
- Anindita Chakraborty
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Dick C. Chan
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Wendy Barnett
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Ann Marie Woodward
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Mary Vorster
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| | - Gerald F. Watts
- School of Medicine, Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of CardiologyRoyal Perth HospitalPerthAustralia
| |
Collapse
|
19
|
Halasz G, Piepoli MF. Focus on Atherosclerosis and Lipids. Eur J Prev Cardiol 2021; 28:799-802. [PMID: 34057988 DOI: 10.1093/eurjpc/zwab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Geza Halasz
- Cardiac Unit, G. da Saliceto Hospital, AUSL Piacenza and University of Parma, Italy
| | - Massimo F Piepoli
- Cardiac Unit, G. da Saliceto Hospital, AUSL Piacenza and University of Parma, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
20
|
Lipoprotein(a) Reduction With Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors: A Systematic Review and Meta-analysis. J Cardiovasc Pharmacol 2021; 77:397-407. [PMID: 33298738 DOI: 10.1097/fjc.0000000000000963] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/15/2020] [Indexed: 12/29/2022]
Abstract
ABSTRACT Lipoprotein(a) [Lp(a)] is a cardiovascular factor, for which there is no approved specific lowering treatment. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to have lowering effects on Lp(a). Aim of this systematic review is to synthesize the current literature and quantify the effects of PCSK9 inhibitors on the serum Lp(a) levels in human subjects. Double-blind, phase 2 or 3, randomized-controlled trials comparing PCSK9 inhibitors (alirocumab or evolocumab) to placebo and/or ezetimibe and/or other lipid-lowering therapy were deemed eligible for inclusion. We searched MEDLINE (via PubMed), CENTRAL, Scopus, and Web of Science as of 17 June 2020. Quality assessment was performed using the Revised Cochrane risk-of-bias tool for randomized trials. Forty-three studies were identified (64,107 patients randomized) and 41 studies were included in the quantitative analysis. PCSK9 inhibitors reduced Lp(a) levels by -26.7% (95% CI, -29.5% to -23.9%) with a significant heterogeneity within studies. There was significant difference in Lp(a) change from baseline according to comparator (placebo: mean -27.9%; 95% CI, -31.1% to -24.6% vs. ezetimibe: mean, -22.2%; 95% CI, -27.2% to -17.2%; P = 0.04) and duration of treatment (≤12 weeks: mean, -30.9%; 95% CI, -34.7% to -27.1% vs. >12 weeks: mean, -21.9%; 95% CI, -25.2% to -18.6%; P < 0.01). Meta-regression analysis showed that only the mean percentage change from baseline low-density lipoprotein cholesterol due to the intervention is significantly associated with the effect size difference (P < 0.0001). PCSK9 inhibitors reduced low-density lipoprotein cholesterol by -54% (95% CI -57.6% to -50.6%). There is substantial efficacy of the currently approved PCSK9 inhibitors in the lowering of Lp(a) levels. Dedicated randomized controlled trials are needed to establish the benefit of this intervention.
Collapse
|