1
|
Simeone B, Maggio E, Schirone L, Rocco E, Sarto G, Spadafora L, Bernardi M, Ambrosio LD, Forte M, Vecchio D, Valenti V, Sciarretta S, Vizza CD. Chronic thromboembolic pulmonary hypertension: the diagnostic assessment. Front Cardiovasc Med 2024; 11:1439402. [PMID: 39309600 PMCID: PMC11412851 DOI: 10.3389/fcvm.2024.1439402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic Thromboembolic Pulmonary Hypertension (CTEPH) presents a significant diagnostic challenge due to its complex and often nonspecific clinical manifestations. This review outlines a comprehensive approach to the diagnostic assessment of CTEPH, emphasizing the importance of a high index of suspicion in patients with unexplained dyspnea or persistent symptoms post-acute pulmonary embolism. We discuss the pivotal role of multimodal imaging, including echocardiography, ventilation/perfusion scans, CT pulmonary angiography, and magnetic resonance imaging, in the identification and confirmation of CTEPH. Furthermore, the review highlights the essential function of right heart catheterization in validating the hemodynamic parameters indicative of CTEPH, establishing its definitive diagnosis. Advances in diagnostic technologies and the integration of a multidisciplinary approach are critical for the timely and accurate diagnosis of CTEPH, facilitating early therapeutic intervention and improving patient outcomes. This manuscript aims to equip clinicians with the knowledge and tools necessary for the efficient diagnostic workflow of CTEPH, promoting awareness and understanding of this potentially treatable cause of pulmonary hypertension.
Collapse
Affiliation(s)
- Beatrice Simeone
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Enrico Maggio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Erica Rocco
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Gianmarco Sarto
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luigi Spadafora
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Marco Bernardi
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luca D’ Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Carmine Dario Vizza
- Department of Cardiovascular and Respiratory Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Du Y, Zhang J, Guo K, Yin Y. Identification of potential biomarkers for idiopathic pulmonary arterial hypertension using single-cell and bulk RNA sequencing analysis. Front Genet 2024; 15:1328234. [PMID: 38586587 PMCID: PMC10995363 DOI: 10.3389/fgene.2024.1328234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare and severe cardiopulmonary disease with a challenging prognosis, and its underlying pathogenesis remains elusive. A comprehensive understanding of IPAH is crucial to unveil potential diagnostic markers and therapeutic targets. In this study, we investigated cellular heterogeneity and molecular pathology in IPAH using single-cell RNA sequencing (scRNA-seq) analysis. Our scRNA-seq results revealed significant alterations in three crucial signaling pathways in IPAH: the hypoxia pathway, TGF β pathway, and ROS pathway, primarily attributed to changes in gene expression within arterial endothelial cells. Moreover, through bulk RNA sequencing analysis, we identified differentially expressed genes (DEGs) enriched in GO and KEGG pathways, implicated in regulating cell adhesion and oxidative phosphorylation in IPAH lungs. Similarly, DEGs-enriched pathways in IPAH arterial endothelial cells were also identified. By integrating DEGs from three IPAH datasets and applying protein-protein interaction (PPI) analysis, we identified 12 candidate biomarkers. Subsequent validation in two additional PAH datasets led us to highlight five potential biomarkers (CTNNB1, MAPK3, ITGB1, HSP90AA1, and DDX5) with promising diagnostic significance for IPAH. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) confirmed significant differences in the expression of these five genes in pulmonary arterial endothelial cells from PAH mice. In conclusion, our findings shed light on the pivotal role of arterial endothelial cells in the development of IPAH. Furthermore, the integration of single-cell and bulk RNA sequencing datasets allowed us to pinpoint novel candidate biomarkers for the diagnosis of IPAH. This work opens up new avenues for research and potential therapeutic interventions in IPAH management.
Collapse
Affiliation(s)
- Yan Du
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingqiu Zhang
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Guo
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Healthcare Hospital, Affiliated Women’s Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Tan R, You Q, Yu D, Xiao C, Adu-Amankwaah J, Cui J, Zhang T. Novel hub genes associated with pulmonary artery remodeling in pulmonary hypertension. Front Cardiovasc Med 2022; 9:945854. [PMID: 36531719 PMCID: PMC9748075 DOI: 10.3389/fcvm.2022.945854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease with complex pathogenesis. According to etiology, PH is divided into five major groups in clinical classification. However, pulmonary artery (PA) remodeling is their common feature, in addition to bone morphogenetic protein receptor type 2; it is elusive whether there are other novel common genes and similar underlying mechanisms. To identify novel common hub genes involved in PA remodeling at different PH groups, we analyzed mRNA-Seq data located in the general gene expression profile GSE130391 utilizing bioinformatics technology. This database contains PA samples from different PH groups of hospitalized patients with chronic thromboembolic pulmonary hypertension (CTEPH), idiopathic pulmonary artery hypertension (IPAH), and PA samples from organ donors without known pulmonary vascular diseases as control. We screened 22 hub genes that affect PA remodeling, most of which have not been reported in PH. We verified the top 10 common hub genes in hypoxia with Sugen-induced PAH rat models by qRT-PCR. The three upregulated candidate genes are WASF1, ARHGEF1 and RB1 and the seven downregulated candidate genes are IL1R1, RHOB, DAPK1, TNFAIP6, PKN1, PLOD2, and MYOF. WASF1, ARHGEF1, and RB1 were upregulated significantly in hypoxia with Sugen-induced PAH, while IL1R1, DAPK1, and TNFA1P6 were upregulated significantly in hypoxia with Sugen-induced PAH. The DEGs detected by mRNA-Seq in hospitalized patients with PH are different from those in animal models. This study will provide some novel target genes to further study PH mechanisms and treatment.
Collapse
Affiliation(s)
- Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Rubin Tan
| | - Qiang You
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongdong Yu
- Department of Tumor Radiotherapy, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chushu Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Miao R, Dong X, Gong J, Li Y, Guo X, Wang J, Huang Q, Wang Y, Li J, Yang S, Kuang T, Liu M, Wan J, Zhai Z, Zhong J, Yang Y. Single-cell RNA-sequencing and microarray analyses to explore the pathological mechanisms of chronic thromboembolic pulmonary hypertension. Front Cardiovasc Med 2022; 9:900353. [PMID: 36440052 PMCID: PMC9684175 DOI: 10.3389/fcvm.2022.900353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/21/2022] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE The present study aimed to explore the pathological mechanisms of chronic thromboembolic pulmonary hypertension (CTEPH) using a gene chip array and single-cell RNA-sequencing (scRNA-seq). MATERIALS AND METHODS The mRNA expression profile GSE130391 was downloaded from the Gene Expression Omnibus database. The peripheral blood samples of five CTEPH patients and five healthy controls were used to prepare the Affymetrix microRNA (miRNA) chip and the Agilent circular RNA (circRNA) chip. The pulmonary endarterectomized tissues from five CTEPH patients were analyzed by scRNA-seq. Cells were clustered and annotated, followed by the identification of highly expressed genes. The gene chip data were used to identify disease-related mRNAs and differentially expressed miRNAs and circRNAs. The protein-protein interaction (PPI) network and the circRNA-miRNA-mRNA network were constructed for each cell type. RESULTS A total of 11 cell types were identified. Intersection analysis of highly expressed genes in each cell type and differentially expressed mRNAs were performed to obtain disease-related genes in each cell type. TP53, ICAM1, APP, ITGB2, MYC, and ZYX showed the highest degree of connectivity in the PPI network of different types of cells. In addition, the circRNA-miRNA-mRNA network for each cell type was constructed. CONCLUSION For the first time, the key mRNAs, miRNAs, and circRNAs, as well as their possible regulatory relationships, during the progression of CTEPH were analyzed using both gene chip and scRNA-seq data. These findings may contribute to a better understanding of the pathological mechanisms of CTEPH.
Collapse
Affiliation(s)
- Ran Miao
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xingbei Dong
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juanni Gong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yidan Li
- Department of Echocardiography, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Guo
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianfeng Wang
- Department of Interventional Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiang Huang
- Department of Interventional Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Suqiao Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tuguang Kuang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wan
- Department of Respiration, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuanhua Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Wei R, Chen L, Li P, Lin C, Zeng Q. IL-13 alleviates idiopathic pulmonary hypertension by inhibiting the proliferation of pulmonary artery smooth muscle cells and regulating macrophage infiltration. Am J Transl Res 2022; 14:4573-4590. [PMID: 35958460 PMCID: PMC9360879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is characterized by medial hypertrophy due to pulmonary artery smooth muscle cell (PASMC) hyperplasia. In the present study, we conducted bioinformatic analyses and cellular experiments to assess the involvement of the interleukin-13 (IL-13) in IPAH. METHODS The differentially expressed genes (DEGs) in IPAH and DEGs in IPAH caused by IL-13 treatment were screened using the GEO database. PPI networks were used to analyze the hub genes. Hypoxia-induced PASMCs were treated with IL-13 for in vitro assays. CCK8 and EdU staining were used to observe proliferation of PASMCs, and RT-qPCR was applied to detect the expression of hub genes. The conserved binding sites of microRNAs (miRNAs) in the 3'UTR of hub genes were investigated, and the regulatory relationships of the relevant miRNAs on their targets were verified by RT-qPCR and dual-luciferase assays. The GO and KEGG analyses were performed to study the downstream pathways. The effect of hub genes on immune cell infiltration in IPAH was investigated. RESULTS IL-13 altered gene expression in IPAH. IL-13 inhibited the proliferation and the expression of hub genes in PASMCs. The 3'UTR sites between HNRNPA2B1, HNRNPH1, SRSF1, HNRNPU and HNRNPA3 in the hub genes and candidate regulatory miRNAs were well conserved in humans. IL-13-mediated hub genes regulated multiple pathways and influenced immune cell infiltration. Hypoxia-induced PASMCs promoted the M2 polarization of macrophages, whereas IL-13-treated PASMCs skewed the macrophages toward M1 polarization. CONCLUSIONS IL-13-mediated alterations in hub genes inhibit PASMC proliferation and promote M1 macrophage infiltration in IPAH.
Collapse
Affiliation(s)
- Ruda Wei
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Liting Chen
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
- Department of Cardiovascular Medicine, Air force Medical Center, PLABeijing 100142, P. R. China
| | - Pengchuan Li
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Chaoyang Lin
- Department of Internal Medicine, Dachong Hospital of ZhongshanZhongshan 528476, Guangdong, P. R. China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan 250011, Shandong, P. R. China
| |
Collapse
|