1
|
Serra LC, York LJ, Balmer P, Webber C. Meningococcal Group A, C, W, and Y Tetanus Toxoid Conjugate Vaccine: A Review of Clinical Data in Adolescents. J Adolesc Health 2018; 63:269-279. [PMID: 30236996 DOI: 10.1016/j.jadohealth.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/09/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
MenACWY-TT (Nimenrix) is a quadrivalent meningococcal vaccine containing polysaccharides from serogroups A, C, W, and Y conjugated to a tetanus toxoid carrier protein. MenACWY-TT is licensed in some countries as a three-dose primary series in individuals as young as 6 weeks of age and as a single dose in individuals ≥12 months of age. MenACWY-TT use is supported by long-term immunogenicity and safety across age groups, including data from several phase 2, 3, and 4 clinical studies in adolescents and young adults. Adolescents are an important population in the epidemiology, transmission, and prevention of invasive meningococcal disease, with this age-based population having the highest risk for carriage and transmission as well as one of the highest risks of disease. This age group is emerging as a target population in meningococcal vaccination programs globally, as vaccinating adolescents and young adults could potentially not only decrease disease rates directly for those vaccinated but also indirectly for unvaccinated individuals by decreasing carriage and eliciting herd protection. This review will consider available data for MenACWY-TT in adolescents, including safety and immunogenicity, booster and memory responses, persistence, and coadministration with other vaccines, with an emphasis on the rationale for use of MenACWY-TT and other quadrivalent meningococcal vaccines in adolescents to address the changing epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Lidia C Serra
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Laura J York
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Paul Balmer
- Pfizer Global Medical Development and Scientific/Clinical Affairs, Vaccines, Pfizer Inc, Collegeville, Pennsylvania.
| | - Chris Webber
- Pfizer Vaccine Clinical Research and Development, Pearl River, New York.
| |
Collapse
|
2
|
Bonanni P, Grazzini M, Niccolai G, Paolini D, Varone O, Bartoloni A, Bartalesi F, Santini MG, Baretti S, Bonito C, Zini P, Mechi MT, Niccolini F, Magistri L, Pulci MB, Boccalini S, Bechini A. Recommended vaccinations for asplenic and hyposplenic adult patients. Hum Vaccin Immunother 2017; 13:359-368. [PMID: 27929751 PMCID: PMC5328222 DOI: 10.1080/21645515.2017.1264797] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Asplenic or hyposplenic (AH) individuals are particularly vulnerable to invasive infections caused by encapsulated bacteria. Such infections have often a sudden onset and a fulminant course. Infectious diseases (IDs) incidence in AH subjects can be reduced by preventive measures such as vaccination. The aim of our work is to provide updated recommendations on prevention of infectious diseases in AH adult patients, and to supply a useful and practical tool to healthcare workers for the management of these subjects, in hospital setting and in outpatients consultation. A systematic literature review on evidence based measures for the prevention of IDs in adult AH patients was performed in 2015. Updated recommendations on available vaccines were consequently provided. Vaccinations against S. pneumoniae, N. meningitidis, H. influenzae type b and influenza virus are strongly recommended and should be administered at least 2 weeks before surgery in elective cases or at least 2 weeks after the surgical intervention in emergency cases. In subjects without evidence of immunity, 2 doses of live attenuated vaccines against measles-mumps-rubella and varicella should be administered 4-8 weeks apart from each other; a booster dose of tetanus, diphtheria and pertussis vaccine should be administered also to subjects fully vaccinated, and a 3-dose primary vaccination series is recommended in AH subjects with unknown or incomplete vaccination series (as in healthy people). Evidence based prevention data support the above recommendations to reduce the risk of infection in AH individuals.
Collapse
Affiliation(s)
- Paolo Bonanni
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Maddalena Grazzini
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Giuditta Niccolai
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Diana Paolini
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Ornella Varone
- Specialization Medical School of Hygiene and Preventive Medicine, University of Florence, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Italy and Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Filippo Bartalesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy and Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Maria Grazia Santini
- Operative Unit of Hygiene and Public Health, Local Health Unit of Florence, Regional Health Service, Florence, Italy
| | - Simonetta Baretti
- Operative Unit of Hygiene and Public Health, Local Health Unit of Florence, Regional Health Service, Florence, Italy
| | - Carlo Bonito
- Operative Unit of Hygiene and Public Health, Local Health Unit of Florence, Regional Health Service, Florence, Italy
| | - Paola Zini
- Operative Unit of Hygiene and Public Health, Local Health Unit of Florence, Regional Health Service, Florence, Italy
| | - Maria Teresa Mechi
- Tuscany Region, Rights of Citizenship and Social Cohesion, Florence, Italy
| | | | - Lea Magistri
- Health Direction, Careggi University Hospital, Florence, Italy
| | | | - Sara Boccalini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Bechini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Deciphering the Burden of Meningococcal Disease: Conventional and Under-recognized Elements. J Adolesc Health 2016; 59:S12-20. [PMID: 27449145 DOI: 10.1016/j.jadohealth.2016.03.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/21/2022]
Abstract
Invasive meningococcal disease remains a substantial global public health burden despite being vaccine-preventable worldwide. More than one million cases are reported annually, with average fatality rates ranging from 10% to 40% depending on clinical presentation and geographic location. Survivors may suffer debilitating sequelae that reduce the quality of life for the patient and family members responsible for their care. Major financial burdens are associated with acute treatment and follow-up care, and outbreak management often places extensive financial strains on public health resources. Although the clinical and financial aspects of meningococcal disease burden are straightforward to quantify, other burdens such as lifelong cognitive deficits, psychological stress, adaptive measures for reintegration into society, familial impact, and legal costs are systematically overlooked. These and other facets of disease burden are therefore not systematically considered in cost-effectiveness analyses that public health authorities take into consideration when making decisions regarding vaccination programs. Changing the approach for measuring meningococcal disease burden is necessary to accurately understand the societal consequences of this devastating illness. In this article, the conventional and under-recognized burdens of meningococcal disease are presented and discussed.
Collapse
|
4
|
Gandhi A, Balmer P, York LJ. Characteristics of a new meningococcal serogroup B vaccine, bivalent rLP2086 (MenB-FHbp; Trumenba®). Postgrad Med 2016; 128:548-56. [PMID: 27467048 DOI: 10.1080/00325481.2016.1203238] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a common cause of bacterial meningitis, often leading to permanent sequelae or death. N. meningitidis is classified into serogroups based on the composition of the bacterial capsular polysaccharide; the 6 major disease-causing serogroups are designated A, B, C, W, X, and Y. Four of the 6 disease-causing serogroups (A, C, Y, and W) can be effectively prevented with available quadrivalent capsular polysaccharide protein conjugate vaccines; however, capsular polysaccharide conjugate vaccines are not effective against meningococcal serogroup B (MnB). There is no vaccine available for serogroup X. The public health need for an effective serogroup B vaccine is evident, as MnB is the most common cause of meningococcal disease in the United States and is responsible for almost half of all cases in persons aged 17 to 22 years. In fact, serogroup B meningococci were responsible for the recent meningococcal disease outbreaks on college campuses. However, development of a suitable serogroup B vaccine has been challenging, as serogroup B polysaccharide-based vaccines were found to be poorly immunogenic. Vaccine development for MnB focused on identifying potential outer membrane protein targets that elicit broadly protective immune responses across strains from the vast number of proteins that exist on the bacterial surface. Human factor H binding protein (fHBP; also known as LP2086), a conserved surface-exposed bacterial lipoprotein, was identified as a promising vaccine candidate. Two recombinant protein-based serogroup B vaccines that contain fHBP have been successfully developed and licensed in the United States under an accelerated approval process: bivalent rLP2086 (MenB-FHbp; Trumenba®) and 4CMenB (MenB-4 C; Bexsero®). This review will focus on bivalent rLP2086 only, including vaccine components, mechanism of action, and potential coverage across serogroup B strains in the United States.
Collapse
Affiliation(s)
- Ashesh Gandhi
- a United States Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| | - Paul Balmer
- b Global Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| | - Laura J York
- b Global Medical and Scientific Affairs , Pfizer Vaccines , Collegeville , PA , USA
| |
Collapse
|
5
|
Pooled-sera hSBA titres predict individual seroprotection in infants and toddlers vaccinated with 4CMenB. Vaccine 2016; 34:2579-84. [DOI: 10.1016/j.vaccine.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022]
|
6
|
Abstract
For decades, there was no licensed vaccine for prevention of endemic capsular group B meningococcal disease, despite the availability of vaccines for prevention of the other most common meningococcal capsular groups. Recently, however, two new vaccines have been licensed for prevention of group B disease. Although immunogenic and considered to have an acceptable safety profile, there are many scientific unknowns about these vaccines, including effectiveness against antigenically diverse endemic meningococcal strains; duration of protection; whether they provide any herd protection; and whether there will be meningococcal antigenic changes that will diminish effectiveness over time. In addition, these vaccines present societal dilemmas that could influence how they are used in the U.S., including high vaccine cost in the face of a historically low incidence of meningococcal disease. These issues are discussed in this review.
Collapse
Affiliation(s)
- Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA USA.
| |
Collapse
|
7
|
Bousema JCM, Ruitenberg J. Need for Optimisation of Immunisation Strategies Targeting Invasive Meningococcal Disease in the Netherlands. Int J Health Policy Manag 2015; 4:757-61. [PMID: 26673336 DOI: 10.15171/ijhpm.2015.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/11/2015] [Indexed: 11/09/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a severe bacterial infectious disease with high mortality and morbidity rates worldwide. In recent years, industrialised countries have implemented vaccines targeting IMD in their National Immunisation Programmes (NIPs). In 2002, the Netherlands successfully implemented a single dose of meningococcal serogroup C conjugate vaccine at the age of 14 months and performed a single catch-up for children ≤18 years of age. Since then the disease disappeared in vaccinated individuals. Furthermore, herd protection was induced, leading to a significant IMD reduction in non-vaccinated individuals. However, previous studies revealed that the current programmatic immunisation strategy was insufficient to protect the population in the foreseeable future. In addition, vaccines that provide protection against additional serogroups are now available. This paper describes to what extent the current strategy to prevent IMD in the Netherlands is still sufficient, taking into account the burden of disease and the latest scientific knowledge related to IMD and its prevention. In particular, primary MenC immunisation seems not to provide long-term protection, indicating a risk for possible recurrence of the disease. This can be combatted by implementing a MenC or MenACWY adolescent booster vaccine. Additional health benefits can be achieved by replacing the primary MenC by a MenACWY vaccine. By implementation of a recently licensed MenB vaccine for infants in the NIP, the greatest burden of disease would be targeted. This paper shows that optimisation of the immunisation strategy targeting IMD in the Netherlands should be considered and contributes to create awareness concerning prevention optimisation in other countries.
Collapse
Affiliation(s)
| | - Joost Ruitenberg
- Athena Institute, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Vaccines for prevention of group B meningococcal disease: Not your father's vaccines. Vaccine 2015; 33 Suppl 4:D32-8. [PMID: 26116255 DOI: 10.1016/j.vaccine.2015.05.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
For decades, there was no licensed vaccine for prevention of endemic capsular group B meningococcal disease, despite the availability of vaccines for prevention of the other most common meningococcal capsular groups. Recently, however, two new vaccines have been licensed for prevention of group B disease. Although immunogenic and considered to have an acceptable safety profile, there are many scientific unknowns about these vaccines, including effectiveness against antigenically diverse endemic meningococcal strains; duration of protection; whether they provide any herd protection; and whether there will be meningococcal antigenic changes that will diminish effectiveness over time. In addition, these vaccines present societal dilemmas that could influence how they are used in the U.S., including high vaccine cost in the face of a historically low incidence of meningococcal disease. These issues are discussed in this review.
Collapse
|