1
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
2
|
Liu J, Li Y, Liu T, Shi Y, Wang Y, Wu J, Qi Y. Novel Biomarker Panel of Let-7d-5p and MiR-140-5p Can Distinguish Latent Tuberculosis Infection from Active Tuberculosis Patients. Infect Drug Resist 2023; 16:3847-3859. [PMID: 37346367 PMCID: PMC10281287 DOI: 10.2147/idr.s412116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) survives inside a human host for a long time in the form of latent tuberculosis infection (LTBI). Latent infection of tuberculosis has the opportunity of developing into active tuberculosis (ATB), which has greatly endangered human health. The existing diagnostic methods cannot effectively distinguish LTBI from ATB. Therefore, more effective diagnostic biomarkers and methods are urgently needed. Methods Here, we screened the GEO data set, conducted joint differential analysis and target gene enrichment analysis, after filtering the disease-related database, we screened the differential miRNA related to TB. The qPCR was used to verify the miRNAs in 84 serum samples. Different combinations of biomarkers were evaluated by logistic regression to obtain a biomarker panel with good performance for diagnosing LTBI. Results A panel with two miRNAs (hsa-let-7d-5p, hsa-miR-140-5p) was established to differentiate LTBI from ATB. Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) are 0.930 (sensitivity = 100%, specificity = 88.5%) and 0.923 (sensitivity = 100%, specificity = 92.3%) with the biomarker panel for the training set and test set respectively. Conclusion The findings indicated that the logistic regression model built by let-7d-5p and miR-140-5p has the ability to distinguish LTBI from active TB patients.
Collapse
Affiliation(s)
- Jiaxing Liu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, People’s Republic of China
| | - Ye Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Ting Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yuru Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Jing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| | - Yingjie Qi
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, People’s Republic of China
| |
Collapse
|
3
|
Ostovar T, Rezaei S, Shokri-Afra H, Samavarchi Tehrani S, Namvarjah F, Aliabadi M, Effatpanah H, Moradi-Sardareh H. Effect of Capparis spinosa Fruit Hydroalcoholic Extract on Paraquat-Induced Pulmonary Fibrosis in the Rat. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:423-434. [PMID: 39006195 PMCID: PMC11240055 DOI: 10.22088/ijmcm.bums.12.4.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/07/2023] [Accepted: 04/08/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis (PF) is a lethal inflammatory disease and there has been no effective medication for this progressive disease up to now. Paraquat is commonly used in agricultural settings to control weed growth and is one of the important risk factors for PF. Additionally, emerging evidence has demonstrated Capparis spinosa (C. spinose) fruit extract has anti-fibrotic, anti-inflammatory, and antioxidant properties. We aimed to evaluate whether C. spinose fruit hydroalcoholic extract has a positive effect against Paraquat-induced PF in rats. 30 male Wistar rats were randomly divided into 5 groups, which included: a control group, a Paraquat control group, a C. spinose group with a dose of 20 mg/kg, a C. spinose group with a dose of 30 mg/kg, a C. spinose group with a dose of 50 mg/kg. After 21 days of the treatment, levels of hydroxyproline and malondialdehyde (MDA) in lung tissue were assessed and lung indices and semi-quantitative histopathological changes were determined. The results showed that treatment with C. spinose, led to increased weight gain, whereas reduced lung weight. C. spinose demonstrated a decreasing effect on levels of MDA, and hydroxyproline in lung tissue. Moreover, histopathological data and the number of lung indices indicated the preventive role of C. spinose Paraquat-induced PF in rats.
Collapse
Affiliation(s)
- Tahmine Ostovar
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sahar Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hajar Shokri-Afra
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran.
| | - Fatemeh Namvarjah
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoume Aliabadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosein Effatpanah
- Department of Public Health, Asadabad School of Medical Sciences, Asadabad, Iran.
| | | |
Collapse
|
4
|
Huang J, Cao Y, Li X, Yu F, Han X. E2F1 regulates miR-215-5p to aggravate paraquat-induced pulmonary fibrosis via repressing BMPR2 expression. Toxicol Res (Camb) 2022; 11:940-950. [PMID: 36569483 PMCID: PMC9773066 DOI: 10.1093/toxres/tfac071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023] Open
Abstract
Background Pulmonary fibrosis is considered to be an irreversible lung injury, which can be caused by paraquat (PQ) poisoning. MiRNAs have been demonstrated crucial roles in pulmonary fibrosis caused by numerous approaches including PQ induction. The purpose of this study was to investigate the role and the underlying mechanism of miR-215 in PQ-induced pulmonary fibrosis. Methods The cell and animal models of pulmonary fibrosis were established through PQ intervention. Cell viability was performed to test by MTT assay. Immunofluorescence assay was used to detect COL1A1 expression and its location. The relationships among E2F1, miR-215-5p, and BMPR2 were validated by dual luciferase reporter gene assay, chromatin immunoprecipitation and RNA-binding protein immunoprecipitation. Lung morphology was evaluated by hematoxylin and eosin staining. Results MiR-215-5p was upregulated in PQ-induced pulmonary fibrosis in vitro and in vivo. MiR-215-5p silencing relieved PQ-induced pulmonary fibrosis progression by enhancing cell viability and reducing the expression of fibrosis-related markers (COL1A1, COL3A1, and α-SMA). Mechanistically, miR-215-5p directly targeted BMRP2. BMPR2 knockdown abolished the suppressive effects of miR-215-5p knockdown on PQ-induced pulmonary fibrosis. In addition, E2F1 interacted with miR-215-5p promoter and positively regulated miR-215-5p expression. E2F1 downregulation reduced miR-215-5p level and promoted BMPR2 level via regulating TGF-β/Smad3 pathway, and then suppressed PQ-induced pulmonary fibrosis, whereas these effects were compromised by miR-215-5p sufficiency. Conclusion MiR-215-5p was activated by E2F1 to repress BMPR2 expression and activate TGF-β/Smad3 pathway, which aggravated PQ-induced pulmonary fibrosis progression. Targeting the E2F1/miR-215-5p/BMPR2 axis might be a new approach to alleviate PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Jie Huang
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Yan Cao
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiang Li
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Fang Yu
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| | - Xiaotong Han
- Emergency Department, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
| |
Collapse
|
5
|
lncRNA TUG1 regulates hyperuricemia-induced renal fibrosis in a rat model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1365-1375. [PMID: 36148952 PMCID: PMC9828301 DOI: 10.3724/abbs.2022128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis is most common among chronic kidney diseases. Molecular studies have shown that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) participate in renal fibrosis, while the roles of lncRNA taurine upregulated gene 1 (TUG1) and miR-140-3p in hyperuricemia-induced renal fibrosis remain less investigated. In this study, a rat hyperuricemia model is constructed by oral administration of adenine. TUG1, miR-140-3p, and cathepsin D (CtsD) expression levels in rat models are measured. After altering TUG1, miR-140-3p, or CtsD expression in modelled rats, biochemical indices, including uric acid (UA), serum creatine (SCr), blood urea nitrogen (BUN), and 24-h urine protein are detected, pathological changes in the renal tissues, and renal fibrosis are examined. In renal tissues from hyperuricemic rats, TUG1 and CtsD are upregulated, while miR-140-3p is downregulated. Inhibiting TUG1 or CtsD or upregulating miR-140-3p relieves renal fibrosis in hyperuricemic rats. Downregulated miR-140-3p reverses the therapeutic effect of TUG1 reduction, while overexpression of CtsD abolishes the role of miR-140-3p upregulation in renal fibrosis. Collectively, this study highlights that TUG1 inhibition upregulates miR-140-3p to ameliorate renal fibrosis in hyperuricemic rats by inhibiting CtsD.
Collapse
|
6
|
Pei K, Cao L, Cao G, Cai H, Ning Y, Zhao T, Sun L, Liu H, Zhang S. A Reasonable Evaluation of Chuanxiong Rhizoma Processing with Wine through Comparative Pharmacokinetic Study of Bioactive Components: Dominant Effect on Middle Cerebral Artery Occlusion Model Rats. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8252038. [PMID: 35321518 PMCID: PMC8938140 DOI: 10.1155/2022/8252038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/06/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
According to the ancient documents and Chinese herbal medicine processing experience, Chuanxiong Rhizoma was usually processed with yellow rice wine to improve efficacy. However, the relevant mechanisms are still unclear so far. In this study, a validated ultrahigh-performance liquid chromatography tandem mass spectrometry method was used to compare the pharmacokinetics of four representative components in middle cerebral artery occlusion rats after oral administration of raw and wine-processed Chuanxiong Rhizoma. The neurobehavioral scores and 2,3,5-triphenyltetrazolium chloride staining were employed to evaluate the model. Biological samples were prepared by protein precipitation with methanol. All analytes were separated on an ACQUITY BEH C18 column through gradient elution using acetonitrile and 0.01% of formic acid as mobile phase, and the flow rate was 0.3 mL/min. The results showed that the maximum plasma concentrations, the area values under the concentration-time curves of senkyunolide A, and ferulic acid in wine-processed Chuanxiong Rhizoma were all higher than in raw Chuanxiong Rhizoma, which were completely opposite to our previous studies in normal rats. Compared with normal rats, the theory that wine processing could enhance the efficacy of Chuanxiong Rhizoma may be better reflected in model rats.
Collapse
Affiliation(s)
- Ke Pei
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lilong Cao
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Gang Cao
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Ning
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Zhao
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lin Sun
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Haixin Liu
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Shuosheng Zhang
- Shanxi Engineering Laboratory of Modern Chinese Medicine, School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
7
|
Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP, Wang CM. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis 2020; 11:978. [PMID: 33188176 PMCID: PMC7666141 DOI: 10.1038/s41419-020-03178-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is featured with inflammation and extensive lung remodeling caused by overloaded deposition of extracellular matrix. Scutellarin is the major effective ingredient of breviscapine and its anti-inflammation efficacy has been reported before. Nevertheless, the impact of scutellarin on IPF and the downstream molecular mechanism remain unclear. In this study, scutellarin suppressed BLM-induced inflammation via NF-κB/NLRP3 pathway both in vivo and in vitro. BLM significantly elevated p-p65/p65 ratio, IκBα degradation, and levels of NLRP3, caspase-1, caspase-11, ASC, GSDMDNterm, IL-1β, and IL-18, while scutellarin reversed the above alterations except for that of caspase-11. Scutellarin inhibited BLM-induced epithelial-mesenchymal transition (EMT) process in vivo and in vitro. The expression levels of EMT-related markers, including fibronectin, vimentin, N-cadherin, matrix metalloproteinase 2 (MMP-2) and MMP-9, were increased in BLM group, and suppressed by scutellarin. The expression level of E-cadherin showed the opposite changes. However, overexpression of NLRP3 eliminated the anti-inflammation and anti-EMT functions of scutellarin in vitro. In conclusion, scutellarin suppressed inflammation and EMT in BLM-induced pulmonary fibrosis through NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Ling Peng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Qing-Feng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China
| | - Jie Meng
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Cheng-Ping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Key Site of the National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
| | - Chang-Ming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541002, P.R. China.
| |
Collapse
|