1
|
Elizabeth E, Rohmawaty E, Bashari MH. The Effects of Turmeric and Mangosteen Pericarp Ethanol Extract on Eosinophil Count, TNF-α and TGF-β1 Gene Expression in Asthmatic Rat Model. J Exp Pharmacol 2024; 16:397-411. [PMID: 39502830 PMCID: PMC11537174 DOI: 10.2147/jep.s471113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Background Asthma is a chronic respiratory disease that is characterized by inflammation, bronchial hyperreactivity, and airway remodeling. The long-term use of corticosteroids at high doses causes various side effects. Traditional herbal medicine has been suggested as an alternative therapy that is safe and effective in dealing with asthma. Natural plants such as turmeric and mangosteen are known to treat asthma and reduce inflammation. Objective The purpose of this study was to investigate the effects of turmeric and mangosteen pericarp ethanol extracts on the eosinophil counts, TNF-α and TGF-β1 gene expression, and inflammatory cell counts in the histopathology of an asthmatic rat model. Methods The preliminary study used 30 rats, which were divided into a normal group, negative control group (OVA-sensitized), turmeric normal group, mangosteen group, and positive control group. Blood samples were collected after the sensitization period to determine eosinophil counts. TNF-α and TGF-β1 gene expression, and histopathology were observed in the rat's lungs. The follow-up study used 30 rats divided into a normal group, negative control group (OVA-sensitized), combination of turmeric and mangosteen group (54m/200gr rats, 36mg/200gr rats, and 36mg/200gr rats), and positive control group. The examination procedures were the same as in the preliminary study. Results The administration of single ethanol extracts of turmeric and mangosteen significantly decreased eosinophils and improved the histopathological features of the lungs (inflammatory cell counts, bronchial inflammatory score, and bronchial smooth muscle thickness) (p<0.05). The combination of turmeric and mangosteen extracts at all doses significantly decreased eosinophils and improved the histopathological features of the lungs (inflammatory cell counts, bronchial inflammatory score, and bronchial smooth muscle thickness) (p<0.05). Both the single and combined administration of turmeric and mangosteen ethanol extracts did not cause significant changes in TNF-alpha and TGF-beta (p>0.05). Conclusion Turmeric ethanol extract and mangosteen pericarp ethanol extract have a reductional effect on the parameters of asthma based on the eosinophil counts, the inflammatory cell counts and score, and bronchial smooth muscle thickness.
Collapse
Affiliation(s)
- Elizabeth Elizabeth
- Postgraduate Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
- Department of Pharmacology, Faculty of Medicine, Universitas Kristen Maranatha, West Java, Indonesia
| | - Enny Rohmawaty
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, Indonesia
| |
Collapse
|
2
|
Li Z, Li C, Chen B, Li B, Huang G, Huang Y, Hou Y, Zhong P, Jin J, Li D, Tsim KWK, Gan L, Chen WH, Wu R. Parabacteroides goldsteinii enriched by Pericarpium Citri Reticulatae 'Chachiensis' polysaccharides improves colitis via the inhibition of lipopolysaccharide-involved PI3K-Akt signaling pathway. Int J Biol Macromol 2024; 277:133726. [PMID: 39084973 DOI: 10.1016/j.ijbiomac.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Epidemiological and preclinical studies have indicated a factual association between gut microbiota dysbiosis and high incidence of colitis. Dietary polysaccharides can specifically shift the composition of gut microbiome response to colitis. Here we validated the preventive role of polysaccharides from Pericarpium Citri Reticulatae 'Chachiensis' (PCRCP), a well-known traditional Chinese medicine, in colitis induced by dextrose sodium sulfate (DSS) in both rats and mice. We found that treatment with PCRCP not only significantly reduced DSS-induced colitis via down-regulating colonic inflammatory signaling pathways including PI3K-Akt, NLRs and NF-κB, but also enhanced colonic barrier integrity in rats. These protective activities of PCRCP against DSS-induced injuries in rats were in part due to the modulation of the gut microbiota revealed by both broad-spectrum antibiotic (ABX)-deleted bacterial and non-oral treatments. Furthermore, the improvement of PCRCP on colitis was impaired by intestinal neomycin-sensitive bacteria in DSS-exposed mice. Specifically, in vivo and in vitro treatment with PCRCP led to a highly sensible enrichment in the gut commensal Parabacteroides goldsteinii. Administration of Parabacteroides goldsteinii significantly alleviated typical symptoms of colitis and suppressed the activation of PI3K-Akt-involved inflammatory response in DSS-exposed mice. The anti-colitic effects of Parabacteroides goldsteinii were abolished after the activation of PI3K-Akt signaling pathway by lipopolysaccharide treatment in mice exposed to DSS. This study provides new insights into an anti-colitic mechanism driven by PCRCP and highlights the potential prebiotic of Parabacteroides goldsteinii for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zi Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Chengguo Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen 529100, PR China; Guangdong Xinbaotang Pharmaceutical Co. Ltd., Jiangmen 529100, PR China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Gang Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yuhao Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yajun Hou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Pengjun Zhong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Lishe Gan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Rihui Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
3
|
Zhang XM, Huang YC, Chen BZ, Li Q, Wu PP, Chen WH, Wu RH, Li C. Water decoction of Pericarpium citri reticulatae and Amomi fructus ameliorates alcohol-induced liver disease involved in the modulation of gut microbiota and TLR4/NF-κB pathway. Front Pharmacol 2024; 15:1392338. [PMID: 38966547 PMCID: PMC11222602 DOI: 10.3389/fphar.2024.1392338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Alcohol consumption alters the diversity and metabolic activities of gut microbiota, leading to intestinal barrier dysfunction and contributing to the development of alcoholic liver disease (ALD), which is the most prevalent cause of advanced liver diseases. In this study, we investigated the protective effects and action mechanism of an aqueous extraction of Pericarpium citri reticulatae and Amomi fructus (PFE) on alcoholic liver injury. Methods C57BL/6 mice were used to establish the mouse model of alcoholic liver injury and orally administered 500 and 1,000 mg/kg/d of PFE for 2 weeks. Histopathology, immunohistochemistry, immunofluorescence, Western blotting, qRT-PCR, and 16S rDNA amplicon sequencing were used to analyze the mechanism of action of PFE in the treatment of alcohol-induced liver injury. Results Treatment with PFE significantly improved alcohol-induced liver injury, as illustrated by the normalization of serum alanine aminotransferase, aspartate aminotransferase, total triglyceride, and cholesterol levels in ALD mice in a dose-dependent manner. Administration of PFE not only maintained the intestinal barrier integrity prominently by upregulating mucous production and tight junction protein expressions but also sensibly reversed the dysregulation of intestinal microecology in alcohol-treated mice. Furthermore, PFE treatment significantly reduced hepatic lipopolysaccharide (LPS) and attenuated oxidative stress as well as inflammation related to the TLR4/NF-κB signaling pathway. The PFE supplementation also significantly promoted the production of short-chain fatty acids (SCFAs) in the ALD mice. Conclusion Administration of PFE effectively prevents alcohol-induced liver injury and may also regulate the LPS-involved gut-liver axis; this could provide valuable insights for the development of drugs to prevent and treat ALD.
Collapse
Affiliation(s)
- Xing-Min Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Yue-Chang Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Bai-Zhong Chen
- Guangdong Xinbaotang Biotechnology Co., Ltd., Jiangmen, China
| | - Qian Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Pan-Pan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Ri-Hui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
4
|
Sun W, Mei X, Wang J, Mai Z, Xu D. Zn(II)-curcumin prevents cadmium-aggravated diabetic nephropathy by regulating gut microbiota and zinc homeostasis. Front Pharmacol 2024; 15:1411230. [PMID: 38903987 PMCID: PMC11188322 DOI: 10.3389/fphar.2024.1411230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Diabetic nephropathy (DN) is known as the most common complication of diabetes, resulting from a complex inheritance-environment interaction without effective clinical treatments. Herein, we revealed the protective effects and mechanisms of Zn(II)-curcumin, a curcumin derivative, against streptozotocin-induced DN in rats in the presence or absence of cadmium exposure. Methods: The present study focused on investigating the therapy of Zn(II)-curcumin against cadmium-aggravated DN by regulating gut microbiota, metabolism, inflammation and zinc homeostasis based on pathological changes, TLR4/NF-κB signaling pathway, inductively coupled plasma-mass spectrometry (ICP-MS), 16S rRNA gene sequencing and gas chromatography-mass spectrometer (GC-MS). Results: We found Zn(II)-curcumin significantly mitigated the cadmium-aggravated phenotypes of diabetic nephropathy, as indicated by the remission of renal dysfunction, pathological changes, inflammation and zinc dyshomeostasis in streptozotocin-treated rats exposed to cadmium. Administration of Zn(II)-curcumin significantly alleviated the dysbiosis of gut microbiota and the changes of serum metabolite profiles in rats treated with streptozotocin in combination with cadmium. Notably, fecal microbial transplantation identified the ability of Zn(II)-curcumin to regulate renal function, inflammation and zinc homeostasis was partly dependent on the gut microbiota. Conclusion: These findings revealed that Zn(II)-curcumin alleviated cadmium-aggravated diabetic nephropathy by reshaping the gut microbiota and zinc homeostasis, which provided unique insights into the mechanisms of the treatment and prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Wenjia Sun
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueting Mei
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Wang
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Mai
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Donghui Xu
- Laboratory of Traditional Chinese Medicine and Marine Drugs, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Song X, Wang W, Liu L, Zhao Z, Shen X, Zhou L, Zhang Y, Peng D, Nian S. Poria cocos Attenuated DSS-Induced Ulcerative Colitis via NF-κB Signaling Pathway and Regulating Gut Microbiota. Molecules 2024; 29:2154. [PMID: 38731645 PMCID: PMC11085930 DOI: 10.3390/molecules29092154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Wei Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Li Liu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Zitong Zhao
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Lingyun Zhou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Yuanxiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
- Xin’an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; (X.S.); (W.W.); (L.L.); (Z.Z.); (X.S.)
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu 241002, China
- Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu 241002, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
6
|
Cao X, Yu C, Cheng S, Wang Y, Zhang Z, Huang J. Co-Delivery of Astaxanthin and si TGF-β1 via Ionizable Liposome Nanoparticles for Improved Idiopathic Pulmonary Fibrosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597290 DOI: 10.1021/acsami.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Alleviating the injury of type II alveolar epithelial cells (AEC 2s) and inhibiting the activation and differentiation of fibroblasts are significant for improving the therapeutic effect of idiopathic pulmonary fibrosis (IPF). To this aim, ionizable liposome nanoparticles (ASNPs) coloaded with antioxidant drug astaxanthin (AST) and small interfering RNA targeting transforming growth factor β1 (siTGF-β1) were developed for enhanced IPF therapy. ASNPs showed high loading and intracellular delivery efficiency for AST and siTGF-β1. After the injection of ASNPs in an IPF mice model, the loaded AST largely scavenged reactive oxygen species (ROS) in the diseased lung to reduce AEC2 apoptosis, thereby ensuring the integrity of the alveolar epithelium. Meanwhile, siTGF-β1, delivered by ASNPs, significantly silenced the expression of TGF-β1 in fibroblasts, inhibiting the differentiation of fibroblasts into myofibroblasts as well as reducing the excessive deposition of extracellular matrix (ECM). The combined use of the two drugs exhibited an excellent synergistic antifibrotic effect and was conducive to minimizing alveolar epithelial damage. This work provides a codelivery strategy of AST and siTGF-β1, which shows great promise for the treatment of IPF by simultaneously reducing alveolar epithelial damage and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
7
|
Wu YJ, Zhang SS, Yin Q, Lei M, Wang QH, Chen WG, Luo TT, Zhou P, Ji CL. α-Mangostin Inhibited M1 Polarization of Macrophages/Monocytes in Antigen-Induced Arthritis Mice by Up-Regulating Silent Information Regulator 1 and Peroxisome Proliferators-Activated Receptor γ Simultaneously. Drug Des Devel Ther 2023; 17:563-577. [PMID: 36860800 PMCID: PMC9969869 DOI: 10.2147/dddt.s397914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background α-Mangostin (MG) showed the potentials in alleviating experimental arthritis, inhibiting inflammatory polarization of macrophages/monocytes, and regulating peroxisome proliferators-activated receptor γ (PPAR-γ) and silent information regulator 1 (SIRT1) signals. The aim of this study was to analyze the correlations among the above-mentioned properties. Methods Antigen-induced arthritis (AIA) was established in mouse, which was treated with MG in combination with SIRT1/PPAR-γ inhibitors to clarify the role of the two signals in the anti-arthritic actions. Pathological changes were systematically investigated. Phenotypes of cells were investigated by flow cytometry. Expression and co-localization of SIRT1 and PPAR-γ proteins in joint tissues were observed by the immunofluorescence method. Finally, clinical implications from the synchronous up-regulation of SIRT1 and PPAR-γ were validated by experiments in vitro. Results SIRT1 and PPAR-γ inhibitors (nicotinamide and T0070097) reduced the therapeutic effects of MG on AIA mice, and abrogated MG-induced up-regulation of SIRT1/PPAR-γ and inhibition of M1 polarization in macrophages/monocytes. MG has a good binding affinity to PPAR-γ, and MG promoted the co-expression of SIRT1 and PPAR-γ in joints. Synchronously activating SIRT1 and PPAR-γ was revealed to be necessary by MG to repress inflammatory responses in THP-1 monocytes. Conclusion MG binds PPAR-γ and excites this signaling to initiate ligand-dependent anti-inflammatory activity. Due to certain unspecified signal transduction crosstalk mechanism, it then promoted SIRT1 expression and further limited inflammatory polarization of macrophages/monocytes in AIA mice.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China,Vascular Diseases Research Center of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ming Lei
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230000, People’s Republic of China,Correspondence: Peng Zhou; Cong-Lan Ji, Email ;
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, 241000, People’s Republic of China,Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
8
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Antidotal and protective effects of mangosteen ( Garcinia mangostana) against natural and chemical toxicities: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:492-503. [PMID: 37051107 PMCID: PMC10083825 DOI: 10.22038/ijbms.2023.66900.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 04/14/2023]
Abstract
Chemical and natural toxic compounds can harm human health through a variety of mechanisms. Nowadays, herbal therapy is widely accepted as a safe method of treating toxicity. Garcinia mangostana (mangosteen) is a tree in the Clusiaceae family, and isoprenylated xanthones, its main constituents, are a class of secondary metabolites having a variety of biological properties, such as anti-inflammatory, anti-oxidant, pro-apoptotic, anti-proliferative, antinociceptive, neuroprotective, hypoglycemic, and anti-obesity. In this review, the protective activities of mangosteen and its major components against natural and chemical toxicities in both in vivo and in vitro experiments were evaluated. The protective effects of mangosteen and its components are mediated primarily through oxidative stress inhibition, a decrease in the number of inflammatory cells such as lymphocytes, neutrophils, and eosinophils, reduction of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), prostaglandin (PG) E2, inducible nitric oxide synthase, and nuclear factor-ĸB (NF-ĸB), modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways, reducing p65 entrance into the nucleus, α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGFβ1), improving histological conditions, and inhibition in acetylcholinesterase activity.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-5138819042; Fax: +98-5138823251;
| |
Collapse
|
9
|
John OD, Mushunje AT, Surugau N, Mac Guad R. The metabolic and molecular mechanisms of α‑mangostin in cardiometabolic disorders (Review). Int J Mol Med 2022; 50:120. [PMID: 35904170 PMCID: PMC9354700 DOI: 10.3892/ijmm.2022.5176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
α‑mangostin is a xanthone predominantly encountered in Garcinia mangostana. Extensive research has been carried out concerning the effects of this compound on various diseases, including obesity, cancer and metabolic disorders. The present review suggests that α‑mangostin exerts promising anti‑obesity, hepatoprotective, antidiabetic, cardioprotective, antioxidant and anti‑inflammatory effects on various pathways in cardiometabolic diseases. The anti‑obesity effects of α‑mangostin include the reduction of body weight and adipose tissue size, the increase in fatty acid oxidation, the activation of hepatic AMP‑activated protein kinase and Sirtuin‑1, and the reduction of peroxisome proliferator‑activated receptor γ expression. Hepatoprotective effects have been revealed, due to reduced fibrosis through transforming growth factor‑β 1 pathways, reduced apoptosis and steatosis through reduced sterol regulatory‑element binding proteins expression. The antidiabetic effects include decreased fasting blood glucose levels, improved insulin sensitivity and the increased expression of GLUT transporters in various tissues. Cardioprotection is exhibited through the restoration of cardiac functions and structure, improved mitochondrial functions, the promotion of M2 macrophage populations, reduced endothelial and cardiomyocyte apoptosis and fibrosis, and reduced acid sphingomyelinase activity and ceramide depositions. The antioxidant effects of α‑mangostin are mainly related to the modulation of antioxidant enzymes, the reduction of oxidative stress markers, the reduction of oxidative damage through a reduction in Sirtuin 3 expression mediated by phosphoinositide 3‑kinase/protein kinase B/peroxisome proliferator‑activated receptor‑γ coactivator‑1α signaling pathways, and to the increase in Nuclear factor‑erythroid factor 2‑related factor 2 and heme oxygenase‑1 expression levels. The anti‑inflammatory effects of α‑mangostin include its modulation of nuclear factor‑κB related pathways, the suppression of mitogen‑activated protein kinase activation, increased macrophage polarization to M2, reduced inflammasome occurrence, increased Sirtuin 1 and 3 expression, the reduced expression of inducible nitric oxide synthase, the production of nitric oxide and prostaglandin E2, the reduced expression of Toll‑like receptors and reduced proinflammatory cytokine levels. These effects demonstrate that α‑mangostin may possess the properties required for a suitable candidate compound for the management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Annals Tatenda Mushunje
- Faculty of Science, Asia-Pacific International University, Muak Lek, Saraburi 18180, Thailand
| | - Noumie Surugau
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
10
|
Chen WG, Zhang SS, Pan S, Wang ZF, Xu JY, Sheng XH, Yin Q, Wu YJ. α-Mangostin Treats Early-Stage Adjuvant-Induced Arthritis of Rat by Regulating the CAP-SIRT1 Pathway in Macrophages. Drug Des Devel Ther 2022; 16:509-520. [PMID: 35250263 PMCID: PMC8893152 DOI: 10.2147/dddt.s348836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Background Studies have found that α-mangostin (MG) can relieve experimental arthritis by activating cholinergic anti-inflammatory pathway (CAP). It affects the polarization of macrophages and the balance of related immune cell subpopulations, but the specific mechanism is still unclear. It has been found that silent information regulator 1 (SIRT1) is closely related to macrophage activity. The purpose of this study is to explore the mechanism of MG intervening in macrophage polarization during treatment of early adjuvant-induced (AIA) rats through the CAP-SIRT1 pathway. Methods We investigated the polarization of M1 macrophages and the differentiation of Th1 in AIA rats by flow cytometry. Activity of acetylcholinesterase (AChE) and the level of nicotinic adenine dinucleotide (NAD+) in serum were also detected, and immunohistochemical was used to detect the levels of α7 nicotinic cholinergic receptor (α7nAChR) and SIRT1. Then in macrophages, the molecular mechanism of MG regulating the abnormal activation of macrophages in rats with early AIA through the CAP-SIRT1 pathway was studied. Results MG can significantly inhibit the polarization of M1 macrophages and the differentiation of Th1 in AIA rats in the acute phase of inflammation. MG can significantly inhibit the activity of AChE and increase the level of NAD+, thereby further up-regulated the expression levels of α7nAChR and SIRT1. Meanwhile, MG inhibited nuclear factor-κB (NF-κB)-mediated inflammation by activating the CAP-SIRT1 pathway in macrophages. Conclusion In summary, the stimulation of MG induced CAP activation, which up-regulated SIRT1 signal, and thereby inhibited M1 polarization through the NF-κB pathway, and improved the pathological immune environment of early-stage AIA rats.
Collapse
Affiliation(s)
- Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Zhong-Fang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Jin-Ying Xu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Xue-He Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Graduate School, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China.,Xin'An Medicine Research Center, Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
11
|
Pan S, Wu YJ, Zhang SS, Cheng XP, Olatunji OJ, Yin Q, Zuo J. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 2022; 47:531-544. [PMID: 34783974 DOI: 10.1007/s11064-021-03480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
12
|
Zhang Y, Zheng L, Deng H, Feng D, Hu S, Zhu L, Xu W, Zhou W, Wang Y, Min K, Zhou Q, Chen Y, Zhou H, Yang H, Lv X. Electroacupuncture Alleviates LPS-Induced ARDS Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of Ferroptosis. Front Immunol 2022; 13:832432. [PMID: 35222419 PMCID: PMC8866566 DOI: 10.3389/fimmu.2022.832432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an uncontrollable, progressive pulmonary inflammatory disease, and as a common clinical critical disease, there is no effective treatment available. Electroacupuncture (EA) therapy is a type of traditional Chinese medicine physiotherapy that can alleviate the inflammatory response. However, the potential mechanism of EA in the treatment of ARDS is not yet clear. Ferroptosis is a new type of programmed cell death characterized by intracellular iron accumulation and lipid peroxidation. Recently, emerging evidence has shown that ferroptosis is closely related to the occurrence and development of ARDS caused by various pathological factors. Here, we further investigated whether EA-mediated inhibition of ferroptosis in lung tissue could attenuate lipopolysaccharide (LPS)-induced ARDS and explored its underlying mechanisms. In this study, mice were administered LPS intraperitoneally to establish a model of LPS-induced ARDS. We found that EA stimulation could not only reduce the exudation of inflammatory cells and proteins in the alveolar lumen but also significantly alleviate the pathological changes of lung tissue, inhibit the production of proinflammatory cytokines and improve the survival rate of mice. Concurrently, we also found that ferroptosis events occurred in the lung tissue of LPS-induced ARDS mice, manifested by elevated iron levels, ROS production and lipid peroxidation. Intriguingly, our results showed that EA stimulation at the Zusanli (ST36) acupoint activated α7 nicotinic acetylcholine receptor (α7nAchR) in lung tissue mainly through the sciatic nerve and cervical vagus nerve, thus exerting anti-ferroptosis and pulmonary protective effects. Additionally, these effects were eliminated by methyllycaconitine (MLA), a selective antagonist of α7nAchR. In vitro experiments, activation of α7nAchR protected alveolar epithelial cells from LPS-induced ferroptosis. Furthermore, our experiments showed that the pulmonary protective effects of EA stimulation were effectively reversed by erastin, a ferroptosis activator. Collectively, we demonstrated that EA stimulation could alleviate LPS-induced ARDS by activating α7nAchR to inhibit LPS-induced ferroptosis in alveolar epithelial cells. Targeting and regulating ferroptosis in alveolar epithelial cells may be a potential intervention approach for the treatment of LPS-induced ALI/ARDS in the future.
Collapse
Affiliation(s)
- Yiguo Zhang
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Ji CL, Dai S, Liu H, Dong JY, Liu CS, Zuo J. Polyphenols from Securidaca inappendiculata alleviated acute lung injury in rats by inhibiting oxidative stress sensitive pathways. CHINESE HERBAL MEDICINES 2021; 13:381-388. [PMID: 36118931 PMCID: PMC9476762 DOI: 10.1016/j.chmed.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Securidaca inappendiculata is a medicinal plant frequently used in the treatment of inflammatory diseases in south China. In this study, we aimed to explore its bioactive constituent which contributes to the anti-inflammatory activity. Methods Polyphenol-enriched and polyphenol-deprived fractions (PRF and PDF, respectively) were separated from the ethanolic extract by HPD300 macroporous resin-based method, and their anti-inflammatory activities were investigated on a lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats. The possible mechanism of action in alleviating acute inflammation was studied using RAW264.7 cells. Results Both Folin-Ciocalteu and 1H nuclear magnetic resonance (NMR) analyses showed that polyphenolic content in PRF was approximately 10 times higher than that of PDF, and this observation reflected in their antioxidative capacities. PRF but not PDF significantly decreased the level of malondialdehyde, suppressed the expression of nicotinamide phosphoribosyltransferase (NAMPT) protein, and improved the severity of ALI in rats. PRF at 10 μg/mL effectively downregulated the expression of proteins NAMPT, HMGB1, TLR4, and p-p65, and scavenged the intracellular reactive oxygen species (ROS) in LPS-primed RAW264.7 cells. N-acetyl-L-cysteine exhibited similar inhibitory effects on ROS production and NAMPT-mediated TLR4/NF-κB activation in vitro, whereas nicotinamide mononucleotide antagonized all the changes induced by PRF during cotreatments. Conclusion As an antioxidant, PRF exhibited potent anti-inflammatory activity under both in vivo and in vitro conditions by downregulating NAMPT and TLR4/NF-κB. Accordingly, polyphenols were identified as important bioactive constituents in S. inappendiculata targeting oxidative stress-sensitive pro-inflammatory pathways.
Collapse
|
14
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|