1
|
Vanier C, Santhanam P, Rochester N, Carter L, Lim M, Kilani A, Venkatesh S, Azad S, Knoblauch T, Surti T, Brown C, Sanchez JR, Ma L, Parikh S, Germin L, Fazzini E, Snyder TH. Symptom Persistence Relates to Volume and Asymmetry of the Limbic System after Mild Traumatic Brain Injury. J Clin Med 2024; 13:5154. [PMID: 39274367 PMCID: PMC11396354 DOI: 10.3390/jcm13175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Persistent symptoms have been reported in up to 50% of the 27 million people with mild traumatic brain injuries (mTBI) every year. MRI findings are currently limited by low diagnostic and prognostic sensitivities, constraining the value of imaging in the stratification of patients following mTBI. Limbic system structures are promising brain regions in offering prognostic factors for symptom persistence following mTBI. The objective of this study was to associate volume and symmetry of limbic system structures with the presence and persistence of common symptoms in patients with mTBI. Methods: This study focused on 524 adults (aged 18-82), 58% female, with 82% injured in motor vehicle accidents and 28% reporting loss of consciousness (LOC). Magnetic resonance imaging (MRI) data included a sagittal 3D T1-weighted sequence with 1.2 mm slice thickness, with voxel sizes of 0.93 mm × 0.93 mm × 1.2 mm, obtained a median of 156 days after injury. Symptom diagnosis and persistence were collected retrospectively from patient medical records. Intracranial volume-adjusted regional volumes per side utilizing automated volumetric analysis (NeuroQuant®) were used to calculate total volume, laterality index, and side-independent asymmetry. Covariates included age, sex, LOC, and days from injury. Limbic volumetrics did not relate to symptom presentation, except the (-) association between headache presence and thalamus volume (adjusted odds ratio = 0.51, 95% confidence interval = 0.32, 0.85). Headache, balance problems, anxiety, and depression persistence was (-) associated with thalamus volume (hazard ratio (HR) 1.25 to 1.94). Longer persistence of balance problems was associated with (-) lateral orbitofrontal cortex volume (HR = 1.33) and (+) asymmetry of the hippocampus (HR = 0.27). Persistence of cognitive deficits was associated with (+) asymmetry in the caudal anterior cingulate (HR = 0.67). Depression persistence was associated with (+) asymmetry in the isthmus of the cingulate gyrus (HR = 5.39). Persistence of anxiety was associated with (-) volume of the parahippocampal gyrus (HR = 1.67), orbitofrontal cortex (HR > 1.97), and right-biased laterality of the entorhinal cortex (HR = 0.52). Conclusions: Relative volume and asymmetry of the limbic system structures in patients with mTBI are associated with the persistence of symptoms, particularly anxiety. The conclusions of this study are limited by the absence of a reference group with no mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Nicholas Rochester
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Medicine, Central Michigan University, Midland, MI 48859, USA
| | | | - Mike Lim
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Amir Kilani
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Shivani Venkatesh
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Sherwin Azad
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV 89118, USA
- Department of Interdisciplinary Health Sciences, University of Nevada, Las Vegas, NV 89557, USA
| | - Tapasya Surti
- Department of Neurology, University of Texas Health Science Center, Houston, TX 78701-2982, USA
| | - Colin Brown
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Justin Roy Sanchez
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Leon Ma
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Shaunaq Parikh
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV 89147, USA
| | - Enrico Fazzini
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Travis H Snyder
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
- Department of Radiology, HCA Healthcare, Mountain View Hospital, Las Vegas, NV 89166, USA
- SimonMed Imaging, Las Vegas, NV 89121, USA
| |
Collapse
|
2
|
Asturias A, Knoblauch T, Rodriguez A, Vanier C, Le Tohic C, Barrett B, Eisenberg M, Gibbert R, Zimmerman L, Parikh S, Nguyen A, Azad S, Germin L, Fazzini E, Snyder T. Diffusion in the corpus callosum predicts persistence of clinical symptoms after mild traumatic brain injury, a multi-scanner study. FRONTIERS IN NEUROIMAGING 2023; 2:1153115. [PMID: 38025312 PMCID: PMC10654678 DOI: 10.3389/fnimg.2023.1153115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023]
Abstract
Background Mild traumatic brain injuries (mTBIs) comprise 80% of all TBI, but conventional MRI techniques are often insensitive to the subtle changes and injuries produced in a concussion. Diffusion tensor imaging (DTI) is one of the most sensitive MRI techniques for mTBI studies with outcome and symptom associations described. The corpus callosum (CC) is one of the most studied fiber tracts in TBI and mTBI, but the comprehensive post-mTBI symptom relationship has not fully been explored. Methods This is a retrospective observational study of how quantitative DTI data of the CC and its sub-regions may relate to clinical presentation of symptoms and timing of resolution of symptoms in patients diagnosed with uncomplicated mTBI. DTI and clinical data were obtained retrospectively from 446 (mean age 42 years, range 13-82) civilian patients. From patient medical charts, presentation of the following common post-concussive symptoms was noted: headache, balance issues, cognitive deficits, fatigue, anxiety, depression, and emotional lability. Also recorded was the time between injury and a visit to the physician when improvement or resolution of a particular symptom was reported. FA values from the total CC and 3 subregions of the CC (genu or anterior, mid body, and splenium or posterior) were obtained from hand tracing on the Olea Sphere v3.0 SP12 free-standing workstation. DTI data was obtained from 8 different 3T MRI scanners and harmonized via ComBat harmonization. The statistical models used to explore the association between regional Fractional Anisotropy (FA) values and symptom presentation and time to symptom resolution were logistic regression and interval-censored semi-parametric Cox proportional hazard models, respectively. Subgroups related to age and timing of first scan were also analyzed. Results Patients with the highest FA in the total CC (p = 0.01), anterior CC (p < 0.01), and mid-body CC (p = 0.03), but not the posterior CC (p = 0.91) recovered faster from post-concussive cognitive deficits. Patients with the highest FA in the posterior CC recovered faster from depression (p = 0.04) and emotional lability (p = 0.01). There was no evidence that FA in the CC or any of its sub-regions was associated with symptom presentation or with time to resolution of headache, balance issues, fatigue, or anxiety. Patients with mTBI under 40 had higher FA in the CC and the anterior and mid-body subregions (but not the posterior subregion: p = 1.00) compared to patients 40 or over (p ≤ 0.01). There was no evidence for differences in symptom presentation based on loss of consciousness (LOC) or sex (p ≥ 0.18). Conclusion This study suggests that FA of the CC has diagnostic and prognostic value for clinical assessment of mTBI in a large diverse civilian population, particularly in patients with cognitive symptoms.
Collapse
Affiliation(s)
- Alexander Asturias
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Alan Rodriguez
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Cheryl Vanier
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
| | - Caroline Le Tohic
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Brandon Barrett
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Matthew Eisenberg
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Lennon Zimmerman
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | | | - Anh Nguyen
- Touro University Nevada, Henderson, NV, United States
| | - Sherwin Azad
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV, United States
| | | | - Travis Snyder
- Imgen Research Group, Las Vegas, NV, United States
- Touro University Nevada, Henderson, NV, United States
- MountainView Hospital, HCA Healthcare, Las Vegas, NV, United States
- SimonMed Imaging, Scottsdale, AZ, United States
| |
Collapse
|
3
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
4
|
Berman R, Spencer H, Boese M, Kim S, Radford K, Choi K. Loss of Consciousness and Righting Reflex Following Traumatic Brain Injury: Predictors of Post-Injury Symptom Development (A Narrative Review). Brain Sci 2023; 13:brainsci13050750. [PMID: 37239222 DOI: 10.3390/brainsci13050750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying predictors for individuals vulnerable to the adverse effects of traumatic brain injury (TBI) remains an ongoing research pursuit. This is especially important for patients with mild TBI (mTBI), whose condition is often overlooked. TBI severity in humans is determined by several criteria, including the duration of loss of consciousness (LOC): LOC < 30 min for mTBI and LOC > 30 min for moderate-to-severe TBI. However, in experimental TBI models, there is no standard guideline for assessing the severity of TBI. One commonly used metric is the loss of righting reflex (LRR), a rodent analogue of LOC. However, LRR is highly variable across studies and rodents, making strict numeric cutoffs difficult to define. Instead, LRR may best be used as predictor of symptom development and severity. This review summarizes the current knowledge on the associations between LOC and outcomes after mTBI in humans and between LRR and outcomes after experimental TBI in rodents. In clinical literature, LOC following mTBI is associated with various adverse outcome measures, such as cognitive and memory deficits; psychiatric disorders; physical symptoms; and brain abnormalities associated with the aforementioned impairments. In preclinical studies, longer LRR following TBI is associated with greater motor and sensorimotor impairments; cognitive and memory impairments; peripheral and neuropathology; and physiologic abnormalities. Because of the similarities in associations, LRR in experimental TBI models may serve as a useful proxy for LOC to contribute to the ongoing development of evidence-based personalized treatment strategies for patients sustaining head trauma. Analysis of highly symptomatic rodents may shed light on the biological underpinnings of symptom development after rodent TBI, which may translate to therapeutic targets for mTBI in humans.
Collapse
Affiliation(s)
- Rina Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - Haley Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Martin Boese
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Sharon Kim
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kennett Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Kwang Choi
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
- F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Ross DE, Seabaugh J, Seabaugh JM, Barcelona J, Seabaugh D, Wright K, Norwind L, King Z, Graham TJ, Baker J, Lewis T. Updated Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant ® and NeuroGage ® in Patients With Traumatic Brain Injury. Front Hum Neurosci 2022; 16:715807. [PMID: 35463926 PMCID: PMC9027332 DOI: 10.3389/fnhum.2022.715807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Over 40 years of research have shown that traumatic brain injury affects brain volume. However, technical and practical limitations made it difficult to detect brain volume abnormalities in patients suffering from chronic effects of mild or moderate traumatic brain injury. This situation improved in 2006 with the FDA clearance of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. More recent strides were made with the introduction of NeuroGage®, commercially available software that is based on NeuroQuant® and extends its utility in several ways. Studies using these and similar methods have found that most patients with chronic mild or moderate traumatic brain injury have brain volume abnormalities, and several of these studies found-surprisingly-more abnormal enlargement than atrophy. More generally, 102 peer-reviewed studies have supported the reliability and validity of NeuroQuant® and NeuroGage®. Furthermore, this updated version of a previous review addresses whether NeuroQuant® and NeuroGage® meet the Daubert standard for admissibility in court. It concludes that NeuroQuant® and NeuroGage® meet the Daubert standard based on their reliability, validity, and objectivity. Due to the improvements in technology over the years, these brain volumetric techniques are practical and readily available for clinical or forensic use, and thus they are important tools for detecting signs of brain injury.
Collapse
Affiliation(s)
- David E. Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - John Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Radiology, St. Mary’s Hospital School of Medical Imaging, Richmond, VA, United States
| | - Jan M. Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Justis Barcelona
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Daniel Seabaugh
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
| | - Katherine Wright
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee Norwind
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | - Zachary King
- Karp, Wigodsky, Norwind, Kudel & Gold, P.A., Rockville, MD, United States
| | | | - Joseph Baker
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Neuroscience, Christopher Newport University, Newport News, VA, United States
| | - Tanner Lewis
- Virginia Institute of Neuropsychiatry, Midlothian, VA, United States
- NeuroGage LLC, Midlothian, VA, United States
- Department of Undergraduate Studies, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Ross DE, Seabaugh JD, Seabaugh JM, Plumley J, Ha J, Burton JA, Vandervaart A, Mischel R, Blount A, Seabaugh D, Shepherd K, Barcelona J, Ochs AL. Patients with chronic mild or moderate traumatic brain injury have abnormal longitudinal brain volume enlargement more than atrophy. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211018049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Many studies have found brain atrophy in patients with traumatic brain injury (TBI), but most of those studies examined patients with moderate or severe TBI. A few recent studies in patients with chronic mild or moderate TBI found abnormally large brain volume. Some of these studies used NeuroQuant®, FDA-cleared software for measuring MRI brain volume. It is not known if the abnormal enlargement occurs before or after injury. The purpose of the current study was to test the hypothesis that it occurs after injury. Methods 55 patients with chronic mild or moderate TBI were compared to NeuroQuant® normal controls ( n > 4000) with respect to MRI brain volume change from before injury (time 0 [t0], estimated volume) to after injury (t1, measured volume). A subset of 36 patients were compared to the normal controls with respect to longitudinal change of brain volume after injury from t1 to t2. Results The patients had abnormally fast increase of brain volume for multiple brain regions, including whole brain, cerebral cortical gray matter, and subcortical regions. Discussion This is the first report of extensive abnormal longitudinal brain volume enlargement in patients with TBI. In particular, the findings suggested that the previously reported findings of cross-sectional brain volume abnormal enlargement were due to longitudinal enlargement after, not before, injury. Abnormal longitudinal enlargement of the posterior cingulate cortex correlated with neuropathic headaches, partially replicating a previously reported finding that was associated with neuroinflammation.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, USA
| | | | | | | | - Junghoon Ha
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Jason A Burton
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | | - Ryan Mischel
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Alyson Blount
- Randolph Macon College, Undergraduate Program, Ashland, USA
| | | | - Katherine Shepherd
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- James Madison University, Undergraduate Program, Harrisonburg, USA
| | | | - Alfred L Ochs
- Virginia Institute of Neuropsychiatry, Midlothian, USA
- Virginia Commonwealth University, School of Medicine, Richmond, USA
| | | |
Collapse
|