1
|
Smith MJ, Major BP, Cowen G, Fini NA, Grant S, Kramer SF, Hamilton MJ, Lawlor K, Patterson B, Salberg S, Shultz SR, Semple BD, Sewell K, Trevena-Peters J, Lannin NA, Mychasiuk R. Research priorities for diagnosis, prognosis, and rehabilitation following concussion: results from a national survey of Australian health professionals. Disabil Rehabil 2024:1-9. [PMID: 39154357 DOI: 10.1080/09638288.2024.2391108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Recently, the Concussion James Lind Alliance Priority Setting Partnership (JLAPSP) (Canada) identified serious research gaps regarding diagnosis, management, and access to effective rehabilitation for concussion/mild traumatic brain injury (mTBI). Our aim was to determine if the same research priorities are important to Australian health professionals working in the concussion/mTBI field. MATERIALS AND METHODS A survey was distributed via professional networks, social media, professional group listservs, a research project noticeboard, and at conferences. It comprised of 25 of the highest ranked concussion research questions from the JLAPSP. We examined how professionals ranked the research questions and analyzed variation in ranking by clinical role and concussion/mTBI work experience. RESULTS Our sample of 187 participants included medical and allied health professionals. Most participants were occupational therapists (22%), physiotherapists (18%), neuropsychologists (17%), and worked in Victoria (47%), New South Whales (18%), or Queensland (15%) in metropolitan areas. Health professionals ranked three research questions highest: identifying methods to predict prolonged recovery; effectiveness of early referral and treatment by a specialized concussion/mTBI team; and implementation studies on upskilling healthcare workers. CONCLUSIONS The research priorities identified can guide research efforts to improve the assessment, management, and rehabilitation of individuals with concussion/mTBI in Australia.
Collapse
Affiliation(s)
| | - Brendan P Major
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Gill Cowen
- Faculty of Health Science, Curtin Medical School, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Natalie A Fini
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | | | - Sharon F Kramer
- Department of Neuroscience, Monash University, Melbourne, Australia
- Alfred Health, Melbourne, Australia
| | | | | | | | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Health Sciences, Vancouver Island University, Vancouver, Canada
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Australia
- Alfred Health, Melbourne, Australia
| | - Katherine Sewell
- Department of Neuroscience, Monash University, Melbourne, Australia
- Alfred Health, Melbourne, Australia
| | - Jessica Trevena-Peters
- Monash Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Monash University, Melbourne, Australia
- Alfred Health, Melbourne, Australia
- La Trobe University, Melbourne, Australia
| | | |
Collapse
|
2
|
Salberg S, Smith MJ, Lamont R, Chen Z, Beauchamp MH, Craig W, Doan Q, Gravel J, Zemek R, Lannin NA, Yeates KO, Mychasiuk R. Shorter Telomere Length Is Associated With Older Age, Poor Sleep Hygiene, and Orthopedic Injury, but Not Mild Traumatic Brain Injury, in a Cohort of Canadian Children. J Head Trauma Rehabil 2024:00001199-990000000-00178. [PMID: 39019487 DOI: 10.1097/htr.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND Predicting recovery following pediatric mild traumatic brain injury (mTBI) remains challenging. The identification of objective biomarkers for prognostic purposes could improve clinical outcomes. Telomere length (TL) has previously been used as a prognostic marker of cellular health in the context of mTBI and other neurobiological conditions. While psychosocial and environmental factors are associated with recovery outcomes following pediatric mTBI, the relationship between these factors and TL has not been investigated. This study sought to examine the relationships between TL and psychosocial and environmental factors, in a cohort of Canadian children with mTBI or orthopedic injury (OI). METHODS Saliva was collected at a postacute (median 7 days) timepoint following injury to assess TL from a prospective longitudinal cohort of children aged 8 to 17 years with either mTBI (n = 202) or OI (n = 90), recruited from 3 Canadian sites. Questionnaires regarding psychosocial and environmental factors were obtained at a postacute follow-up visit and injury outcomes were assessed at a 3-month visit. Univariable associations between TL and psychosocial, environmental, and outcome variables were assessed using Spearman's correlation. Further adjusted analyses of these associations were performed by including injury group, age, sex, and site as covariates in multivariable generalized linear models with a Poisson family, log link function, and robust variance estimates. RESULTS After adjusting for age, sex, and site, TL in participants with OI was 7% shorter than those with mTBI (adjusted mean ratio = 0.93; 95% confidence interval, 0.89-0.98; P = .003). As expected, increasing age was negatively associated with TL (Spearman's r = -0.14, P = .016). Sleep hygiene at 3 months was positively associated with TL (adjusted mean ratio = 1.010; 95% confidence interval, 1.001-1.020; P = .039). CONCLUSION The relationships between TL and psychosocial and environmental factors in pediatric mTBI and OI are complex. TL may provide information regarding sleep quality in children recovering from mTBI or OI; however, further investigation into TL biomarker validity should employ a noninjured comparison group.
Collapse
Affiliation(s)
- S Salberg
- Author Affiliations: Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia (Drs Salberg, Smith, Lannin, Mychasiuk and Chen); Department of Psychology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada (Dr Lamont); Department of Psychology, Montreal University, Montreal, Quebec, Canada, and Sainte-Justine Hospital Research Center, Montrea, Quebec, Canada (Dr Beauchamp); Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada (Dr Craig); Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada (Dr Doan); Department of Pediatric Emergency Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada, and Université de Montreal, Montreal, Quebec, Canada (Dr Gravel); Department of Pediatrics and Emergency Medicine, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada (Dr Zemek); Alfred Health, Melbourne, Australia (Dr Lannin); and Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada (Dr Yeates)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhong M, Salberg S, Sampangi S, van der Walt A, Butzkueven H, Mychasiuk R, Jokubaitis V. Leukocyte telomere length in multiple sclerosis: relationship between disability severity and pregnancy history. Mult Scler Relat Disord 2024; 86:105607. [PMID: 38631073 DOI: 10.1016/j.msard.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aging-related processes contribute to neurodegeneration and disability in multiple sclerosis (MS). Biomarkers of biological aging such as leukocyte telomere length (LTL) could help personalise prognosis. Pregnancy has been shown to be protective against disability accumulation in women with MS, though it is unclear if this effect relates to aging mechanisms or LTL. OBJECTIVES This study aimed to cross-sectionally characterise LTL in a cohort of individuals with MS, and to correlate LTL with disability severity and pregnancy history. METHODS We extracted DNA from the whole blood of 501 people with MS in Melbourne, Australia. Expanded Disability Status Scale (EDSS) score and demographic data, as well as pregnancy history for 197 females, were obtained at sample collection. Additional data were extracted from the MSBase Registry. LTL was determined in base pairs (bp) using real-time quantitative polymerase chain reaction. RESULTS A relationship between EDSS score and shorter LTL was robust to multivariable adjustment for demographic and clinical factors including chronological age, with an adjusted LTL reduction per 1.0 increase in EDSS of 97.1 bp (95 % CI = 9.7-184.5 bp, p = 0.030). Adjusted mediation analysis found chronological age accounted for 33.6 % of the relationship between LTL and EDSS score (p = 0.018). In females with pregnancy data, history of pregnancy was associated with older age (median 49.7 vs 33.0 years, p < 0.001). There were no significant relationships between adjusted LTL and any history of pregnancy (LTL increase of 65.3 bp, 95 % CI = -471.0-601.5 bp, p = 0.81) or number of completed pregnancies (LTL increase of 14.6 bp per pregnancy, 95 % CI = -170.3-199.6 bp, p = 0.87). CONCLUSIONS The correlation between LTL and disability independent of chronological age and other factors points to a link between neurological reserve in MS and biological aging, and a potential research target for pathophysiological and therapeutic mechanisms. Although LTL did not significantly differ by pregnancy history, longitudinal analyses could help identify interactions with prospectively captured pregnancy effects.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia.
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandeep Sampangi
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
4
|
Giesler LP, O'Brien WT, Symons GF, Salberg S, Spitz G, Wesselingh R, O'Brien TJ, Mychasiuk R, Shultz SR, McDonald SJ. Investigating the Association Between Extended Participation in Collision Sports and Fluid Biomarkers Among Masters Athletes. Neurotrauma Rep 2024; 5:74-80. [PMID: 38463419 PMCID: PMC10923547 DOI: 10.1089/neur.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) and concussions are prevalent in collision sports, and there is evidence that levels of exposure to such sports may increase the risk of neurological abnormalities. Elevated levels of fluid-based biomarkers have been observed after concussions or among athletes with a history of participating in collision sports, and certain biomarkers exhibit sensitivity toward neurodegeneration. This study investigated a cohort of 28 male amateur athletes competing in "Masters" competitions for persons >35 years of age. The primary objective of this study was to compare the levels of blood and saliva biomarkers associated with brain injury, inflammation, aging, and neurodegeneration between athletes with an extensive history of collision sport participation (i.e., median = 27 years; interquartile range = 18-44, minimum = 8) and those with no history. Plasma proteins associated with neural damage and neurodegeneration were measured using Simoa® assays, and saliva was analyzed for markers associated with inflammation and telomere length using quantitative real-time polymerase chain reaction. There were no significant differences between collision and non-collision sport athletes for plasma levels of glial fibrillary acidic protein, neurofilament light, ubiquitin C-terminal hydrolase L1, tau, tau phosphorylated at threonine 181, and brain-derived neurotrophic factor. Moreover, salivary levels of genes associated with inflammation and telomere length were similar between groups. There were no significant differences between groups in symptom frequency or severity on the Sport Concussion Assessment Tool-5th Edition. Overall, these findings provide preliminary evidence that biomarkers associated with neural tissue damage, neurodegeneration, and inflammation may not exhibit significant alterations in asymptomatic amateur athletes with an extensive history of amateur collision sport participation.
Collapse
Affiliation(s)
- Lauren P. Giesler
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T. O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgia F. Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Gershon Spitz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Robb Wesselingh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lember LM, Ntikas M, Mondello S, Wilson L, Di Virgilio TG, Hunter AM, Kobeissy F, Mechref Y, Donaldson DI, Ietswaart M. The Use of Biofluid Markers to Evaluate the Consequences of Sport-Related Subconcussive Head Impact Exposure: A Scoping Review. SPORTS MEDICINE - OPEN 2024; 10:12. [PMID: 38270708 PMCID: PMC10811313 DOI: 10.1186/s40798-023-00665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Amidst growing concern about the safety of sport-related repetitive subconcussive head impacts (RSHI), biofluid markers may provide sensitive, informative, and practical assessment of the effects of RSHI exposure. OBJECTIVE This scoping review aimed to systematically examine the extent, nature, and quality of available evidence from studies investigating the effects of RSHI on biofluid markers, to identify gaps and to formulate guidelines to inform future research. METHODS PRISMA extension for Scoping Reviews guidelines were adhered to. The protocol was pre-registered through publication. MEDLINE, Scopus, SPORTDiscus, CINAHL, PsycINFO, Cochrane Library, OpenGrey, and two clinical trial registries were searched (until March 30, 2022) using descriptors for subconcussive head impacts, biomarkers, and contact sports. Included studies were assessed for risk of bias and quality. RESULTS Seventy-nine research publications were included in the review. Forty-nine studies assessed the acute effects, 23 semi-acute and 26 long-term effects of RSHI exposure. The most studied sports were American football, boxing, and soccer, and the most investigated markers were (in descending order): S100 calcium-binding protein beta (S100B), tau, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), phosphorylated tau (p-tau), ubiquitin C-terminal hydrolase L1 (UCH-L1), and hormones. High or moderate bias was found in most studies, and marker-specific conclusions were subject to heterogeneous and limited evidence. Although the evidence is weak, some biofluid markers-such as NfL-appeared to show promise. More markedly, S100B was found to be problematic when evaluating the effects of RSHI in sport. CONCLUSION Considering the limitations of the evidence base revealed by this first review dedicated to systematically scoping the evidence of biofluid marker levels following RSHI exposure, the field is evidently still in its infancy. As a result, any recommendation and application is premature. Although some markers show promise for the assessment of brain health following RSHI exposure, future large standardized and better-controlled studies are needed to determine biofluid markers' utility.
Collapse
Affiliation(s)
- Liivia-Mari Lember
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Michail Ntikas
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- The School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Stefania Mondello
- Biomedical and Dental Sciences and Morphofunctional Imaging, Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Lindsay Wilson
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Thomas G Di Virgilio
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Angus M Hunter
- Physiology Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
- Department of Sports Science, Nottingham Trent University, Nottingham, UK
| | - Firas Kobeissy
- Center for Neurotrauma, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine (MSM), Multiomics & Biomarkers, Atlanta, GA, 30310, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, UK
| | - Magdalena Ietswaart
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| |
Collapse
|
6
|
Martha SR, Tolentino EJ, Bugajski AA, Thompson HJ. Telomere Length Associates With Symptom Severity After Mild Traumatic Brain Injury in Older Adults. Neurotrauma Rep 2023; 4:350-358. [PMID: 37284700 PMCID: PMC10240314 DOI: 10.1089/neur.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The objectives were to compare differences in telomere length (TL) among younger (21-54 years) and older adults (≥55) with mild traumatic brain injury (mTBI) to non-injured controls and to examine the association between TL and the severity of post-concussive symptoms over time. We performed a quantitative polymerase chain reaction to determine the TL (Kb/genome) of peripheral blood mononuclear cell samples (day 0, 3 months, and 6 months) from 31 subjects. The Rivermead Post-Concussion Symptoms Questionnaire was used to assess symptoms. Group-by-time comparisons of TL and symptom severity were evaluated with repeated-measures analysis of variance. Multiple linear regression examined the relationship between TL, group (mTBI and non-injured controls), and symptom severity total and subscale scores. Significant aging-related differences in TL were found within mTBI groups by time (day 0, 3 months, and 6 months; p = 0.025). Older adults with mTBI experienced significant worsening of changes in total symptom severity scores over time (day 0, 3 months, and 6 months; p = 0.016). Shorter TLs were associated with higher total symptom burden among each of the four groups at day 0 (baseline; p = 0.035) and 3 months (p = 0.038). Shorter TL was also associated with higher cognitive symptom burden among the four groups at day 0 (p = 0.008) and 3 months (p = 0.008). Shorter TL was associated with higher post-injury symptom burden to 3 months in both older and younger persons with mTBI. Large-scale, longitudinal studies of factors associated with TL may be useful to delineate the mechanistic underpinnings of higher symptom burden in adults with mTBI.
Collapse
Affiliation(s)
- Sarah R. Martha
- Biobehavioral Nursing Science Department, College of Nursing, University of Illinois at Chicago, Chicago, Illinois, USA University of Washington, Seattle, Washington, USA
| | | | - Andrew A. Bugajski
- Department of Research and Sponsored Studies, Lakeland Regional Health Medical Center, Lakeland, Florida, USA
| | - Hilaire J. Thompson
- Biobehavioral Nursing and Health Informatics Department, School of Nursing, University of Washington, Seattle, Washington, USA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Symons GF, O’Brien WT, Abel L, Chen Z, Costello DM, O’Brien TJ, Kolbe S, Fielding J, Shultz SR, Clough M. Monitoring the acute and subacute recovery of cognitive ocular motor changes after a sports-related concussion. Cereb Cortex 2022; 33:5276-5288. [PMID: 36300614 DOI: 10.1093/cercor/bhac416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Identifying when recovery from a sports-related concussion (SRC) has occurred remains a challenge in clinical practice. This study investigated the utility of ocular motor (OM) assessment to monitor recovery post-SRC between sexes and compared to common clinical measures. From 139 preseason baseline assessments (i.e. before they sustained an SRC), 18 (12 males, 6 females) consequent SRCs were sustained and the longitudinal follow-ups were collected at 2, 6, and 13 days post-SRC. Participants completed visually guided, antisaccade (AS), and memory-guided saccade tasks requiring a saccade toward, away from, and to a remembered target, respectively. Changes in latency (processing speed), visual–spatial accuracy, and errors were measured. Clinical measures included The Sports Concussion Assessment Tool, King-Devick test, Stroop task, and Digit span. AS latency was significantly longer at 2 days and returned to baseline by 13-days post-SRC in females only (P < 0.001). Symptom numbers recovered from 2 to 6 days and 13 days (P < 0.05). Persistently poorer AS visual–spatial accuracy was identified at 2, 6 and 13 days post-SRC (P < 0.05) in both males and females but with differing trajectories. Clinical measures demonstrated consistent improvement reminiscent of practice effects. OM saccade assessment may have improved utility in tracking recovery compared to conventional measures and between sexes.
Collapse
Affiliation(s)
- Georgia F Symons
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - William T O’Brien
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - Larry Abel
- Department of Optometry and Vision science, The University of Melbourne , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Zhibin Chen
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Daniel M Costello
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Terence J O’Brien
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Scott Kolbe
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - Joanne Fielding
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Sandy R Shultz
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
- Department of Nursing, Health and Huan services, Vancouver Island University , 900 Fifth St, Nanaimo, British Columbia (BC), V9R 6S5, Canada
| | - Meaghan Clough
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| |
Collapse
|
8
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:17. [PMID: 35287738 PMCID: PMC8922788 DOI: 10.1186/s40035-022-00291-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. METHODS Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. RESULTS Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. CONCLUSIONS Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
Shultz SR, Taylor CJ, Aggio-Bruce R, O’Brien WT, Sun M, Cioanca AV, Neocleous G, Symons GF, Brady RD, Hardikar AA, Joglekar MV, Costello DM, O’Brien TJ, Natoli R, McDonald SJ. Decrease in Plasma miR-27a and miR-221 After Concussion in Australian Football Players. Biomark Insights 2022; 17:11772719221081318. [PMID: 35250259 PMCID: PMC8891921 DOI: 10.1177/11772719221081318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction: Sports-related concussion (SRC) is a common form of brain injury that lacks reliable methods to guide clinical decisions. MicroRNAs (miRNAs) can influence biological processes involved in SRC, and measurement of miRNAs in biological fluids may provide objective diagnostic and return to play/recovery biomarkers. Therefore, this prospective study investigated the temporal profile of circulating miRNA levels in concussed male and female athletes. Methods: Pre-season baseline blood samples were collected from amateur Australian rules football players (82 males, 45 females). Of these, 20 males and 8 females sustained an SRC during the subsequent season and underwent blood sampling at 2-, 6- and 13-days post-injury. A miRNA discovery Open Array was conducted on plasma to assess the expression of 754 known/validated miRNAs. miRNA target identified were further investigated with quantitative real-time PCR (qRT-PCR) in a validation study. Data pertaining to SRC symptoms, demographics, sporting history, education history and concussion history were also collected. Results: Discovery analysis identified 18 candidate miRNA. The consequent validation study found that plasma miR-221-3p levels were decreased at 6d and 13d, and that miR-27a-3p levels were decreased at 6d, when compared to baseline. Moreover, miR-27a and miR-221-3p levels were inversely correlated with SRC symptom severity. Conclusion: Circulating levels of miR-27a-3p and miR-221-3p were decreased in the sub-acute stages after SRC, and were inversely correlated with SRC symptom severity. Although further studies are required, these analyses have identified miRNA biomarker candidates of SRC severity and recovery that may one day assist in its clinical management.
Collapse
Affiliation(s)
- Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Caroline J Taylor
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - William T O’Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - George Neocleous
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | | | - Mugdha V Joglekar
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Daniel M Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Sun M, Symons GF, O'Brien WT, Mccullough J, Aniceto R, Lin IH, Eklund M, Brady RD, Costello DM, Chen Z, O'Brien TJ, McDonald SJ, Agoston DV, Shultz SR. Serum protein biomarkers of inflammation, oxidative stress, and cerebrovascular and glial injury in concussed Australian football players. J Neurotrauma 2022; 39:800-808. [PMID: 35176905 DOI: 10.1089/neu.2021.0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical decisions related to sports-related concussion (SRC) are challenging due to the heterogenous nature of SRC symptoms coupled with the current reliance on subjective self-reported symptom measures. Sensitive and objective methods that can diagnose SRC and determine recovery would aid clinical management, and there is evidence that SRC induces changes in circulating protein biomarkers indicative of neuroaxonal injury. However, potential blood biomarkers related to other pathobiological responses linked to SRC are still poorly understood. Therefore, here we analyzed blood samples from concussed (male = 30; female = 9) and non-concussed (male = 74; female = 27) amateur Australian rules football players collected during the pre-season (i.e., baseline), and at 2-, 6-, and 13-days post-SRC to determine time dependent changes in serum levels of biomarkers related to glial (i.e., brain lipid-binding protein, BLBP; phosphoprotein enriched in astrocytes 15) and cerebrovascular injury (i.e., von Willebrand factor, claudin-5), inflammation (i.e., fibrinogen, high mobility group box protein 1), and oxidative stress (i.e., 4-hydroxynoneal). In females, BLBP levels were significantly decreased at 2-days post-SRC compared to their pre-season baseline; however, area under the receiver operating characteristic curve (AUROC) analysis found that BLBP was unable to distinguish between SRC and controls. In males, AUROC analysis revealed a statistically significant change at 2-days post-SRC in the serum levels of 4-hydroxynoneal, however the associated AUROC value (0.6373) indicated little clinical utility for this biomarker in distinguishing SRC from controls. There were no other statistically significant findings. These results indicate that the serum biomarkers tested in this study hold little clinical value in the management of SRC at 2-, 6-, and 13-days post-injury.
Collapse
Affiliation(s)
- Mujun Sun
- Monash University, Department of Neuroscience, Central Clinical School, Melbourne, Australia;
| | - Georgia F Symons
- Monash University, Neuroscience, Melbourne, Victoria, Australia;
| | | | | | | | | | | | - Rhys D Brady
- Monash University, Neuroscience, The Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, Victoria, Australia, 3004;
| | - Daniel M Costello
- The University of Melbourne, 2281, Department of Medicine, Melbourne, Victoria, Australia;
| | - Zhibin Chen
- Monash University, Neuroscience, Melbourne, Victoria, Australia.,Monash University, 2541, Clinical Epidemiology, Melbourne, Victoria, Australia;
| | - Terence J O'Brien
- Monash University, Neuroscience, Melbourne, Victoria, Australia.,Melbourne Health, 6451, Department of Neurology, Parkville, Victoria, Australia.,Alfred Health, 5392, Department of Neurology, Melbourne, Victoria, Australia.,The University of Melbourne, 2281, Department of Medicine, Melbourne, Victoria, Australia;
| | - Stuart John McDonald
- Monash University Central Clinical School, 161666, Department of Neuroscience, 99 Commercial Road, Melbourne, Victoria, Australia, 3004;
| | - Denes V Agoston
- Uniformed Services University, APG, 4301 Jones Br Rd, Bethesda, Maryland, United States, 20814;
| | - Sandy R Shultz
- Monash University, Neuroscience, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, Australia, 3004;
| |
Collapse
|
11
|
Machan M, Tabor JB, Wang M, Sutter B, Wiley JP, Mychasiuk R, Debert CT. The Impact of Concussion, Sport, and Time in Season on Saliva Telomere Length in Healthy Athletes. Front Sports Act Living 2022; 4:816607. [PMID: 35243342 PMCID: PMC8886719 DOI: 10.3389/fspor.2022.816607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
To date, sport-related concussion diagnosis and management is primarily based on subjective clinical tests in the absence of validated biomarkers. A major obstacle to clinical validation and application is a lack of studies exploring potential biomarkers in non-injured populations. This cross-sectional study examined the associations between saliva telomere length (TL) and multiple confounding variables in a healthy university athlete population. One hundred eighty-three (108 male and 75 female) uninjured varsity athletes were recruited to the study and provided saliva samples at either pre- or mid-season, for TL analysis. Multiple linear regression was used to determine the associations between saliva TL and history of concussion, sport contact type, time in season (pre vs. mid-season collection), age, and sex. Results showed no significant associations between TL and history of concussion, age, or sport contact type. However, TL from samples collected mid-season were longer than those collected pre-season [β = 231.4, 95% CI (61.9, 401.0), p = 0.008], and males had longer TL than females [β = 284.8, 95% CI (111.5, 458.2), p = 0.001] when adjusting for all other variables in the model. These findings population suggest that multiple variables may influence TL. Future studies should consider these confounders when evaluating saliva TL as a plausible fluid biomarker for SRC.
Collapse
Affiliation(s)
- Matthew Machan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jason B. Tabor
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Meng Wang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Bonnie Sutter
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J. Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- University of Calgary Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chantel T. Debert
| |
Collapse
|
12
|
Symons GF, Clough M, Mutimer S, Major BP, O'Brien WT, Costello D, McDonald SJ, Chen Z, White O, Mychasiuk R, Law M, Wright DK, O'Brien TJ, Fielding J, Kolbe SC, Shultz SR. Cognitive ocular motor deficits and white matter damage chronically after sports-related concussion. Brain Commun 2021; 3:fcab213. [PMID: 34595476 PMCID: PMC8477916 DOI: 10.1093/braincomms/fcab213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
A history of concussion has been linked to long-term cognitive deficits; however, the neural underpinnings of these abnormalities are poorly understood. This study recruited 26 asymptomatic male Australian footballers with a remote history of concussion (i.e. at least six months since last concussion), and 23 non-collision sport athlete controls with no history of concussion. Participants completed three ocular motor tasks (prosaccade, antisaccade and a cognitively complex switch task) to assess processing speed, inhibitory control and cognitive flexibility, respectively. Diffusion tensor imaging data were acquired using a 3 T MRI scanner, and analysed using tract-based spatial statistics, to investigate white matter abnormalities and how they relate to ocular motor performance. Australian footballers had significantly slower adjusted antisaccade latencies compared to controls (P = 0.035). A significant switch cost (i.e. switch trial error > repeat trial error) was also found on the switch task, with Australian footballers performing increased magnitude of errors on prosaccade switch trials relative to prosaccade repeat trials (P = 0.023). Diffusion tensor imaging analysis found decreased fractional anisotropy, a marker of white matter damage, in major white matter tracts (i.e. corpus callosum, corticospinal tract) in Australian footballers relative to controls. Notably, a larger prosaccade switch cost was significantly related to reduced fractional anisotropy in anterior white matter regions found to connect to the prefrontal cortex (i.e. a key cortical ocular motor centre involved in executive functioning and task switching). Taken together, Australian footballers with a history of concussion have ocular motor deficits indicative of poorer cognitive processing speed and cognitive flexibility, which are related to reduce white matter integrity in regions projecting to important cognitive ocular motor structures. These findings provide novel insights into the neural mechanisms that may underly chronic cognitive impairments in individuals with a history of concussion.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Steven Mutimer
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Brendan P Major
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Daniel Costello
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen White
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - Scott C Kolbe
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Major B, Symons GF, Sinclair B, O'Brien WT, Costello D, Wright DK, Clough M, Mutimer S, Sun M, Yamakawa GR, Brady RD, O'Sullivan MJ, Mychasiuk R, McDonald SJ, O'Brien TJ, Law M, Kolbe S, Shultz SR. White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cereb Cortex 2021; 31:5331-5338. [PMID: 34148076 DOI: 10.1093/cercor/bhab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.
Collapse
Affiliation(s)
- Brendan Major
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Ben Sinclair
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael J O'Sullivan
- Department of Faculty of Medicine, UQ Centre for Clinical Research and Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Meng Law
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
14
|
Eyolfson E, Bhatt D, Wang M, Lohman AW, Mychasiuk R. Paternal exposure to exercise and/or caffeine and alcohol modify offspring behavioral and pathophysiological recovery from repetitive mild traumatic brain injury in adolescence. GENES, BRAIN, AND BEHAVIOR 2021; 20:egbb12736. [PMID: 33876557 DOI: 10.1111/gbb.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Only recently has the scope of parental research expanded to include the paternal sphere with epidemiological studies implicating stress, nutrition and alcohol consumption in the neurobiological and behavioral characteristics of offspring. This study was designed to determine if paternal exposure to caffeine, alcohol and exercise prior to conception would improve or exacerbate offspring recovery from adolescent repetitive mild traumatic brain injury (RmTBI). Sires received 7 weeks of standard drinking water, or caffeine and ethanol and were housed in regular cages or cages with running wheels, prior to being mated to control females. At postnatal day 40, offspring were administered RmTBI or sham injuries and were assessed for post concussive symptomology. Post-mortem quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression in the prefrontal cortex (PFC), nucleus accumbens (NAc) and changes in telomere length. Additionally, enzyme-linked immunosorbent assay (ELISA's) were run on serum to detect levels of cytokines, chemokines and sex hormones. Paternal experience did not improve or exacerbate RmTBI behavioral outcomes. However, female and male offspring displayed unique responses to RmTBI and paternal experience, resulting in changes in physical, behavioral and molecular outcomes. Injury and paternal exercise modified changes in female offspring, whereas male offspring were affected by paternal exercise, caffeine and alcohol treatment. Additionally, paternal experience and RmTBI modified expression of many genes in the PFC, NAc, telomere length and levels of sex hormones. Although further exploration is required to understand the heterogeneity that exists in disease risk and resiliency, this study provides corroborating evidence that paternal experiences prior to conception influences offspring development.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melinda Wang
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alexander W Lohman
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Apolipoprotein ɛ4 Status and Brain Structure 12 Months after Mild Traumatic Injury: Brain Age Prediction Using Brain Morphometry and Diffusion Tensor Imaging. J Clin Med 2021; 10:jcm10030418. [PMID: 33499167 PMCID: PMC7865561 DOI: 10.3390/jcm10030418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Apolipoprotein E (APOE) ɛ4 is associated with poor outcome following moderate to severe traumatic brain injury (TBI). There is a lack of studies investigating the influence of APOE ɛ4 on intracranial pathology following mild traumatic brain injury (MTBI). This study explores the association between APOE ɛ4 and MRI measures of brain age prediction, brain morphometry, and diffusion tensor imaging (DTI). Methods: Patients aged 16 to 65 with acute MTBI admitted to the trauma center were included. Multimodal MRI was performed 12 months after injury and associated with APOE ɛ4 status. Corrections for multiple comparisons were done using false discovery rate (FDR). Results: Of included patients, 123 patients had available APOE, volumetric, and DTI data of sufficient quality. There were no differences between APOE ɛ4 carriers (39%) and non-carriers in demographic and clinical data. Age prediction revealed high accuracy both for the DTI-based and the brain morphometry based model. Group comparisons revealed no significant differences in brain-age gap between ɛ4 carriers and non-carriers, and no significant differences in conventional measures of brain morphometry and volumes. Compared to non-carriers, APOE ɛ4 carriers showed lower fractional anisotropy (FA) in the hippocampal part of the cingulum bundle, which did not remain significant after FDR adjustment. Conclusion: APOE ɛ4 carriers might be vulnerable to reduced neuronal integrity in the cingulum. Larger cohort studies are warranted to replicate this finding.
Collapse
|