1
|
Kanagarajan D, Heinsar S, Gandini L, Suen JY, Dau VT, Pauls J, Fraser JF. Preclinical Studies on Pulsatile Veno-Arterial Extracorporeal Membrane Oxygenation: A Systematic Review. ASAIO J 2023; 69:e167-e180. [PMID: 36976324 DOI: 10.1097/mat.0000000000001922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Refractory cardiogenic shock is increasingly being treated with veno-arterial extracorporeal membrane oxygenation (V-A ECMO), without definitive proof of improved clinical outcomes. Recently, pulsatile V-A ECMO has been developed to address some of the shortcomings of contemporary continuous-flow devices. To describe current pulsatile V-A ECMO studies, we conducted a systematic review of all preclinical studies in this area. We adhered to PRISMA and Cochrane guidelines for conducting systematic reviews. The literature search was performed using Science Direct, Web of Science, Scopus, and PubMed databases. All preclinical experimental studies investigating pulsatile V-A ECMO and published before July 26, 2022 were included. We extracted data relating to the 1) ECMO circuits, 2) pulsatile blood flow conditions, 3) key study outcomes, and 4) other relevant experimental conditions. Forty-five manuscripts of pulsatile V-A ECMO were included in this review detailing 26 in vitro , two in silico , and 17 in vivo experiments. Hemodynamic energy production was the most investigated outcome (69%). A total of 53% of studies used a diagonal pump to achieve pulsatile flow. Most literature on pulsatile V-A ECMO focuses on hemodynamic energy production, whereas its potential clinical effects such as favorable heart and brain function, end-organ microcirculation, and decreased inflammation remain inconclusive and limited.
Collapse
Affiliation(s)
- Dhayananth Kanagarajan
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - Silver Heinsar
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Lucia Gandini
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Van Thanh Dau
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jo Pauls
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - John F Fraser
- From the Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Patel K, Ündar A. Centrifugal Pump Generates Superior Hemodynamic Performance Compared to a new Diagonal Blood Pump in Neonatal and Pediatric ECMO Circuits. World J Pediatr Congenit Heart Surg 2022; 13:235-241. [PMID: 35238708 DOI: 10.1177/21501351211057426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE With newer generation diagonal and centrifugal blood pumps gaining popularity, the objective of this study was to compare the DP3-i-cor diagonal and RotaFlow centrifugal pumps in terms of hemodynamic performance using simulated neonatal and pediatric extracorporeal membrane oxygenation (ECMO) circuits. DESCRIPTION The DP3-i-cor diagonal pump is a part of the newly FDA-approved NovaLung system. The experimental circuit consisted of either the DP3-i-cor diagonal or RotaFlow centrifugal pump, a polymethylpentene membrane oxygenator, neonatal and pediatric arterial/venous cannulae, and 1/4-inch ID tubing. Three circuits were tested using combinations of either the DP3-i-cor or RotaFlow pump and varying arterial/venous cannulae sizes. Real-time pressure and flow data were collected. EVALUATION The new DP3-i-cor diagonal pump exhibited lower flow rate and pressure head when compared to the RotaFlow centrifugal pump at similar rotational speeds and identical experimental conditions. Large-caliber arterial cannulae expectedly generated higher flow rates and pressures. CONCLUSIONS The RotaFlow centrifugal pump demonstrated superior hemodynamic performance when compared to the DP3-i-cor diagonal pump in simulated neonatal and pediatric ECMO circuits. Translational research of all ECMO components is crucial.
Collapse
Affiliation(s)
- Krishna Patel
- Penn State Hershey Pediatric Cardiovascular Research Center, Departments of Pediatrics, Surgery, and Biomedical Engineering, 12310Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Akif Ündar
- Penn State Hershey Pediatric Cardiovascular Research Center, Departments of Pediatrics, Surgery, and Biomedical Engineering, 12310Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| |
Collapse
|
3
|
Yoo CY, Kang SM, Choi SW. Preload control of the increased outflow of a dual pulsatile extracorporeal membrane oxygenator. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2022; 36:3767-3772. [PMCID: PMC9253250 DOI: 10.1007/s12206-022-0649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 10/25/2023]
Abstract
An improved pulsatile extracorporeal membrane oxygenation (ECMO) device is needed to reduce the high risk of complications associated with existing ECMO devices, due to continuous blood outflow (which reduces blood perfusion) and a complex structure that makes setup and management difficult. This study introduces a new pulsatile ECMO device to maintain sufficient pulsatility (an “energy equivalent pressure increment” [EEPI] of at least 20 %) and simplify the structure of the pulsatile pump by removing artificial valves and complex actuators. The hemodynamic characteristics and pulsatility of the proposed pulsatile ECMO device were evaluated in-vitro using a MOCK system. Although the pulsatile ECMO device has the same dual pumping structure as existing pulsatile ECMOs, the newly applied preload control mechanism increases the outflow of the proposed pulsatile ECMO compared to the previous device.
Collapse
Affiliation(s)
- Chang Young Yoo
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chun-cheon, 24341 Korea
| | - Seong Min Kang
- School of Mechanical and Biomedical Engineering, Kangwon National University, Chun-cheon, 24341 Korea
| | - Seong Wook Choi
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Chun-cheon, 24341 Korea
- School of Mechanical and Biomedical Engineering, Kangwon National University, Chun-cheon, 24341 Korea
| |
Collapse
|
4
|
Tompkins LH, Gellman BN, Morello GF, Prina SR, Roussel T, Kopechek JA, Petit PC, Slaughter MS, Koenig SC, Dasse KA. Design and Computational Evaluation of a Pediatric MagLev Rotary Blood Pump. ASAIO J 2021; 67:1026-1035. [PMID: 33315663 PMCID: PMC8187468 DOI: 10.1097/mat.0000000000001323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pediatric heart failure (HF) patients have been a historically underserved population for mechanical circulatory support (MCS) therapy. To address this clinical need, we are developing a low cost, universal magnetically levitated extracorporeal system with interchangeable pump heads for pediatric support. Two impeller and pump designs (pump V1 and V2) for the pediatric pump were developed using dimensional analysis techniques and classic pump theory based on defined performance criteria (generated flow, pressure, and impeller diameter). The designs were virtually constructed using computer-aided design (CAD) software and 3D flow and pressure features were analyzed using computational fluid dynamics (CFD) analysis. Simulated pump designs (V1, V2) were operated at higher rotational speeds (~5,000 revolutions per minute [RPM]) than initially estimated (4,255 RPM) to achieve the desired operational point (3.5 L/min flow at 150 mm Hg). Pump V2 outperformed V1 by generating approximately 30% higher pressures at all simulated rotational speeds and at 5% lower priming volume. Simulated hydrodynamic performance (achieved flow and pressure, hydraulic efficiency) of our pediatric pump design, featuring reduced impeller size and priming volume, compares favorably to current commercially available MCS devices.
Collapse
Affiliation(s)
- Landon H. Tompkins
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
| | | | | | | | - Thomas Roussel
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
| | | | | | - Mark S. Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Steven C. Koenig
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Kurt A. Dasse
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
- Inspired Therapeutics LLC, Merritt Island, FL 32925
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| |
Collapse
|
5
|
Tang TQ, Hsu SY, Dahiya A, Soh CH, Lin KC. Numerical modeling of pulsatile blood flow through a mini-oxygenator in artificial lungs. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106241. [PMID: 34247118 DOI: 10.1016/j.cmpb.2021.106241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
While previous in vitro studies showed divergent results concerning the influence of pulsatile blood flow on oxygen advection in oxygenators, no study was done to investigate the uncertainty affected by blood flow dynamics. The aim of this study is to utilize a computational fluid dynamics model to clarify the debate concerning the influence of pulsatile blood flow on the oxygen transport. The computer model is based on a validated 2D finite volume approach that predicts oxygen transfer in pulsatile blood flow passing through a 300-micron hollow-fiber membrane bundle with a length of 254 mm, a building block for an artificial lung device. In this study, the flow parameters include the steady Reynolds number (Re = 2, 5, 10 and 20), Womersley parameter (Wo = 0.29, 0.38 and 0.53) and sinusoidal amplitude (A = 0.25, 0.5 and 0.75). Specifically, the computer model is extended to verify, for the first time, the previously measured O2 transport that was observed to be hindered by pulsating flow in the Biolung, developed by Michigan Critical Care Consultants. A comprehensive analysis is carried out on computed profiles and fields of oxygen partial pressure (PO2) and oxygen saturation (SO2) as a function of Re, Wo and A. Based on the present results, we observe the positive and negative effects of pulsatile flow on PO2 at different blood flow rates. Besides, the SO2 variation is not much influenced by the pulsatile flow conditions investigated. While being consistent with a recent experimental study, the computed O2 volume flow rate is found to be increased at high blood flow rates operated with low frequency and high amplitude. Furthermore, the present study qualitatively explains that divergent outcomes reported in previous in vitro experimental studies could be owing to the different blood flow rates adopted. Finally, the contour analysis reveals how the spatial distributions of PO2 and SO2 vary over time.
Collapse
Affiliation(s)
- Tao-Qian Tang
- Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Yen Hsu
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Anurag Dahiya
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chang Hwei Soh
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuang C Lin
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
6
|
Zhang Y, Zeng J, He X, Cao W, Peng X, Li G. Pulsatility protects the endothelial glycocalyx during extracorporeal membrane oxygenation. Microcirculation 2021; 28:e12722. [PMID: 34242445 DOI: 10.1111/micc.12722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Pulsatile flow protects vital organ function and improves microcirculatory perfusion during extracorporeal membrane oxygenation (ECMO). Studies revealed that pulsatile shear stress plays a vital role in microcirculatory function and integrity. The objective of this study was to investigate how pulsatility affects wall shear stress and endothelial glycocalyx components during ECMO. METHODS Using the i-Cor system, sixteen canine ECMO models were randomly allocated into the pulsatile or the non-pulsatile group (eight canines for each). Hemodynamic parameters, peak wall shear stress (PWSS), serum concentration of syndecan-1, and heparan sulfate were measured at different time points during ECMO. Pulsatile shear stress experiments were also performed in endothelial cells exposed to different magnitudes of pulsatility (five plates for each condition), with cell viability, the expressions of syndecan-1, and endothelial-to-mesenchymal transformation (EndMT) markers analyzed. RESULTS The pulsatile flow generated more surplus hemodynamic energy and preserved higher PWSS during ECMO. Serum concentrations of both syndecan-1 and heparan sulfate were negatively correlated with PWSS, and significantly lower levels were observed in the pulsatile group. Besides, non-pulsatility triggered EndMT and endothelial cells exposed to low pulsatility had the lowest possibility of EndMT. CONCLUSION The maintenance of the PWSS by pulsatility during ECMO possesses beneficial effects on glycocalyx integrity. Moreover, pulsatility prevents EndMT in endothelial cells, and low pulsatility exhibits the best protective effects. The augmentation of pulsatility may be a plausible future direction to improve the clinical outcome in ECMO.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianfeng Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqian He
- Department of Obstetrics and Gynecology, Guangzhou Women and Children`s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weidong Cao
- Department of Cardiothoracic Surgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Xiaopeng Peng
- Department of Cardiothoracic Surgery, Dongguan People's Hospital, Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Elkhwad M, More KS, Anand D, Al-Maraghi S, Crowe M, Wong D, Metcalf J, Yadav SK, Sigalet D. Successful Establishment of the First Neonatal Respiratory Extracorporeal Membrane Oxygenation (ECMO) Program in the Middle East, in Collaboration With Pediatric Services. Front Pediatr 2020; 8:506. [PMID: 33014924 PMCID: PMC7516255 DOI: 10.3389/fped.2020.00506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/16/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Extracorporeal membrane oxygenation (ECMO) is a complex life-saving support for acute cardio-respiratory failure, unresponsive to medical treatment. Starting a new ECMO program requires synergizing different aspects of organizational infrastructures and appropriate extensive training of core team members to deliver the care successfully and safely. Objectives: To describe the process of establishing a new neonatal ECMO program and to evaluate the program by benchmarking the ECMO respiratory outcomes and mechanical complications to the well-established Extracorporeal Life Support Organization (ELSO) registry data. Materials and Methods: We reviewed the processes and steps involved in planning and setting up the new ECMO program. To assess the success of the ECMO implementation program, we retrospectively reviewed data of clinical outcomes and technical complications for the first 11 patients who have received ECMO therapy for respiratory indications since program activation (July 2018-May 2020). We analyzed mechanical complications as a tool to measure infrastructures and our effective training for the core team of ECMO specialists. We also looked at all clinical complications and benchmarked these numbers with the last 10 years of ELSO registry data (2009-2019) in the corresponding categories for comparison. Chi-square test was used to compare, and outcomes are presented in percentage; a p-value of <0.05 is considered significant. Results: A total of 27 patients underwent ECMO in the hospital, out of which 11 (six neonatal and five pediatric) patients had acute respiratory failure treated with venovenous (VV) ECMO or veno-arterial (VA) ECMO over a 22-month period. We had a total of 3,360 h of ECMO run with a range from 1 day to 7 weeks on ECMO. Clinical outcomes and mechanical complications are comparable to ELSO registry data (no significant difference); there were no pump failure, oxygenator failure, or pump clots. Conclusions: Establishing the ECMO program involved a multisystem approach with particular attention to the training of ECMO team members. The unified protocols, equipment, and multistep ECMO team training increased staff knowledge, technical skills, and teamwork, allowing the successful development of a neonatal respiratory ECMO program with minimal mechanical complications during ECMO runs, showing a comparable patient flow and mechanical complications.
Collapse
Affiliation(s)
- Mohammed Elkhwad
- Division of Neonatology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medicine, Doha, Qatar
| | - Kiran S More
- Division of Neonatology, Sidra Medicine, Doha, Qatar.,Weill Cornell Medicine, Doha, Qatar
| | | | | | - Myles Crowe
- Division of Cardiac Intensive Care Unit, Sidra Medicine, Doha, Qatar
| | - Duane Wong
- Division of Cardiac Intensive Care Unit, Sidra Medicine, Doha, Qatar
| | | | - Santosh K Yadav
- Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - David Sigalet
- Weill Cornell Medicine, Doha, Qatar.,Department of Pediatric Surgery, Sidra Medicine, Doha, Qatar
| |
Collapse
|
8
|
Di Nardo M, Vercaemst L, Swol J, Barret N, Taccone FS, Malfertheiner MV, Broman LM, Pappalardo F, Belohlavek J, Mueller T, Lorusso R, Lonero M, Belliato M. A narrative review of the technical standards for extracorporeal life support devices (pumps and oxygenators) in Europe. Perfusion 2018; 33:553-561. [DOI: 10.1177/0267659118772452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review summarizes the European rules to control the market when introducing new products. In particular, it shows all the steps to achieve the European Conformity (CE Mark), a certification that all new medical products must achieve before being used in Europe. Extracorporeal membrane oxygenation (ECMO) devices are exposed to the same procedures. Hereby, we present some regulatory issues regarding pumps and oxygenators, providing technical details as released by the manufacturers on their websites and information charts.
Collapse
Affiliation(s)
- Matteo Di Nardo
- Pediatric Intensive Care Unit, Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Leen Vercaemst
- Department of Perfusion, University Hospital Gasthuisberg, Louvain, Belgium
| | - Justyna Swol
- Department of Pulmonology, Intensive Care Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Nicholas Barret
- Department of Critical Care, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Fabio S. Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Lars M. Broman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Federico Pappalardo
- Department of Cardiothoracic Anesthesia and Intensive Care, San Raffaele Hospital, Milan, Italy
| | - Jan Belohlavek
- Second Department of Medicine, Cardiovascular Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Thomas Mueller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Hospital, Maastricht, The Netherlands
| | - Margherita Lonero
- Pediatric Intensive Care Unit, Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Mirko Belliato
- U.O.C. Anestesia e Rianimazione 1, IRCCS, Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
9
|
Schraven L, Kaesler A, Flege C, Kopp R, Schmitz-Rode T, Steinseifer U, Arens J. Effects of Pulsatile Blood Flow on Oxygenator Performance. Artif Organs 2018; 42:410-419. [DOI: 10.1111/aor.13088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Lotte Schraven
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Andreas Kaesler
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Christian Flege
- Department of Intensive Care; University Hospital, RWTH Aachen University; Aachen Germany
| | - Rüdger Kopp
- Department of Intensive Care; University Hospital, RWTH Aachen University; Aachen Germany
| | - Thomas Schmitz-Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
10
|
Wang S, Kunselman AR, Ündar A. Does Flexible Arterial Tubing Retain More Hemodynamic Energy During Pediatric Pulsatile Extracorporeal Life Support? Artif Organs 2016; 41:47-54. [PMID: 27925247 DOI: 10.1111/aor.12811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the hemodynamic performance and energy transmission of flexible arterial tubing as the arterial line in a simulated pediatric pulsatile extracorporeal life support (ECLS) system. The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump head, Medos Hilite 2400 LT oxygenator, Biomedicus arterial/venous cannula (10 Fr/14 Fr), 3 feet of polyvinyl chloride (PVC) arterial tubing or latex rubber arterial tubing, primed with lactated Ringer's solution and packed red blood cells (hematocrit 40%). Trials were conducted at flow rates of 300 to 1200 mL/min (300 mL/min increments) under nonpulsatile and pulsatile modes at 36°C using either PVC arterial tubing (PVC group) or latex rubber tubing (Latex group). Real-time pressure and flow data were recorded using a custom-based data acquisition system. Mean pressures and energy equivalent pressures (EEP) were the same under nonpulsatile mode between the two groups. Under pulsatile mode, EEPs were significantly great than mean pressure, especially in the Latex group (P < 0.05). There was no difference between the two groups with regards to pressure drops across ECLS circuit, but pulsatile flow created more pressure drops than nonpulsatile flow (P < 0.05). Surplus hemodynamic energy (SHE) levels were always higher in the Latex group than in the PVC group at all sites. Although total hemodynamic energy (THE) losses were higher under pulsatile mode compared to nonpulsatile mode, more THE was delivered to the pseudopatient, particularly in the Latex group (P < 0.05). The results showed that the flexible arterial tubing retained more hemodynamic energy passing through it under pulsatile mode while mean pressures and pressure drops across the ECLS circuit were similar between PVC and latex rubber arterial tubing. Further studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Pediatrics, Pediatric Cardiovascular Research Center
| | | | - Akif Ündar
- Department of Pediatrics, Pediatric Cardiovascular Research Center.,Department of Surgery and Bioengineering, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA
| |
Collapse
|
11
|
Ündar A, Wang S, Izer JM, Clark JB, Kunselman AR, Patel S, Shank K, Profeta E, Wilson RP, Ostadal P. The Clinical Importance of Pulsatile Flow in Extracorporeal Life Support: The Penn State Health Approach. Artif Organs 2016; 40:1101-1104. [PMID: 27911024 DOI: 10.1111/aor.12875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Akif Ündar
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center, Department of Surgery Department of Bioengineering, Penn State College of Medicine, H085, 500 University Drivem, P.O. Box 850, Hershey, PA 17033-0850, USA
| | - Shigang Wang
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center, Penn State College of Medicine
| | - Jenelle M Izer
- Department of Comparative Medicine, Penn State College of Medicine
| | - Joseph B Clark
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center, Department of Surgery, Penn State College of Medicine
| | - Allen R Kunselman
- Department of Public Health and Sciences, Penn State College of Medicine
| | - Sunil Patel
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center
| | - Kaitlyn Shank
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center, Penn State College of Medicine
| | - Elizabeth Profeta
- Department of Pediatrics, Penn State Health, Pediatric Cardiovascular Research Center, Penn State College of Medicine
| | - Ronald P Wilson
- Department of Comparative Medicine, Penn State College of Medicine
| | - Petr Ostadal
- Cardiovascular Center, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
12
|
Deshpande S, Maher K, Morales D. Mechanical circulatory support in children: Challenges and opportunities. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2016.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Itoh H, Ichiba S, Ujike Y, Douguchi T, Obata H, Inamori S, Iwasaki T, Kasahara S, Sano S, Ündar A. Effect of the Pulsatile Extracorporeal Membrane Oxygenation on Hemodynamic Energy and Systemic Microcirculation in a Piglet Model of Acute Cardiac Failure. Artif Organs 2015; 40:19-26. [PMID: 26526784 DOI: 10.1111/aor.12588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The objective of this study was to compare the effects of pulsatile and nonpulsatile extracorporeal membrane oxygenation (ECMO) on hemodynamic energy and systemic microcirculation in an acute cardiac failure model in piglets. Fourteen piglets with a mean body weight of 6.08 ± 0.86 kg were divided into pulsatile (N = 7) and nonpulsatile (N = 7) ECMO groups. The experimental ECMO circuit consisted of a centrifugal pump, a membrane oxygenator, and a pneumatic pulsatile flow generator system developed in-house. Nonpulsatile ECMO was initiated at a flow rate of 140 mL/kg/min for the first 30 min with normal heart beating, with rectal temperature maintained at 36°C. Ventricular fibrillation was then induced with a 3.5-V alternating current to generate a cardiac dysfunction model. Using this model, we collected the data on pulsatile and nonpulsatile groups. The piglets were weaned off ECMO at the end of the experiment (180 min after ECMO was initiated). The animals did not receive blood transfusions, inotropic drugs, or vasoactive drugs. Blood samples were collected to measure hemoglobin, methemoglobin, blood gases, electrolytes, and lactic acid levels. Hemodynamic energy was calculated using the Shepard's energy equivalent pressure. Near-infrared spectroscopy was used to monitor brain and kidney perfusion. The pulsatile ECMO group had a higher atrial pressure (systolic and mean), and significantly higher regional saturation at the brain level, than the nonpulsatile group (for both, P < 0.05). Additionally, the pulsatile ECMO group had higher methemoglobin levels within the normal range than the nonpulsatile group. Our study demonstrated that pulsatile ECMO produces significantly higher hemodynamic energy and improves systemic microcirculation, compared with nonpulsatile ECMO in acute cardiac failure.
Collapse
Affiliation(s)
- Hideshi Itoh
- Department of Medical Engineering, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan.,Departments of, Emergency and Critical Care Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shingo Ichiba
- Community and Emergency Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihito Ujike
- Departments of, Emergency and Critical Care Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuma Douguchi
- Department of, Cardiovascular Surgery, Okayama University Hospital, Okayama, Japan
| | - Hideaki Obata
- Biomedical Engineering, Okayama University of Science, Okayama, Japan
| | - Syuji Inamori
- Department of Medical Engineering, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka, Japan
| | - Tatsuo Iwasaki
- Anesthesiology, Okayama University Hospital, Okayama, Japan
| | - Shingo Kasahara
- Department of, Cardiovascular Surgery, Okayama University Hospital, Okayama, Japan
| | - Shunji Sano
- Department of, Cardiovascular Surgery, Okayama University Hospital, Okayama, Japan
| | - Akif Ündar
- Departments of Pediatrics, Surgery, and Bioengineering, Penn State Hershey Pediatric Cardiovascular Research Center, Hershey, PA, USA
| |
Collapse
|
14
|
Clark JB, Wang S, Palanzo DA, Wise R, Baer LD, Brehm C, Ündar A. Current Techniques and Outcomes in Extracorporeal Life Support. Artif Organs 2015; 39:926-30. [DOI: 10.1111/aor.12527] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph B. Clark
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
- Department of Surgery; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - Shigang Wang
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - David A. Palanzo
- Penn State Hershey Heart and Vascular Institute; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - Robert Wise
- Penn State Hershey Heart and Vascular Institute; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - Larry D. Baer
- Penn State Hershey Heart and Vascular Institute; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - Christoph Brehm
- Penn State Hershey Heart and Vascular Institute; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| | - Akif Ündar
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
- Department of Surgery; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
- Department of Bioengineering; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State College of Medicine; Penn State Hershey Children's Hospital; 500 University Drive, Mail Code 850 Hershey PA 17033-0850 USA
| |
Collapse
|
15
|
Wang S, Krawiec C, Patel S, Kunselman AR, Song J, Lei F, Baer LD, Ündar A. Laboratory Evaluation of Hemolysis and Systemic Inflammatory Response in Neonatal Nonpulsatile and Pulsatile Extracorporeal Life Support Systems. Artif Organs 2015; 39:774-81. [DOI: 10.1111/aor.12466] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shigang Wang
- Penn State Hershey Pediatric Cardiovascular Research Center; Department of Pediatrics; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Conrad Krawiec
- Penn State Hershey Pediatric Cardiovascular Research Center; Department of Pediatrics; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
- Pediatric Critical Care Unit; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Sunil Patel
- Penn State Hershey Pediatric Cardiovascular Research Center; Department of Pediatrics; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
- Pediatric Cardiology; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Allen R. Kunselman
- Department of Public Health Sciences; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Jianxun Song
- Department of Microbiology & Immunology; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Fengyang Lei
- Department of Microbiology & Immunology; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Larry D. Baer
- Heart and Vascular Institute; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| | - Akif Ündar
- Penn State Hershey Pediatric Cardiovascular Research Center; Department of Pediatrics; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
- Surgery and Bioengineering; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Penn State Milton S. Hershey Medical Center; Hershey PA USA
| |
Collapse
|
16
|
Wang S, Izer JM, Clark JB, Patel S, Pauliks L, Kunselman AR, Leach D, Cooper TK, Wilson RP, Ündar A. In Vivo Hemodynamic Performance Evaluation of Novel Electrocardiogram-Synchronized Pulsatile and Nonpulsatile Extracorporeal Life Support Systems in an Adult Swine Model. Artif Organs 2015; 39:E90-E101. [DOI: 10.1111/aor.12482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigang Wang
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Jenelle M. Izer
- Department of Comparative Medicine; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Joseph B. Clark
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
- Department of Surgery; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Sunil Patel
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Linda Pauliks
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Allen R. Kunselman
- Department of Public Health and Sciences; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Donald Leach
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Timothy K. Cooper
- Department of Comparative Medicine; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
- Department of Pathology; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Ronald P. Wilson
- Department of Comparative Medicine; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| | - Akif Ündar
- Department of Pediatrics; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
- Department of Comparative Medicine; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
- Department of Bioengineering; Penn State Hershey Pediatric Cardiovascular Research Center; Penn State Milton S. Hershey Medical Center; Penn State Hershey College of Medicine; Penn State Hershey Children's Hospital; Hershey PA USA
| |
Collapse
|