2
|
Chiba N, Noguchi Y, Hwan Seong C, Ohnishi T, Matsuguchi T. EGR1 Plays an Important Role in BMP9-Mediated Osteoblast Differentiation by Promoting SMAD1/5 Phosphorylation. FEBS Lett 2022; 596:1720-1732. [PMID: 35594155 DOI: 10.1002/1873-3468.14407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential regulators of skeletal homeostasis, and BMP9 is the most potently osteogenic among them. Here, we found that BMP9 and BMP2 rapidly induced early growth response 1 (EGR1) protein expression in osteoblasts through MEK/ERK pathway-dependent transcriptional activation. Knockdown of EGR1 using siRNA significantly inhibited BMP9-induced matrix mineralization and osteogenic marker gene expression in osteoblasts. Knockdown of EGR1 significantly reduced SMAD1/5 phosphorylation and inhibited the expression of their transcriptional targets in osteoblasts stimulated by BMP9. In contrast, forced EGR1 overexpression in osteoblasts enhanced BMP9-mediated osteoblast differentiation and SMAD1/5 phosphorylation. An intracellular association between EGR1 and SMAD1/5 was identified using immunoprecipitation assays. These results indicated that EGR1 plays an important role in BMP9-stimulated osteoblast differentiation by enhancing SMAD1/5 phosphorylation.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Yukie Noguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Chang Hwan Seong
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| |
Collapse
|
3
|
Salguero-Aranda C, Beltran-Povea A, Postigo-Corrales F, Hitos AB, Díaz I, Caballano-Infantes E, Fraga MF, Hmadcha A, Martín F, Soria B, Tapia-Limonchi R, Bedoya FJ, Tejedo JR, Cahuana GM. Pdx1 Is Transcriptionally Regulated by EGR-1 during Nitric Oxide-Induced Endoderm Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2022; 23:ijms23073920. [PMID: 35409280 PMCID: PMC8999925 DOI: 10.3390/ijms23073920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 (Pdx1). We have also evidenced that Pdx1 expression is associated with the release of polycomb repressive complex 2 (PRC2) and P300 from the Pdx1 promoter; these events were accompanied by epigenetic changes to histones and site-specific changes in the DNA methylation. Here, we investigate the role of EGR-1 on Pdx1 regulation in mESCs. This study reveals that EGR-1 plays a negative role in Pdx1 expression and shows that the binding capacity of EGR-1 to the Pdx1 promoter depends on the methylation level of its DNA binding site and its acetylation state. These results suggest that targeting EGR-1 at early differentiation stages might be relevant for directing pluripotent cells into Pdx1-dependent cell lineages.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC of the Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
- Correspondence: (C.S.-A.); (G.M.C.)
| | - Amparo Beltran-Povea
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
| | - Fátima Postigo-Corrales
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
| | - Ana Belén Hitos
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
| | - Irene Díaz
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Cancer Epigenetics and Nanomedicine Laboratory, 33940 El Entrego, Spain;
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Department of Biotechnology, University of Alicante, 03690 Alicante, Spain
| | - Franz Martín
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Bernat Soria
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Biotechnology, University of Alicante, 03690 Alicante, Spain
- Health Research Institute-ISABIAL Dr Balmis University Hospital and Institute of Bioengineering, University Miguel Hernández de Elche, 03010 Alicante, Spain
| | - Rafael Tapia-Limonchi
- Tropical Disease Institute, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas 01001, Peru;
| | - Francisco J. Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Tropical Disease Institute, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas 01001, Peru;
| | - Gladys M. Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Correspondence: (C.S.-A.); (G.M.C.)
| |
Collapse
|
4
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Nihad M, Shenoy P S, Bose B. Cell therapy research for Diabetes: Pancreatic β cell differentiation from pluripotent stem cells. Diabetes Res Clin Pract 2021; 181:109084. [PMID: 34673084 DOI: 10.1016/j.diabres.2021.109084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (PSCs), both embryonic and induced pluripotent stem cells (iPSCs), have been differentiated into pancreatic β isletsin vitrofor more than a decade. The idea is to get enough β cells for cell transplantation for diabetics. Finding a standard cell therapy for diabetes is essential because of the logarithmic increase in the global population of people with diabetes and the insufficient availability of the human cadaveric pancreas. Moreover, with better insights into developmental biology, thein vitroβ cell differentiation protocols have depended on thein vivoβ cell organogenesis. Various protocols for pancreatic β cell differentiation have been developed. Such protocols are based on the modulation of cell signalling pathways with growth factors, small molecules, RNAi approaches, directed differentiation using transcription factors, genome editing. Growth factor free differentiation protocols, epigenetic modulations, 3D differentiation approaches, and encapsulation strategies have also been reported for better glycemic control and endocrine modulations. Here, we have reviewed various aforementionedin vitroβ cell differentiation protocols from human PSCs, their respective comparisons, challenges, past, present, and future. The literature has been reviewed primarily from PubMed from the year 2000 till date using the mentioned keywords.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Pincode-575 018, Karnataka, India.
| |
Collapse
|
6
|
Zhang C, Li C, Yang L, Leng L, Jovic D, Wang J, Fang F, Li G, Zhao D, Li X, Lin L, Luo Y, Bolund L, Huang J, Lin G, Xu F. The Dynamic Changes of Transcription Factors During the Development Processes of Human Biparental and Uniparental Embryos. Front Cell Dev Biol 2021; 9:709498. [PMID: 34604214 PMCID: PMC8484909 DOI: 10.3389/fcell.2021.709498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Previous studies have revealed that transcription factors (TFs) play important roles in biparental (BI) early human embryogenesis. However, the contribution of TFs during early uniparental embryo development is still largely unknown. Here we systematically studied the expression profiles of transcription factors in early embryonic development and revealed the dynamic changes of TFs in human biparental and uniparental embryogenesis by single-cell RNA sequencing (scRNA-seq). In general, the TF expression model of uniparental embryos showed a high degree of conformity with biparental embryos. The detailed network analysis of three different types of embryos identified that 10 out of 17 hub TFs were shared or specifically owned, such as ZNF480, ZNF581, PHB, and POU5F1, were four shared TFs, ZFN534, GTF3A, ZNF771, TEAD4, and LIN28A, were androgenic (AG) specific TFs, and ZFP42 was the only one parthenogenetic (PG) specific TF. All the four shared TFs were validated using human embryonic stem cell (hESC) differentiation experiments; most of their target genes are responsible for stem cell maintenance and differentiation. We also found that Zf-C2H2, HMG, and MYB were three dominant transcription factor families that appeared in early embryogenesis. Altogether, our work provides a comprehensive regulatory framework and better understanding of TF function in human biparental and uniparental embryogenesis.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Conghui Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Ling Yang
- BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Lizhi Leng
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cells Engineering, Ministry of Health, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dragomirka Jovic
- BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Jun Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Fang Fang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Guibo Li
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Depeng Zhao
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xuemei Li
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Bolund
- BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jinrong Huang
- BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ge Lin
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China.,Key Laboratory of Reproductive and Stem Cells Engineering, Ministry of Health, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fengping Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI Cell, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|