1
|
Prajapati RN, Bhushan B, Singh K, Chopra H, Kumar S, Agrawal M, Pathak D, Chanchal DK, Laxmikant. Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics. Curr Pharm Biotechnol 2024; 25:2060-2077. [PMID: 38288793 DOI: 10.2174/0113892010275850240102105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024]
Abstract
Pharmaceutical design has made significant advancements in recent years, leading to the development of novel therapeutics with unprecedented efficacy and safety profiles. This review highlights the potential of these innovations to revolutionize healthcare and improve patient outcomes. The application of cutting-edge technologies like artificial intelligence, machine learning, and data mining in drug discovery and design has made it easier to find potential drug candidates. Combining big data and omics has led to the discovery of new therapeutic targets and personalized medicine strategies. Nanoparticles, liposomes, and microneedles are examples of advanced drug delivery systems that allow precise control over drug release, better bioavailability, and targeted delivery to specific tissues or cells. This improves the effectiveness of the treatment while reducing side effects. Stimuli-responsive materials and smart drug delivery systems enable drugs to be released on demand when specific internal or external signals are sent. Biologics and gene therapies are promising approaches in pharmaceutical design, offering high specificity and potency for treating various diseases like cancer, autoimmune disorders, and infectious diseases. Gene therapies hold tremendous potential for correcting genetic abnormalities, with recent breakthroughs demonstrating successful outcomes in inherited disorders and certain types of cancer. Advancements in nanotechnology and nanomedicine have paved the way for innovative diagnostic tools and therapeutics, such as nanoparticle-based imaging agents, targeted drug delivery systems, gene editing technologies, and regenerative medicine strategies. Finally, the review emphasizes the importance of regulatory considerations, ethical challenges, and future directions in pharmaceutical design. Regulatory agencies are adapting to the rapid advancements in the field, ensuring the safety and efficacy of novel therapeutics while fostering innovation. Ethical considerations regarding the use of emerging technologies, patient privacy, and access to advanced therapies also require careful attention.
Collapse
Affiliation(s)
- Ram Narayan Prajapati
- Department of Pharmaceutics, Institute of Pharmacy, Bundelkhand University, Jhansi-284128 (UP) India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh India
| | - Mehak Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Devender Pathak
- Department of Chemistry, Rajiv Academy for Pharmacy, Mathura Uttar Pradesh, India
| | - Dilip Kumar Chanchal
- Department of Pharmacognosy, Smt. Vidyawati College of Pharmacy, Jhansi, Uttar Pradesh, India
| | - Laxmikant
- Department of Chemistry, Agra Public Pharmacy College, Artoni Agra, Uttar Pradesh, India
| |
Collapse
|
2
|
Puzari U, Fernandes PA, Mukherjee AK. Advances in the Therapeutic Application of Small-Molecule Inhibitors and Repurposed Drugs against Snakebite. J Med Chem 2021; 64:13938-13979. [PMID: 34565143 DOI: 10.1021/acs.jmedchem.1c00266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization has declared snakebite as a neglected tropical disease. Antivenom administration is the sole therapy against venomous snakebite; however, several limitations of this therapy reinforce the dire need for an alternative and/or additional treatment against envenomation. Inhibitors against snake venoms have been explored from natural resources and are synthesized in the laboratory; however, repurposing of small-molecule therapeutics (SMTs) against the principal toxins of snake venoms to inhibit their lethality and/or obnoxious effect of envenomation has been garnering greater attention owing to their established pharmacokinetic properties, low-risk attributes, cost-effectiveness, ease of administration, and storage stability. Nevertheless, SMTs are yet to be approved and commercialized for snakebite treatment. Therefore, we have systematically reviewed and critically analyzed the scenario of small synthetic inhibitors and repurposed drugs against snake envenomation from 2005 to date and proposed novel approaches and commercialization strategies for the development of efficacious therapies against snake envenomation.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur-784028, Assam, India.,Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
3
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Thoring L, Zemella A, Wüstenhagen D, Kubick S. Accelerating the Production of Druggable Targets: Eukaryotic Cell-Free Systems Come into Focus. Methods Protoc 2019; 2:mps2020030. [PMID: 31164610 PMCID: PMC6632147 DOI: 10.3390/mps2020030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
In the biopharmaceutical pipeline, protein expression systems are of high importance not only for the production of biotherapeutics but also for the discovery of novel drugs. The vast majority of drug targets are proteins, which need to be characterized and validated prior to the screening of potential hit components and molecules. A broad range of protein expression systems is currently available, mostly based on cellular organisms of prokaryotic and eukaryotic origin. Prokaryotic cell-free systems are often the system of choice for drug target protein production due to the simple generation of expression hosts and low cost of preparation. Limitations in the production of complex mammalian proteins appear due to inefficient protein folding and posttranslational modifications. Alternative protein production systems, so-called eukaryotic cell-free protein synthesis systems based on eukaryotic cell-lysates, close the gap between a fast protein generation system and a high quality of complex mammalian proteins. In this study, we show the production of druggable target proteins in eukaryotic cell-free systems. Functional characterization studies demonstrate the bioactivity of the proteins and underline the potential for eukaryotic cell-free systems to significantly improve drug development pipelines.
Collapse
Affiliation(s)
- Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany.
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany.
| | - Doreen Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany.
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany.
| |
Collapse
|