1
|
Fernández-Vargas M, Macedo-Lima M, Remage-Healey L. Acute Aromatase Inhibition Impairs Neural and Behavioral Auditory Scene Analysis in Zebra Finches. eNeuro 2024; 11:ENEURO.0423-23.2024. [PMID: 38467426 PMCID: PMC10960633 DOI: 10.1523/eneuro.0423-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 03/13/2024] Open
Abstract
Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.
Collapse
Affiliation(s)
- Marcela Fernández-Vargas
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
2
|
Spool JA, Bergan JF, Remage-Healey L. A neural circuit perspective on brain aromatase. Front Neuroendocrinol 2022; 65:100973. [PMID: 34942232 PMCID: PMC9667830 DOI: 10.1016/j.yfrne.2021.100973] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.
Collapse
Affiliation(s)
- Jeremy A Spool
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Joseph F Bergan
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
3
|
Endocrine Therapy With or Without CDK4/6 Inhibitors in Women With Hormone-receptor Positive Breast Cancer: What do we Know About the Effects on Cognition? Clin Breast Cancer 2021; 22:191-199. [PMID: 34556423 DOI: 10.1016/j.clbc.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Adjuvant endocrine therapy (ET) is the cornerstone of treatment for hormone-receptor positive breast cancer. Recently, ET is increasingly combined with "cyclin-dependent kinases 4 and 6'' (CDK4/6) inhibitors. Given the importance of estrogens in neural processes and the role of cyclin D in hippocampal cell proliferation, it is plausible that these therapies affect cognition, but studies on these potential cognitive effects are sparse. In this review, we summarize existing knowledge on the cognitive effects of ET and CDK4/6 inhibitors in pre-, peri- and postmenopausal patients with breast cancer. We show that several clinical studies support adverse cognitive effects, especially on verbal memory, after ET-induced decrease of estrogen-levels or inactivation of estrogen-receptors. Clinical studies on the cognitive effects of CDK4/6 inhibitors are virtually non-existent and no conclusions can yet be drawn. Longitudinal studies on the cognitive effects of the combined ET-CDK4/6 inhibitors are highly needed to properly inform patients about potential short-term and long-term cognitive side effects. These studies should preferably include cognitive assessments (including a measurement prior to ET), and be designed in such a way that they can account for variables such as type and duration of ET, CDK4/6 inhibition, menopausal status, and other disease- and treatment-related symptoms that can impact cognition, such as fatigue and distress.
Collapse
|
4
|
Rani S, Raheja K, Luxami V, Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg Chem 2021; 113:105017. [PMID: 34091288 DOI: 10.1016/j.bioorg.2021.105017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer, emerging malignancy is common among women due to overexpression of estrogen. Estrogens are biosynthesized from androgens by aromatase, a cytochrome P450 enzyme complex, and play a pivotal role in stimulating cell proliferation. Therefore, deprivation of estrogen by blocking aromatase is considered as the effective way for the inhibition and treatment of breast cancer. In recent years, various non-steroidal heterocyclic functionalities have been extensively developed and studied for their aromatase inhibition activity. This review provides information about the structural-activity relationship of heterocycles (Type II) towards aromatase. This aids the medicinal chemist around the significance of different heterocyclic moieties and helps to design potent aromatase inhibitors.
Collapse
Affiliation(s)
- Sudesh Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Konpal Raheja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
5
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Neuroestrogen synthesis modifies neural representations of learned song without altering vocal imitation in developing songbirds. Sci Rep 2020; 10:3602. [PMID: 32108169 PMCID: PMC7046723 DOI: 10.1038/s41598-020-60329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Birdsong learning, like human speech, depends on the early memorization of auditory models, yet how initial auditory experiences are formed and consolidated is unclear. In songbirds, a putative cortical locus is the caudomedial nidopallium (NCM), and one mechanism to facilitate auditory consolidation is 17β-estradiol (E2), which is associated with human speech-language development, and is abundant in both NCM and human temporal cortex. Circulating and NCM E2 levels are dynamic during learning, suggesting E2’s involvement in encoding recent auditory experiences. Therefore, we tested this hypothesis in juvenile male songbirds using a comprehensive assessment of neuroanatomy, behavior, and neurophysiology. First, we found that brain aromatase expression, and thus the capacity to synthesize neuroestrogens, remains high in the auditory cortex throughout development. Further, while systemic estrogen synthesis blockade suppressed juvenile song production, neither systemic nor unilateral E2 synthesis inhibition in NCM disrupted eventual song imitation. Surprisingly, early life neuroestrogen synthesis blockade in NCM enhanced the neural representations of both the birds’ own song and the tutor song in NCM and a downstream sensorimotor region, HVC, respectively. Taken together, these findings indicate that E2 plays a multifaceted role during development, and that, contrary to prediction, tutor song memorization is unimpaired by unilateral estrogen synthesis blockade in the auditory cortex.
Collapse
|
7
|
Sohrabji F, Okoreeh A, Panta A. Sex hormones and stroke: Beyond estrogens. Horm Behav 2019; 111:87-95. [PMID: 30713101 PMCID: PMC6527470 DOI: 10.1016/j.yhbeh.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Stroke risk and poor stroke outcomes in postmenopausal women have usually beeen attributed to decreased levels of estrogen. However, two lines of evidence suggest that this hormone may not be solely responsible for elevated stroke risk in this population. First, the increased risk for CVD and stroke occurs much earlier than menopause at a time when estrogen levels are not yet reduced. Second, estrogen therapy has not successfully reduced stroke risk in all studies. Other sex hormones may therefore also contribute to stroke risk. Prior to menopause, levels of the gonadotrophin Follicle Stimulating Hormone (FSH) are elevated while levels of the gonadal peptide inhibin are lowered, indicating an overall decrease in ovarian reserve. Similarly, reduced estrogen levels at menopause significantly increase the ratio of androgens to estrogens. In view of the evidence that androgens may be unfavorable for CVD and stroke, this elevated ratio of testosterone to estrogen may also contribute to the postmenopause-associated stroke risk. This review synthesizes evidence from different clinical populations including natural menopause, surgical menopause, women on chemotherapy, and preclinical stroke models to dissect the role of ovarian hormones and stroke risk and outcomes.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America.
| | - Andre Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| | - Aditya Panta
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| |
Collapse
|
8
|
Underwood EA, Rochon PA, Moineddin R, Lee PE, Wu W, Pritchard KI, Tierney MC. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res Treat 2017; 168:299-310. [PMID: 29264751 DOI: 10.1007/s10549-017-4627-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Evidence suggests anti-estrogen endocrine therapy (ET) is associated with adverse cognitive effects; however, findings are based on small samples and vary in the cognitive abilities affected. We conducted a meta-analysis to quantitatively synthesize the evidence. METHODS Electronic databases were searched in November 2016. Fourteen studies totaling 911 BC patients on aromatase inhibitors (AIs) or tamoxifen (TAM) and 911 controls (i.e., non-cancer controls and BC controls not using ET) were included. Neuropsychological tests were categorized into six domains. Effect sizes were computed to compare (1) ET patients versus controls and (2) TAM patients versus AI patients. RESULTS In cross-sectional comparisons, ET patients performed worse than control groups on verbal learning/memory, visual learning/memory, frontal executive function, and processing speed, but did not differ on psychomotor efficiency or visuospatial function. Subgroup analyses revealed that verbal learning/memory was the only domain where ET patients performed worse than both non-cancer and BC controls. In other domains, ET patients and BC controls performed equivalently. Regarding change from pre-treatment performance, ET patients did not differ from controls on any domain. TAM and AI patients did not from one another differ overall; however, subgroup analyses indicated that TAM patients performed better than non-steroidal AI patients on several domains, but showed few performance differences relative to steroidal AI patients. CONCLUSIONS Verbal learning/memory was the only domain where ET patients performed worse than both non-cancer and BC controls, suggesting specific adverse effects on this domain. Additional studies assessing change from pre-treatment performance and differences between steroidal and non-steroidal AIs are warranted.
Collapse
Affiliation(s)
- E A Underwood
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Primary Care Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Suite E349, Toronto, ON, M4N 3M5, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - P A Rochon
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - R Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - P E Lee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Wu
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - K I Pritchard
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - M C Tierney
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Primary Care Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Suite E349, Toronto, ON, M4N 3M5, Canada. .,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|