1
|
Chatterjee C, Mohan GR, Chinnasamy HV, Biswas B, Sundaram V, Srivastava A, Matheshwaran S. Anti-mutagenic agent targeting LexA to combat antimicrobial resistance in mycobacteria. J Biol Chem 2024; 300:107650. [PMID: 39122002 PMCID: PMC11408154 DOI: 10.1016/j.jbc.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global threat demanding innovations for effective control of pathogens. The bacterial SOS response, regulated by the master regulators, LexA and RecA, contributes to AMR through advantageous mutations. Targeting the LexA/RecA system with a novel inhibitor could suppress the SOS response and potentially reduce the occurrence of AMR. RecA presents a challenge as a therapeutic target due to its conserved structure and function across species, including humans. Conversely, LexA which is absent in eukaryotes, can be potentially targeted, due to its involvement in SOS response which is majorly responsible for adaptive mutagenesis and AMR. Our studies combining bioinformatic, biochemical, biophysical, molecular, and cell-based assays present a unique inhibitor of mycobacterial LexA, wherein we show that the inhibitor interacts directly with the catalytic site residues of LexA of Mycobacterium tuberculosis (Mtb), consequently hindering its cleavage, suppressing SOS response thereby reducing mutation frequency and AMR.
Collapse
Affiliation(s)
- Chitral Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Gokul Raj Mohan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Hariharan V Chinnasamy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India; Kotak School of Sustainability, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
2
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
3
|
Huang YH, Huang CY. Anti-Skin Aging Potential, Antibacterial Activity, Inhibition of Single-Stranded DNA-Binding Protein, and Cytotoxic Effects of Acetone-Extracted Passiflora edulis (Tainung No. 1) Rind Extract on Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:2194. [PMID: 39204630 PMCID: PMC11359509 DOI: 10.3390/plants13162194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The passion fruit, Passiflora edulis, recognized for its rich nutritional properties, has long been used for its varied ethnobotanical applications. This study investigates the therapeutic potential of P. edulis var. Tainung No. 1 rind extracts by examining their polyphenolic content (TPC), total flavonoid content (TFC), anti-skin aging activities against key enzymes such as elastase, tyrosinase, and hyaluronidase, and their ability to inhibit bacterial growth, single-stranded DNA-binding protein (SSB), and their cytotoxic effects on oral carcinoma cells. The acetone extract from the rind exhibited the highest levels of TPC, TFC, anti-SSB, and antibacterial activities. The antibacterial effectiveness of the acetone-extracted rind was ranked as follows: Escherichia coli > Pseudomonas aeruginosa > Staphylococcus aureus. A titration curve for SSB inhibition showed an IC50 value of 313.2 μg/mL, indicating the potency of the acetone extract in inhibiting SSB. It also significantly reduced the activity of enzymes associated with skin aging, particularly tyrosinase, with a 54.5% inhibition at a concentration of 100 μg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis tentatively identified several major bioactive compounds in the acetone extract, including stigmast-5-en-3-ol, vitamin E, palmitic acid, stigmasterol, linoleic acid, campesterol, and octadecanoic acid. Molecular docking studies suggested some of these compounds as potential inhibitors of tyrosinase and SSB. Furthermore, the extract demonstrated anticancer potential against Ca9-22 oral carcinoma cells by inhibiting cell survival, migration, and proliferation and inducing apoptosis. These results underscore the potential of P. edulis (Tainung No. 1) rind as a promising candidate for anti-skin aging, antibacterial, and anticancer applications, meriting further therapeutic investigation.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Lin CY, Murayama T, Futada K, Tanaka S, Masuda Y, Honjoh KI, Miyamoto T. Screening of genes involved in phage-resistance of Escherichia coli and effects of substances interacting with primosomal protein A on the resistant bacteria. J Appl Microbiol 2024; 135:lxad318. [PMID: 38142224 DOI: 10.1093/jambio/lxad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
AIMS The study was to identify the genes involved in phage resistance and to develop an effective biocontrol method to improve the lytic activity of phages against foodborne pathogens. METHODS AND RESULTS A total of 3,909 single gene-deletion mutants of Escherichia coli BW25113 from the Keio collection were individually screened for genes involved in phage resistance. Phage S127BCL3 isolated from chicken liver, infecting both E. coli BW25113 and O157: H7, was characterized and used for screening. The 10 gene-deletion mutants showed increased susceptibility to phage S127BCL3. Among them, priA gene-deletion mutant strain showed significant susceptibility to the phages S127BCL3 and T7. Furthermore, we investigated the substances that have been reported to inhibit the function of primosomal protein A (PriA) and were used to confirm increased phage susceptibility in E. coli BW25113 (Parent strain) and O157: H7. CONCLUSION PriA inhibitors at a low concentration showed combined effects with phage against E. coli O157: H7 and delayed the regrowth rate of phage-resistant cells.
Collapse
Affiliation(s)
- Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoka Murayama
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Futada
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shota Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Schuurs ZP, Martyn AP, Soltau CP, Beard S, Shah ET, Adams MN, Croft LV, O’Byrne KJ, Richard DJ, Gandhi NS. An Exploration of Small Molecules That Bind Human Single-Stranded DNA Binding Protein 1. BIOLOGY 2023; 12:1405. [PMID: 37998004 PMCID: PMC10669474 DOI: 10.3390/biology12111405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Human single-stranded DNA binding protein 1 (hSSB1) is critical to preserving genome stability, interacting with single-stranded DNA (ssDNA) through an oligonucleotide/oligosaccharide binding-fold. The depletion of hSSB1 in cell-line models leads to aberrant DNA repair and increased sensitivity to irradiation. hSSB1 is over-expressed in several types of cancers, suggesting that hSSB1 could be a novel therapeutic target in malignant disease. hSSB1 binding studies have focused on DNA; however, despite the availability of 3D structures, small molecules targeting hSSB1 have not been explored. Quinoline derivatives targeting hSSB1 were designed through a virtual fragment-based screening process, synthesizing them using AlphaLISA and EMSA to determine their affinity for hSSB1. In parallel, we further screened a structurally diverse compound library against hSSB1 using the same biochemical assays. Three compounds with nanomolar affinity for hSSB1 were identified, exhibiting cytotoxicity in an osteosarcoma cell line. To our knowledge, this is the first study to identify small molecules that modulate hSSB1 activity. Molecular dynamics simulations indicated that three of the compounds that were tested bound to the ssDNA-binding site of hSSB1, providing a framework for the further elucidation of inhibition mechanisms. These data suggest that small molecules can disrupt the interaction between hSSB1 and ssDNA, and may also affect the ability of cells to repair DNA damage. This test study of small molecules holds the potential to provide insights into fundamental biochemical questions regarding the OB-fold.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Alexander P. Martyn
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Carl P. Soltau
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Sam Beard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
| | - Esha T. Shah
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Mark N. Adams
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kenneth J. O’Byrne
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- Cancer Services, Princess Alexandra Hospital—Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (Z.P.S.); (A.P.M.)
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia; (S.B.); (M.N.A.); (L.V.C.); (K.J.O.); (D.J.R.)
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
6
|
Alnammi M, Liu S, Ericksen SS, Ananiev GE, Voter AF, Guo S, Keck JL, Hoffmann FM, Wildman SA, Gitter A. Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries. J Chem Inf Model 2023; 63:5513-5528. [PMID: 37625010 PMCID: PMC10538940 DOI: 10.1021/acs.jcim.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 08/27/2023]
Abstract
Traditional small-molecule drug discovery is a time-consuming and costly endeavor. High-throughput chemical screening can only assess a tiny fraction of drug-like chemical space. The strong predictive power of modern machine-learning methods for virtual chemical screening enables training models on known active and inactive compounds and extrapolating to much larger chemical libraries. However, there has been limited experimental validation of these methods in practical applications on large commercially available or synthesize-on-demand chemical libraries. Through a prospective evaluation with the bacterial protein-protein interaction PriA-SSB, we demonstrate that ligand-based virtual screening can identify many active compounds in large commercial libraries. We use cross-validation to compare different types of supervised learning models and select a random forest (RF) classifier as the best model for this target. When predicting the activity of more than 8 million compounds from Aldrich Market Select, the RF substantially outperforms a naïve baseline based on chemical structure similarity. 48% of the RF's 701 selected compounds are active. The RF model easily scales to score one billion compounds from the synthesize-on-demand Enamine REAL database. We tested 68 chemically diverse top predictions from Enamine REAL and observed 31 hits (46%), including one with an IC50 value of 1.3 μM.
Collapse
Affiliation(s)
- Moayad Alnammi
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
- Department
of Information and Computer Science, King
Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Shengchao Liu
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| | - Spencer S. Ericksen
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Gene E. Ananiev
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Andrew F. Voter
- Department
of Biomolecular Chemistry, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Song Guo
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - James L. Keck
- Department
of Biomolecular Chemistry, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - F. Michael Hoffmann
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
- McArdle Laboratory
for Cancer Research, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Scott A. Wildman
- Small
Molecule Screening Facility, University
of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| | - Anthony Gitter
- Department
of Computer Sciences, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
- Department
of Biostatistics and Medical Informatics, University of Wisconsin−Madison, Madison, Wisconsin 53792, United States
| |
Collapse
|
7
|
Cueny RR, Varma S, Schmidt KH, Keck JL. Biochemical properties of naturally occurring human bloom helicase variants. PLoS One 2023; 18:e0281524. [PMID: 37267408 DOI: 10.1371/journal.pone.0281524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Bloom syndrome helicase (BLM) is a RecQ-family helicase implicated in a variety of cellular processes, including DNA replication, DNA repair, and telomere maintenance. Mutations in human BLM cause Bloom syndrome (BS), an autosomal recessive disorder that leads to myriad negative health impacts including a predisposition to cancer. BS-causing mutations in BLM often negatively impact BLM ATPase and helicase activity. While BLM mutations that cause BS have been well characterized both in vitro and in vivo, there are other less studied BLM mutations that exist in the human population that do not lead to BS. Two of these non-BS mutations, encoding BLM P868L and BLM G1120R, when homozygous, increase sister chromatid exchanges in human cells. To characterize these naturally occurring BLM mutant proteins in vitro, we purified the BLM catalytic core (BLMcore, residues 636-1298) with either the P868L or G1120R substitution. We also purified a BLMcore K869A K870A mutant protein, which alters a lysine-rich loop proximal to the P868 residue. We found that BLMcore P868L and G1120R proteins were both able to hydrolyze ATP, bind diverse DNA substrates, and unwind G-quadruplex and duplex DNA structures. Molecular dynamics simulations suggest that the P868L substitution weakens the DNA interaction with the winged-helix domain of BLM and alters the orientation of one lobe of the ATPase domain. Because BLMcore P868L and G1120R retain helicase function in vitro, it is likely that the increased genome instability is caused by specific impacts of the mutant proteins in vivo. Interestingly, we found that BLMcore K869A K870A has diminished ATPase activity, weakened binding to duplex DNA structures, and less robust helicase activity compared to wild-type BLMcore. Thus, the lysine-rich loop may have an important role in ATPase activity and specific binding and DNA unwinding functions in BLM.
Collapse
Affiliation(s)
- Rachel R Cueny
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States of America
| | - Sameer Varma
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States of America
- Department of Physics, University of South Florida, Tampa, FL, United States of America
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States of America
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
8
|
Tököli A, Bodnár B, Bogár F, Paragi G, Hetényi A, Bartus É, Wéber E, Hegedüs Z, Szabó Z, Kecskeméti G, Szakonyi G, Martinek TA. Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design. Pharmaceutics 2023; 15:1032. [PMID: 37111518 PMCID: PMC10143822 DOI: 10.3390/pharmaceutics15041032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide-protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy-entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands.
Collapse
Affiliation(s)
- Attila Tököli
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Brigitta Bodnár
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- Institute of Physics, University of Pécs, H7624 Pécs, Hungary
- Department of Theoretical Physics, University of Szeged, H6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Edit Wéber
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, University of Szeged, H6720 Szeged, Hungary
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| |
Collapse
|
9
|
High-Throughput Screening to Identify Inhibitors of SSB-Protein Interactions. Methods Mol Biol 2021. [PMID: 33847955 DOI: 10.1007/978-1-0716-1290-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The bacterial single-stranded DNA-binding protein (SSB) uses an acidic C-terminal tail to interact with over a dozen proteins, acting as a genome maintenance hub. These SSB-protein interactions are essential, as mutations to the C-terminal tail that disrupt these interactions are lethal in Escherichia coli. While the roles of individual SSB-protein interactions have been dissected with mutational studies, small-molecule inhibitors of these interactions could serve as valuable research tools and have potential as novel antimicrobial agents. This chapter describes a high-throughput screening campaign used to identify inhibitors of SSB-protein interactions. A screen targeting the PriA-SSB interface from Klebsiella pneumoniae is presented as an example, but the methods may be adapted to target nearly any SSB interaction.
Collapse
|
10
|
Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A. Modulators of protein-protein interactions as antimicrobial agents. RSC Chem Biol 2021; 2:387-409. [PMID: 34458791 PMCID: PMC8341153 DOI: 10.1039/d0cb00205d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-Protein interactions (PPIs) are involved in a myriad of cellular processes in all living organisms and the modulation of PPIs is already under investigation for the development of new drugs targeting cancers, autoimmune diseases and viruses. PPIs are also involved in the regulation of vital functions in bacteria and, therefore, targeting bacterial PPIs offers an attractive strategy for the development of antibiotics with novel modes of action. The latter are urgently needed to tackle multidrug-resistant and multidrug-tolerant bacteria. In this review, we describe recent developments in the modulation of PPIs in pathogenic bacteria for antibiotic development, including advanced small molecule and peptide inhibitors acting on bacterial PPIs involved in division, replication and transcription, outer membrane protein biogenesis, with an additional focus on toxin-antitoxin systems as upcoming drug targets.
Collapse
Affiliation(s)
- Rashi Kahan
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Dennis J Worm
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Guilherme V de Castro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Simon Ng
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Anna Barnard
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
11
|
Yakimov A, Bakhlanova I, Baitin D. Targeting evolution of antibiotic resistance by SOS response inhibition. Comput Struct Biotechnol J 2021; 19:777-783. [PMID: 33552448 PMCID: PMC7843400 DOI: 10.1016/j.csbj.2021.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking. This review highlights the current knowledge of the protein targets for the evolution of antibiotic resistance and the inhibitory effects of some new compounds on this pathway.
Collapse
Affiliation(s)
- Alexander Yakimov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation
| | - Irina Bakhlanova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| | - Dmitry Baitin
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| |
Collapse
|
12
|
Nadel CM, Ran X, Gestwicki JE. Luminescence complementation assay for measurement of binding to protein C-termini in live cells. Anal Biochem 2020; 611:113947. [PMID: 32918866 DOI: 10.1016/j.ab.2020.113947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions (PPIs) involving the extreme C-terminus serve important scaffolding and regulatory functions. Here, we leveraged NanoBiT technology to build a luminescent complementation assay for use in studying this subcategory of PPI. As a model system, we fused one component of NanoBiT to the disordered C-terminus of heat shock protein (Hsp70) and the other to its binding partner, the tetratricopeptide repeat (TPR) domain of CHIP/STUB1. We found that HEK293 cells that stably express these chimeras under a doxycycline promoter produced a robust luminescence signal. This signal was sensitive to mutations and it was further tuned by the expression of competitive C-termini. Using this system, we identified a promising, membrane permeable inhibitor of the Hsp70-CHIP interaction. More broadly, we anticipate that NanoBiT is well-suited for studying PPIs that involve C-termini.
Collapse
Affiliation(s)
- Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xu Ran
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
13
|
Oakley AJ. A structural view of bacterial DNA replication. Protein Sci 2019; 28:990-1004. [PMID: 30945375 DOI: 10.1002/pro.3615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/11/2022]
Abstract
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.
Collapse
Affiliation(s)
- Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
14
|
Liu S, Alnammi M, Ericksen SS, Voter AF, Ananiev GE, Keck JL, Hoffmann FM, Wildman SA, Gitter A. Practical Model Selection for Prospective Virtual Screening. J Chem Inf Model 2018; 59:282-293. [PMID: 30500183 PMCID: PMC6351977 DOI: 10.1021/acs.jcim.8b00363] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Virtual (computational) high-throughput
screening provides a strategy
for prioritizing compounds for experimental screens, but the choice
of virtual screening algorithm depends on the data set and evaluation
strategy. We consider a wide range of ligand-based machine learning
and docking-based approaches for virtual screening on two protein–protein
interactions, PriA-SSB and RMI-FANCM, and present a strategy for choosing
which algorithm is best for prospective compound prioritization. Our
workflow identifies a random forest as the best algorithm for these
targets over more sophisticated neural network-based models. The top
250 predictions from our selected random forest recover 37 of the
54 active compounds from a library of 22,434 new molecules assayed
on PriA-SSB. We show that virtual screening methods that perform well
on public data sets and synthetic benchmarks, like multi-task neural
networks, may not always translate to prospective screening performance
on a specific assay of interest.
Collapse
Affiliation(s)
- Shengchao Liu
- Department of Computer Sciences , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Morgridge Institute for Research , Madison , Wisconsin 53715 , United States
| | - Moayad Alnammi
- Department of Computer Sciences , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Morgridge Institute for Research , Madison , Wisconsin 53715 , United States
| | - Spencer S Ericksen
- Small Molecule Screening Facility , University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53792 , United States
| | - Andrew F Voter
- Department of Biomolecular Chemistry , University of Wisconsin School of Medicine and Public Health , Madison , Wisconsin 53706 , United States
| | - Gene E Ananiev
- Small Molecule Screening Facility , University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53792 , United States
| | - James L Keck
- Department of Biomolecular Chemistry , University of Wisconsin School of Medicine and Public Health , Madison , Wisconsin 53706 , United States
| | - F Michael Hoffmann
- Small Molecule Screening Facility , University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53792 , United States.,McArdle Laboratory for Cancer Research , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Scott A Wildman
- Small Molecule Screening Facility , University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53792 , United States
| | - Anthony Gitter
- Department of Computer Sciences , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Morgridge Institute for Research , Madison , Wisconsin 53715 , United States.,Department of Biostatistics and Medical Informatics , University of Wisconsin-Madison , Madison , Wisconsin 53792 , United States
| |
Collapse
|
15
|
Carro L. Protein-protein interactions in bacteria: a promising and challenging avenue towards the discovery of new antibiotics. Beilstein J Org Chem 2018; 14:2881-2896. [PMID: 30546472 PMCID: PMC6278769 DOI: 10.3762/bjoc.14.267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are potent pharmacological weapons against bacterial infections; however, the growing antibiotic resistance of microorganisms is compromising the efficacy of the currently available pharmacotherapies. Even though antimicrobial resistance is not a new problem, antibiotic development has failed to match the growth of resistant pathogens and hence, it is highly critical to discover new anti-infective drugs with novel mechanisms of action which will help reducing the burden of multidrug-resistant microorganisms. Protein-protein interactions (PPIs) are involved in a myriad of vital cellular processes and have become an attractive target to treat diseases. Therefore, targeting PPI networks in bacteria may offer a new and unconventional point of intervention to develop novel anti-infective drugs which can combat the ever-increasing rate of multidrug-resistant bacteria. This review describes the progress achieved towards the discovery of molecules that disrupt PPI systems in bacteria for which inhibitors have been identified and whose targets could represent an alternative lead discovery strategy to obtain new anti-infective molecules.
Collapse
Affiliation(s)
- Laura Carro
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
16
|
Gruber CC, Walker GC. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. DNA Repair (Amst) 2018; 71:108-117. [PMID: 30181041 DOI: 10.1016/j.dnarep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous lethal stresses in bacteria including antibiotics, thymineless death, and MalE-LacZ expression trigger an increase in the production of reactive oxygen species. This results in the oxidation of the nucleotide pool by radicals produced by Fenton chemistry. Following the incorporation of these oxidized nucleotides into the genome, the cell's unsuccessful attempt to repair these lesions through base excision repair (BER) contributes causally to the lethality of these stresses. We review the evidence for this phenomenon of incomplete BER-mediated cell death and discuss how better understanding this pathway could contribute to the development of new antibiotics.
Collapse
Affiliation(s)
- Charley C Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
17
|
Antony E, Lohman TM. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin Cell Dev Biol 2018; 86:102-111. [PMID: 29588158 DOI: 10.1016/j.semcdb.2018.03.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023]
Abstract
Single stranded DNA binding proteins (SSB) are essential to the cell as they stabilize transiently open single stranded DNA (ssDNA) intermediates, recruit appropriate DNA metabolism proteins, and coordinate fundamental processes such as replication, repair and recombination. Escherichia coli single stranded DNA binding protein (EcSSB) has long served as the prototype for the study of SSB function. The structure, functions, and DNA binding properties of EcSSB are well established: The protein is a stable homotetramer with each subunit possessing an N-terminal DNA binding core, a C-terminal protein-protein interaction tail, and an intervening intrinsically disordered linker (IDL). EcSSB wraps ssDNA in multiple DNA binding modes and can diffuse along DNA to remove secondary structures and remodel other protein-DNA complexes. This review provides an update on these features based on recent findings, with special emphasis on the functional and mechanistic relevance of the IDL and DNA binding modes.
Collapse
Affiliation(s)
- Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Huang YH, Huang CY. SAAV2152 is a single-stranded DNA binding protein: the third SSB in Staphylococcus aureus. Oncotarget 2018; 9:20239-20254. [PMID: 29755648 PMCID: PMC5945547 DOI: 10.18632/oncotarget.24427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, repair, and recombination. Unlike E. coli, which contains only one type of SSB (EcSSB), some bacteria have two paralogous SSBs, namely, SsbA and SsbB. In this study, we found the third SSB-like protein in Staphylococcus aureus, SAAV2152, which was designated as SaSsbC. SaSsbC is a protein of 131 amino acids and shares 38%, 36%, and 33% sequence identity to SaSsbB, SaSsbA, and EcSSB, respectively. Gene map analysis showed that unlike the E. coli ssb gene, which is adjacent to uvrA gene, the S. aureus ssb gene SAAV2152 is flanked by the putative SceD, the putative YwpF, and fabZ genes. A homology model showed that SaSsbC consists of the classic oligonucleotide/oligosaccharide-binding fold at the N-terminus. At the C-terminus, SaSsbC did not exhibit sequence similarity to that of EcSSB. Electrophoretic mobility shift analysis showed that SaSsbC formed a single complex with ssDNA of different lengths. Mutational analysis revealed that Tyr36, Tyr47, Phe53, and Tyr81 in SaSsbC are at positions that structurally correspond to the important residues of EcSSB for binding to ssDNA and are also critical for SaSsbC to bind ssDNA. Unlike EcSSB, which can stimulate EcPriA, SaSsbC did not affect the activity of SaPriA. In addition, SaSsbA inhibitor 9-methyl-2,3,7-trihydroxy-6-fluorone (NSC5426) could inhibit the ssDNA-binding activity of SaSsbC with IC50 of 78 μM. In conclusion, this study has identified and characterized SAAV2152 as a kind of SSB, and further research can directly focus on determining its actual physiological role in S. aureus.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
19
|
Grimwade JE, Leonard AC. Targeting the Bacterial Orisome in the Search for New Antibiotics. Front Microbiol 2017; 8:2352. [PMID: 29230207 PMCID: PMC5712111 DOI: 10.3389/fmicb.2017.02352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
There is an urgent need for new antibiotics to combat drug resistant bacteria. Existing antibiotics act on only a small number of proteins and pathways in bacterial cells, and it seems logical that expansion of the target set could lead to development of novel antimicrobial agents. One essential process, not yet exploited for antibiotic discovery, is the initiation stage of chromosome replication, mediated by the bacterial orisome. In all bacteria, orisomes assemble when the initiator protein, DnaA, as well as accessory proteins, bind to a DNA scaffold called the origin of replication (oriC). Orisomes perform the essential tasks of unwinding oriC and loading the replicative helicase, and orisome assembly is tightly regulated in the cell cycle to ensure chromosome replication begins only once. Only a few bacterial orisomes have been fully characterized, and while this lack of information complicates identification of all features that could be targeted, examination of assembly stages and orisome regulatory mechanisms may provide direction for some effective inhibitory strategies. In this perspective, we review current knowledge about orisome assembly and regulation, and identify potential targets that, when inhibited pharmacologically, would prevent bacterial chromosome replication.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
20
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|