1
|
Winter M, Simon RP, Häbe TT, Ries R, Wang Y, Kvaskoff D, Fernández-Montalván A, Luippold AH, Büttner FH, Reindl W. Label-free high-throughput screening via acoustic ejection mass spectrometry put into practice. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:240-246. [PMID: 37031752 DOI: 10.1016/j.slasd.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Acoustic droplet ejection-open port interface-mass spectrometry (ADE-OPI-MS) is a novel label-free analytical technique, promising to become a versatile readout for high-throughput screening (HTS) applications. The recent introduction of ADE-OPI-MS devices to the laboratory equipment market, paired with their compatibility with laboratory automation platforms, should facilitate the adoption of this technology by a broader community. Towards this goal, instrument robustness in the context of HTS campaigns - where up to millions of samples in complex matrices are tested in a short time frame - represents a major challenge, which explains the absence of detailed literature reports on this subject. Here, we present the results of our first fully automated HTS campaign, based on the ADE-OPI-MS technology, aiming to identify inhibitors of a metabolic enzyme in a >1 million compound library. The report encompasses the assay development and validation steps, as well as the adaptation for HTS requirements, where refinement of the capillary cleaning concept was crucial for final success. Altogether, our study unequivocally demonstrates the applicability of the ADE-OPI-MS technology for HTS-based drug discovery.
Collapse
Affiliation(s)
- Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - Roman P Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - Tim T Häbe
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Yuting Wang
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - David Kvaskoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | - Andreas H Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
2
|
Dueñas ME, Peltier‐Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M. Advances in high-throughput mass spectrometry in drug discovery. EMBO Mol Med 2023; 15:e14850. [PMID: 36515561 PMCID: PMC9832828 DOI: 10.15252/emmm.202114850] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
High-throughput (HT) screening drug discovery, during which thousands or millions of compounds are screened, remains the key methodology for identifying active chemical matter in early drug discovery pipelines. Recent technological developments in mass spectrometry (MS) and automation have revolutionized the application of MS for use in HT screens. These methods allow the targeting of unlabelled biomolecules in HT assays, thereby expanding the breadth of targets for which HT assays can be developed compared to traditional approaches. Moreover, these label-free MS assays are often cheaper, faster, and more physiologically relevant than competing assay technologies. In this review, we will describe current MS techniques used in drug discovery and explain their advantages and disadvantages. We will highlight the power of mass spectrometry in label-free in vitro assays, and its application for setting up multiplexed cellular phenotypic assays, providing an exciting new tool for screening compounds in cell lines, and even primary cells. Finally, we will give an outlook on how technological advances will increase the future use and the capabilities of mass spectrometry in drug discovery.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel E Peltier‐Heap
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Melanie Leveridge
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Roland S Annan
- Discovery Analytical, Screening Profiling and Mechanistic Biology, GSK R&DStevenageUK
| | - Frank H Büttner
- Drug Discovery Sciences, High Throughput BiologyBoehringer Ingelheim Pharma GmbH&CoKGBiberachGermany
| | - Matthias Trost
- Laboratory for Biomedical Mass Spectrometry, Biosciences InstituteNewcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
3
|
Shi M, Zhou Y, Wei H, Zhang X, Du M, Zhou Y, Yin Y, Li X, Tang X, Sun L, Xu D, Li X. Interactions between curcumin and human salt-induced kinase 3 elucidated from computational tools and experimental methods. Front Pharmacol 2023; 14:1116098. [PMID: 37124223 PMCID: PMC10133576 DOI: 10.3389/fphar.2023.1116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Natural products are widely used for treating mitochondrial dysfunction-related diseases and cancers. Curcumin, a well-known natural product, can be potentially used to treat cancer. Human salt-induced kinase 3 (SIK3) is one of the target proteins for curcumin. However, the interactions between curcumin and human SIK3 have not yet been investigated in detail. In this study, we studied the binding models for the interactions between curcumin and human SIK3 using computational tools such as homology modeling, molecular docking, molecular dynamics simulations, and binding free energy calculations. The open activity loop conformation of SIK3 with the ketoenol form of curcumin was the optimal binding model. The I72, V80, A93, Y144, A145, and L195 residues played a key role for curcumin binding with human SIK3. The interactions between curcumin and human SIK3 were also investigated using the kinase assay. Moreover, curcumin exhibited an IC50 (half-maximal inhibitory concentration) value of 131 nM, and it showed significant antiproliferative activities of 9.62 ± 0.33 µM and 72.37 ± 0.37 µM against the MCF-7 and MDA-MB-23 cell lines, respectively. This study provides detailed information on the binding of curcumin with human SIK3 and may facilitate the design of novel salt-inducible kinases inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Yan Zhou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Haoche Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Meng Du
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China
| | - Yanting Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
| | - Xinghui Li
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Tang
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, Shenzhen, Guangdong, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Dingguo Xu, ; Xiaoan Li,
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China
- *Correspondence: Dingguo Xu, ; Xiaoan Li,
| |
Collapse
|
4
|
Müller L, Burton AK, Tayler CL, Rowedder JE, Hutchinson JP, Peace S, Quayle JM, Leveridge MV, Annan RS, Trost M, Peltier-Heap RE, Dueñas ME. A high-throughput MALDI-TOF MS biochemical screen for small molecule inhibitors of the antigen aminopeptidase ERAP1. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:3-11. [PMID: 36414185 DOI: 10.1016/j.slasd.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
MALDI-TOF MS is a powerful analytical technique that provides a fast and label-free readout for in vitro assays in the high-throughput screening (HTS) environment. Here, we describe the development of a novel, HTS compatible, MALDI-TOF MS-based drug discovery assay for the endoplasmic reticulum aminopeptidase 1 (ERAP1), an important target in immuno-oncology and auto-immune diseases. A MALDI-TOF MS assay was developed beginning with an already established ERAP1 RapidFire MS (RF MS) assay, where the peptide YTAFTIPSI is trimmed into the product TAFTIPSI. We noted low ionisation efficiency of these peptides in MALDI-TOF MS and hence incorporated arginine residues into the peptide sequences to improve ionisation. The optimal assay conditions were established with these new basic assay peptides on the MALDI-TOF MS platform and validated with known ERAP1 inhibitors. Assay stability, reproducibility and robustness was demonstrated on the MALDI-TOF MS platform. From a set of 699 confirmed ERAP1 binders, identified in a prior affinity selection mass spectrometry (ASMS) screen, active compounds were determined at single concentration and in a dose-response format with the new MALDI-TOF MS setup. Furthermore, to allow for platform performance comparison, the same compound set was tested on the established RF MS setup, as the new basic peptides showed fragmentation in ESI-MS. The two platforms showed a comparable performance, but the MALDI-TOF MS platform had several advantages, such as shorter sample cycle times, reduced reagent consumption, and a lower tight-binding limit.
Collapse
Affiliation(s)
- Leonie Müller
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Amy K Burton
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Chloe L Tayler
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - James E Rowedder
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Jonathan P Hutchinson
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Simon Peace
- GSK, Medicinal Chemistry, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Julie M Quayle
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Melanie V Leveridge
- GSK, Screening, Profiling and Mechanistic Biology, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Roland S Annan
- GSK, Discovery Analytical, Gunnels Wood Rd, Stevenage SG1 2NY, United Kingdom
| | - Matthias Trost
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| | | | - Maria Emilia Dueñas
- Newcastle University, Faculty of Medical Sciences, Biosciences Institute, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
5
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Winter M, Simon RP, Wang Y, Bretschneider T, Bauer M, Magarkar A, Reindl W, Fernández-Montalván A, Montel F, Büttner FH. Differential analyte derivatization enables unbiased MALDI-TOF-based high-throughput screening: A proof-of-concept study for the discovery of catechol-o-methyltransferase inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:287-297. [PMID: 35597517 DOI: 10.1016/j.slasd.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in label-free high-throughput screening via matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) offer unprecedented opportunities for the identification of novel chemical starting points in target-based drug discovery. A clear advantage of the technology is the possibility for label-free, direct quantification of analytes with high precision and robustness. Here we have expanded the range of analytes and biology that can be addressed via MALDI-TOF HTS, by developing a method based on post-reaction pyrylium-based derivatization to detect 3-methoxytyramine, the physiological enzyme product of the catechol-O-methyltransferase (COMT) enzyme. The introduction of pyrylium-type reagents as universal derivatization strategy under aqueous conditions for molecules containing primary amines represents a valuable addition to the toolbox of MALDI-TOF assay development. Characterization of COMT's enzymatic activity and inhibition by reference inhibitors, and comparison of the results obtained in our assay with data from previous mechanistic studies validated the performance of this new method. To address the problem of isobaric interference, a source of false results in MALDI-TOF assays measuring low molecular weight analytes, we devised a differential derivatization workflow which can potentially replace other counter- or orthogonal assays in future screening campaigns. Finally, we report on the first label-free HTS campaign for the identification of COMT inhibitors performed in miniaturized 1536-well microtiter plate format via MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| | - Roman P Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Yuting Wang
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Margit Bauer
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Aniket Magarkar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | | | - Florian Montel
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.
| |
Collapse
|
7
|
Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Suzuki T. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med 2021; 58:883-896. [PMID: 32229653 DOI: 10.1515/cclm-2019-0868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023]
Abstract
Background Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics. Content This review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories. Summary MALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases. Outlook There is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.
Collapse
Affiliation(s)
- Muhammad Zubair Israr
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dennis Bernieh
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy
| | - Shabana Cassambai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yoshiyuki Yazaki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Hui JO, Flick T, Loo JA, Campuzano IDG. Unequivocal Identification of Aspartic Acid and isoAspartic Acid by MALDI-TOF/TOF: From Peptide Standards to a Therapeutic Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1901-1909. [PMID: 33390012 DOI: 10.1021/jasms.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aspartic acid (Asp) to isoaspartic acid (isoAsp) isomerization in therapeutic monoclonal antibodies (mAbs) and other biotherapeutics is a critical quality attribute (CQA) that requires careful control and monitoring during the drug discovery and production processes. The unwanted formation of isoAsp within biotherapeutics and resultant structural changes in the peptide backbone may negatively impact the efficacy, potency, and safety of the molecule or become immunogenic, especially if the isomerization occurs within the mAb complementarity determining region (CDR). Herein we describe a MALDI-TOF/TOF mass spectrometry method that affords unequivocal identification of the presence and the exact position of the isoAsp residue(s) in peptide standards ranging in size from a tripeptide to a docosapeptide (22 residues). In general, the peptide bond immediately N-terminal to the isoAsp residue is more susceptible to MALDI-TOF/TOF fragmentation than its unmodified counterpart. In some of the peptides evaluated in this study, fragmentation of the peptide bond C-terminal to the isoAsp residue (the aspartate effect) is also enhanced when compared to the control. Relative quantification by MALDI-TOF/TOF of this chemical modification is dependent upon a successful reversed-phase HPLC (rpHPLC) separation of the control and modified peptides. This method has also been validated on a therapeutic mAb that contains a well-documented isoAsp residue in the heavy chain CDR3 after forced degradation. Moreover, we also demonstrate that higher energy C-trap dissociation of only the singly charged species, and not the multiply charged form, of the isoAsp containing peptide, separated by rpHPLC, results in LC-MS/MS fragmentation that is highly consistent to that of MALDI-TOF/TOF.
Collapse
Affiliation(s)
- John O Hui
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Attribute Sciences, Pivotal, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Joseph A Loo
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Iain D G Campuzano
- Amgen Research, Discovery Attribute Sciences, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
9
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
10
|
Simon RP, Häbe TT, Ries R, Winter M, Wang Y, Fernández-Montalván A, Bischoff D, Runge F, Reindl W, Luippold AH, Büttner FH. Acoustic Ejection Mass Spectrometry: A Fully Automatable Technology for High-Throughput Screening in Drug Discovery. SLAS DISCOVERY 2021; 26:961-973. [PMID: 34308708 DOI: 10.1177/24725552211028135] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acoustic droplet ejection (ADE)-open port interface (OPI)-mass spectrometry (MS) has recently been introduced as a versatile analytical method that combines fast and contactless acoustic sampling with sensitive and accurate electrospray ionization (ESI)-MS-based analyte detection. The potential of the technology to provide label-free measurements in subsecond analytical cycle times makes it an attractive option for high-throughput screening (HTS). Here, we report the first implementation of ADE-OPI-MS in a fully automated HTS environment, based on the example of a biochemical assay aiming at the identification of small-molecule inhibitors of the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase (cGAS). First, we describe the optimization of the method to enable sensitive and accurate determination of enzyme activity and inhibition in miniaturized 1536-well microtiter plate format. Then we show both results from a validation single-concentration screen using a test set of 5500 compounds, and the subsequent concentration-response testing of selected hits in direct comparison with a previously established matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) readout. Finally, we present the development of an in-line OPI cleaning procedure aiming to match the instrument robustness required for large-scale HTS campaigns. Overall, this work points to critical method development parameters and provides guidance for the establishment of integrated ADE-OPI-MS as HTS-compatible technology for early drug discovery.
Collapse
Affiliation(s)
- Roman P Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Tim T Häbe
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Yuting Wang
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | | | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Frank Runge
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Andreas H Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| | - Frank H Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach an der Riß, Germany
| |
Collapse
|
11
|
Shi M, Wang L, Li P, Liu J, Chen L, Xu D. Dasatinib-SIK2 Binding Elucidated by Homology Modeling, Molecular Docking, and Dynamics Simulations. ACS OMEGA 2021; 6:11025-11038. [PMID: 34056256 PMCID: PMC8153941 DOI: 10.1021/acsomega.1c00947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
![]()
Salt-inducible kinases
(SIKs) are calcium/calmodulin-dependent
protein kinase (CAMK)-like (CAMKL) family members implicated in insulin
signal transduction, metabolic regulation, inflammatory response,
and other processes. Here, we focused on SIK2, which is a target of
the Food and Drug Administration (FDA)-approved pan inhibitor N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide
(dasatinib), and constructed four representative SIK2 structures by
homology modeling. We investigated the interactions between dasatinib
and SIK2 via molecular docking, molecular dynamics simulation, and
binding free energy calculation and found that dasatinib showed strong
binding affinity for SIK2. Binding free energy calculations suggested
that the modification of various dasatinib regions may provide useful
information for drug design and to guide the discovery of novel dasatinib-based
SIK2 inhibitors.
Collapse
Affiliation(s)
- Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Penghui Li
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiang Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
12
|
McLaren DG, Shah V, Wisniewski T, Ghislain L, Liu C, Zhang H, Saldanha SA. High-Throughput Mass Spectrometry for Hit Identification: Current Landscape and Future Perspectives. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:168-191. [PMID: 33482074 DOI: 10.1177/2472555220980696] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For nearly two decades mass spectrometry has been used as a label-free, direct-detection method for both functional and affinity-based screening of a wide range of therapeutically relevant target classes. Here, we present an overview of several established and emerging mass spectrometry platforms and summarize the unique strengths and performance characteristics of each as they apply to high-throughput screening. Multiple examples from the recent literature are highlighted in order to illustrate the power of each individual technique, with special emphasis given to cases where the use of mass spectrometry was found to be differentiating when compared with other detection formats. Indeed, as many of these examples will demonstrate, the inherent strengths of mass spectrometry-sensitivity, specificity, wide dynamic range, and amenability to complex matrices-can be leveraged to enhance the discriminating power and physiological relevance of assays included in screening cascades. It is our hope that this review will serve as a useful guide to readers of all backgrounds and experience levels on the applicability and benefits of mass spectrometry in the search for hits, leads, and, ultimately, drugs.
Collapse
|
13
|
De Cesare V, Moran J, Traynor R, Knebel A, Ritorto MS, Trost M, McLauchlan H, Hastie CJ, Davies P. High-throughput matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry-based deubiquitylating enzyme assay for drug discovery. Nat Protoc 2020; 15:4034-4057. [PMID: 33139956 DOI: 10.1038/s41596-020-00405-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
Deubiquitylating enzymes (DUBs) play a vital role in the ubiquitin pathway by editing or removing ubiquitin from their substrate. As breakthroughs within the ubiquitin field continue to highlight the potential of deubiquitylating enzymes as drug targets, there is increasing demand for versatile high-throughput (HT) tools for the identification of potent and selective DUB modulators. Here we present the HT adaptation of the previously published MALDI-TOF-based DUB assay method. In a MALDI-TOF DUB assay, we quantitate the amount of mono-ubiquitin generated by the in vitro cleavage of ubiquitin chains by DUBs. The method has been specifically developed for use with nanoliter-dispensing robotics to meet drug discovery requirements for the screening of large and diverse compound libraries. Contrary to the most common DUB screening technologies currently available, the MALDI-TOF DUB assay combines the use of physiological substrates with the sensitivity and reliability of the mass spectrometry-based readout.
Collapse
Affiliation(s)
- Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| | - Jennifer Moran
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Ryan Traynor
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Maria Stella Ritorto
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.,Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Hilary McLauchlan
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
14
|
Minhas RS, Antunez EE, Guinan TM, Gengenbach TR, Rudd DA, Voelcker NH. Fluorocarbon Plasma Gas Passivation Enhances Performance of Porous Silicon for Desorption/Ionization Mass Spectrometry. ACS Sens 2020; 5:3226-3236. [PMID: 32938190 DOI: 10.1021/acssensors.0c01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is shown to be a powerful technique for the sensing of low-molecular-weight compounds, including drugs and their metabolites. Surface modification of DIOS surfaces is required to increase analytical performance and ensure stability. However, common wet chemical modification techniques use fluorosilanes, which are less suitable for high-throughput manufacturing and analytical repeatability. Here, we report an alternative, rapid functionalization technique for DIOS surfaces using plasma polymerization (ppDIOS). We demonstrate the detection of drugs, metabolites, pesticides, and doping agents, directly from biological matrices, with molecular confirmation performed using the fragmentation capabilities of a tandem MS instrument. Furthermore, the ppDIOS surfaces were found to be stable over a 162 day period with no loss of reproducibility and sensitivity. This alternative functionalization technique is cost-effective and amenable to upscaling, ensuring avenues for the high-throughput manufacture and detection of hundreds of analytes across various applications while still maintaining the gold-standard clinical technique using mass spectrometry.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - E. Eduardo Antunez
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M. Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverley, Victoria 3149, Australia
| | - Thomas R. Gengenbach
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A. Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Simon RP, Winter M, Kleiner C, Wehrle L, Karnath M, Ries R, Zeeb M, Schnapp G, Fiegen D, Häbe TT, Runge F, Bretschneider T, Luippold AH, Bischoff D, Reindl W, Büttner FH. MALDI-TOF-Based Affinity Selection Mass Spectrometry for Automated Screening of Protein-Ligand Interactions at High Throughput. SLAS DISCOVERY 2020; 26:44-57. [PMID: 33073664 DOI: 10.1177/2472555220959266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Demonstration of in vitro target engagement for small-molecule ligands by measuring binding to a molecular target is an established approach in early drug discovery and a pivotal step in high-throughput screening (HTS)-based compound triaging. We describe the setup, evaluation, and application of a ligand binding assay platform combining automated affinity selection (AS)-based sample preparation and label-free matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. The platform enables mass spectrometry (MS)-based HTS for small-molecule target interactions from single-compound incubation mixtures and is embedded into a regular assay automation environment. Efficient separation of target-ligand complexes is achieved by in-plate size exclusion chromatography (SEC), and small-molecule ligands are subsequently identified by MALDI-TOF analysis. In contrast to alternative HTS-capable binding assay formats, MALDI-TOF AS-MS is capable of identifying orthosteric and allosteric ligands, as shown for the model system protein tyrosine phosphatase 1B (PTP1B), irrespective of protein function. Furthermore, determining relative binding affinities (RBAs) enabled ligand ranking in accordance with functional inhibition and reference data for PTP1B and a number of diverse protein targets. Finally, we present a validation screen of more than 23,000 compounds within 24 h, demonstrating the general applicability of the platform for the HTS-compatible assessment of protein-ligand interactions.
Collapse
Affiliation(s)
- Roman P Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Carola Kleiner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Lucie Wehrle
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Karnath
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Markus Zeeb
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gisela Schnapp
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dennis Fiegen
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tim T Häbe
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Frank Runge
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas H Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Frank H Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
16
|
Unger MS, Schumacher L, Enzlein T, Weigt D, Zamek-Gliszczynski MJ, Schwab M, Nies AT, Drewes G, Schulz S, Reinhard FBM, Hopf C. Direct Automated MALDI Mass Spectrometry Analysis of Cellular Transporter Function: Inhibition of OATP2B1 Uptake by 294 Drugs. Anal Chem 2020; 92:11851-11859. [DOI: 10.1021/acs.analchem.0c02186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melissa S. Unger
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Lena Schumacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Maciej J. Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch-Institute for Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Gerard Drewes
- Cellzome - a GlaxoSmithKline company, Meyerhofstr. 1, 69177 Heidelberg, Germany
| | - Sandra Schulz
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | | | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Heap RE, Segarra-Fas A, Blain AP, Findlay GM, Trost M. Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst 2020; 144:6371-6381. [PMID: 31566633 DOI: 10.1039/c9an00771g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MALDI TOF mass spectrometry (MS) is widely used to characterise and biotype bacterial samples, but a complementary method for profiling of mammalian cells is still underdeveloped. Current approaches vary dramatically in their sample preparation methods and are not suitable for high-throughput studies. In this work, we present a universal workflow for mammalian cell MALDI TOF MS analysis and apply it to distinguish ground-state naïve and differentiating mouse embryonic stem cells (mESCs), which can be used as a model for drug discovery. We employed a systematic approach testing many parameters to evaluate how efficiently and reproducibly each method extracted unique mass features from four different human cell lines. These data enabled us to develop a unique mammalian cell MALDI TOF workflow involving a freeze-thaw cycle, methanol fixing and a CHCA matrix to generate spectra that robustly phenotype different cell lines and are highly reproducible in peak identification across replicate spectra. We applied our optimised workflow to distinguish naïve and differentiating populations using multivariate analysis and reproducibly identify unique features. We were also able to demonstrate the compatibility of our optimised method for current automated liquid handling technologies. Consequently, our MALDI TOF MS profiling method enables identification of unique features and robust phenotyping of mESC differentiation in under 1 hour from culture to analysis, which is significantly faster and cheaper when compared with conventional methods such as qPCR. This method has the potential to be automated and can in the future be applied to profile other cell types and expanded towards cellular MALDI TOF MS screening assays.
Collapse
Affiliation(s)
- Rachel E Heap
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | | | | | |
Collapse
|
18
|
Jin HY, Tudor Y, Choi K, Shao Z, Sparling BA, McGivern JG, Symons A. High-Throughput Implementation of the NanoBRET Target Engagement Intracellular Kinase Assay to Reveal Differential Compound Engagement by SIK2/3 Isoforms. SLAS DISCOVERY 2019; 25:215-222. [PMID: 31849250 DOI: 10.1177/2472555219893277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The real-time quantification of target engagement (TE) by small-molecule ligands in living cells remains technically challenging. Systematic quantification of such interactions in a high-throughput setting holds promise for identification of target-specific, potent small molecules within a pathophysiological and biologically relevant cellular context. The salt-inducible kinases (SIKs) belong to a subfamily of the AMP-activated protein kinase (AMPK) family and are composed of three isoforms in humans (SIK1, SIK2, and SIK3). They modulate the production of pro- and anti-inflammatory cytokines in immune cells. Although pan-SIK inhibitors are sufficient to reverse SIK-dependent inflammatory responses, the apparent toxicity associated with SIK3 inhibition suggests that isoform-specific inhibition is required to realize therapeutic benefit with acceptable safety margins. Here, we used the NanoBRET TE intracellular kinase assay, a sensitive energy transfer technique, to directly measure molecular proximity and quantify TE in HEK293T cells overexpressing SIK2 or SIK3. Our 384-well high-throughput screening of 530 compounds demonstrates that the NanoBRET TE intracellular kinase assay was sensitive and robust enough to reveal differential engagement of candidate compounds with the two SIK isoforms and further highlights the feasibility of high-throughput implementation of NanoBRET TE intracellular kinase assays for target-driven small-molecule screening.
Collapse
Affiliation(s)
- Hyun Yong Jin
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Yanyan Tudor
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Kaylee Choi
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Zhifei Shao
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Brian A Sparling
- Department of Medicinal Chemistry, Amgen Research, Amgen Inc., Cambridge, MA, USA
| | - Joseph G McGivern
- Department of Discovery Technologies, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Antony Symons
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, USA.,23andMe Therapeutics, South San Francisco, CA, USA
| |
Collapse
|
19
|
Simon RP, Winter M, Kleiner C, Ries R, Schnapp G, Heimann A, Li J, Zuvela-Jelaska L, Bretschneider T, Luippold AH, Reindl W, Bischoff D, Büttner FH. MALDI-TOF Mass Spectrometry-Based High-Throughput Screening for Inhibitors of the Cytosolic DNA Sensor cGAS. SLAS DISCOVERY 2019; 25:372-383. [DOI: 10.1177/2472555219880185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Comprehensive and unbiased detection methods are a prerequisite for high-throughput screening (HTS) campaigns within drug discovery research. Label-free matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been introduced as an HTS-compatible readout for biochemical test systems to support the drug discovery process. So far, reported HTS applications were based on surface-modified systems or proof-of-concept studies. We present the utilization of a MALDI-TOF-based screening platform to identify inhibitors of human cyclic GMP-AMP synthase (cGAS), a mediator of innate immune response whose aberration has been causally correlated to a number of inflammatory disorders. In this context, the development and validation of a MALDI-TOF-based activity assay is reported to demonstrate fast, robust, and accurate detection of chemical cGAS inhibition by direct quantification of the physiological reaction product cyclic GMP-ATP (cGAMP). Results from a screen of a diverse library of more than 1 million small molecules in 1536-well format against the catalytic cGAS activity are presented with excellent assay performance and data quality. Identified hits were qualified in dose–response experiments and confirmed by RapidFire-MS measurements. Conclusively, the presented data provide the first proof of applicability of direct automated MALDI-TOF MS as a readout strategy for large-scale drug discovery HTS campaigns.
Collapse
Affiliation(s)
- Roman P. Simon
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Gisela Schnapp
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Annekatrin Heimann
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jun Li
- Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Ljiljana Zuvela-Jelaska
- Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Andreas H. Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Wolfgang Reindl
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H. Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
20
|
Weigt D, Parrish CA, Krueger JA, Oleykowski CA, Rendina AR, Hopf C. Mechanistic MALDI-TOF Cell-Based Assay for the Discovery of Potent and Specific Fatty Acid Synthase Inhibitors. Cell Chem Biol 2019; 26:1322-1331.e4. [PMID: 31279605 DOI: 10.1016/j.chembiol.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Human cancers require fatty acid synthase (FASN)-dependent de novo long-chain fatty acid synthesis for proliferation. FASN is therefore an attractive drug target, but fast technologies for reliable label-free cellular compound profiling are lacking. Recently, MALDI-mass spectrometry (MALDI-MS) has emerged as an effective technology for discovery of recombinant protein target inhibitors. Here we present an automated, mechanistic MALDI-MS cell assay, which monitors accumulation of the FASN substrate, malonyl-coenzyme A (CoA), in whole cells with limited sample preparation. Profiling of inhibitors, including unpublished compounds, identified compound 1 as the most potent FASN inhibitor (1 nM in A549 cells) discovered to date. Moreover, cellular MALDI-MS assays enable parallel profiling of additional pathway metabolites. Surprisingly, several compounds triggered cytidine 5'-diphosphocholine (CDP-choline) but not malonyl-CoA accumulation indicating that they inhibit diacylglycerol generation but not FASN activity. Taken together, our study suggests that MALDI-MS cell assays may become important tools in drug profiling that provide additional mechanistic insights concerning compound action on metabolic pathways.
Collapse
Affiliation(s)
- David Weigt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany
| | - Cynthia A Parrish
- Medicinal Chemistry, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Julie A Krueger
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Catherine A Oleykowski
- Immuno-Oncology and Combinations Research Unit, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Alan R Rendina
- Screening, Profiling and Mechanistic Biology, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim Technical University, Paul-Wittsack-Strasse 10, 68163 Mannheim, Germany.
| |
Collapse
|
21
|
Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20133219. [PMID: 31262033 PMCID: PMC6651122 DOI: 10.3390/ijms20133219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na+ (Na+in), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.
Collapse
|
22
|
Winter M, Bretschneider T, Thamm S, Kleiner C, Grabowski D, Chandler S, Ries R, Kley JT, Fowler D, Bartlett C, Binetti R, Broadwater J, Luippold AH, Bischoff D, Büttner FH. Chemical Derivatization Enables MALDI-TOF-Based High-Throughput Screening for Microbial Trimethylamine (TMA)-Lyase Inhibitors. SLAS DISCOVERY 2019; 24:766-777. [PMID: 31059309 DOI: 10.1177/2472555219838216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial-dependent trimethylamine (TMA) generation from dietary precursors such as choline was recently linked to cardiovascular diseases (CVDs) as well as chronic kidney disease (CKD). Inhibition of TMA-generating enzymes in gut bacteria would be an innovative approach to treat these diseases. The potential to accurately quantify secreted TMA levels highlights the capacity of mass spectrometry (MS) for tracking microbial TMA-lyase activity. However, high-throughput screening (HTS) by conventional MS instrumentation is hampered by limited sample throughput. Recent advancement in liquid handling and instrumentation of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS provides an HTS-compatible MS technology. The deciphering of enzymatic reactions using this label-free readout has been successfully applied but has thus far been limited to peptide/protein-centric activity assays. Here, we demonstrate the versatile applicability of MALDI-TOF by tracking a small molecule within a highly complex sample background. The key to success for this concept was chemical derivatization of the target molecule enabling quantitative assessment of microbial TMA formation. Further, its potential was demonstrated in a side-by-side comparison to RapidFire-MS in a primary screen and subsequent dose-response experiments. Overall, the established assay enables the screening for microbial TMA-lyase inhibitors and serves as a proof of concept for the applicability of MALDI-TOF for demanding assay concepts per se.
Collapse
Affiliation(s)
- Martin Winter
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sven Thamm
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Grabowski
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Sarah Chandler
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jörg T Kley
- 2 Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Danielle Fowler
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Christina Bartlett
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Ralph Binetti
- 4 Cancer Immunology & Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - John Broadwater
- 3 Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Andreas H Luippold
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H Büttner
- 1 Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
23
|
Bretschneider T, Ozbal C, Holstein M, Winter M, Buettner FH, Thamm S, Bischoff D, Luippold AH. RapidFire BLAZE-Mode Is Boosting ESI-MS Toward High-Throughput-Screening. SLAS Technol 2019; 24:386-393. [PMID: 30698995 DOI: 10.1177/2472630318822449] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Label-free in vitro potency assays are an emerging field in drug discovery to enable more physiological conditions, to improve the readout quality, and to save time. For this approach mass spectrometry (MS) is a powerful technology to directly follow physiological processes. The speed of this methodology, however, was for a long time not compatible with chemiluminescence- or fluorescence-based assays. Recent advances in matrix-assisted laser desorption/ionization (MALDI) instrumentation paved the way for high-throughput MS analysis of label-free assays for large compound libraries, whereas electrospray ionization (ESI)-based mass spectrometers equipped with RapidFire autosamplers were limited to medium throughput. Here we present a technological advancement of the RapidFire device to enable cycle times of 2.5 s per sample. This newly developed BLAZE-mode substantially boosted the ESI-MS analysis speed, providing an alternative technology for label-free high-throughput screening.
Collapse
Affiliation(s)
- Tom Bretschneider
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Can Ozbal
- 2 PureHoney Technologies, Billerica, MA, USA
| | - Markus Holstein
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Martin Winter
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Frank H Buettner
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Sven Thamm
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Daniel Bischoff
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| | - Andreas H Luippold
- 1 Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach an der Riß, Germany
| |
Collapse
|
24
|
Dean P, Heunis T, Härtlova A, Trost M. Regulation of phagosome functions by post-translational modifications: a new paradigm. Curr Opin Chem Biol 2018; 48:73-80. [PMID: 30481638 DOI: 10.1016/j.cbpa.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
Abstract
Phagosomes are highly dynamic organelles formed by the uptake of particles through phagocytic innate immune cells such as macrophages. Their key roles in microbe elimination and antigen presentation make them essential for innate and adaptive immunity. However, phagosomes are also important for tissue homeostasis as even in healthy individuals billions of dead cells are phagocytosed each day. In this short review, we highlight how the use of latex beads as inert baits for phagocytosis and subsequent analysis by proteomics has changed our understanding of the phagosome. We further discuss recent data on post-translational modifications such as phosphorylation and ubiquitylation that regulate phagosome functions and demonstrate that the phagosome is not only a 'degradative organelle' but also serves as a subcellular signalling platform.
Collapse
Affiliation(s)
- Paul Dean
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Tiaan Heunis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Anetta Härtlova
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Matthias Trost
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
25
|
Imamura RM, Kumagai K, Nakano H, Okabe T, Nagano T, Kojima H. Inexpensive High-Throughput Screening of Kinase Inhibitors Using One-Step Enzyme-Coupled Fluorescence Assay for ADP Detection. SLAS DISCOVERY 2018; 24:284-294. [PMID: 30418800 DOI: 10.1177/2472555218810139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinases are attractive targets for both biological research and drug development. Several assay kits, especially for the detection of adenosine diphosphate (ADP), which is universally produced by kinases, are commercially available for high-throughput screening (HTS) of kinase inhibitors, but their cost is quite high for large-scale screening. Here, we report a new enzyme-coupled fluorescence assay for ADP detection, which uses just 10 inexpensive, commercially available components. The assay protocol is very simple, requiring only the mixing of test solutions with ADP detection solution and reading the fluorescence intensity of resorufin produced by coupling reaction. To validate the assay, we focused on CDC2-like kinase 1 (CLK1), a dual-specificity kinase that plays an important role in alternative splicing, and we used the optimized assay to screen an in-house chemical library of about 215,000 compounds for CLK1 inhibitors. We identified and validated 12 potent inhibitors of CLK1, including a novel inhibitory scaffold. The results demonstrate that this assay platform is not only simple and cost-effective, but also sufficiently robust, showing good reproducibility and giving similar results to those obtained with the widely used ADP-Glo bioluminescent assay.
Collapse
Affiliation(s)
| | - Kazuo Kumagai
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan.,2 Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Hirofumi Nakano
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Okabe
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Nagano
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Hirotatsu Kojima
- 1 Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Inhibiting Multiple Deubiquitinases to Reduce Androgen Receptor Expression in Prostate Cancer Cells. Sci Rep 2018; 8:13146. [PMID: 30177856 PMCID: PMC6120934 DOI: 10.1038/s41598-018-31567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa), a leading cause of cancer-related death in men, becomes resistant to androgen deprivation therapy by inducing androgen receptor (AR) activity, which is known as castration-resistant PCa (CRPC). Enzalutamide is an approved drug that inhibits AR activity and increases overall survival. However, resistance to enzalutamide develops rapidly often by increasing AR activity, suggesting that new therapies are required for CRPC. We investigated whether betulinic acid (BA), a small molecule from plants that inhibits multiple deubiquitinases (DUBs), reduces AR, and selectively kills PCa cells, can provide an adjuvant strategy for CRPC. Our data indicated that BA reduced AR protein stability and mRNA expression, making it an attractive agent for CRPC. BA decreased AR mRNA possibly by inhibiting a histone 2A DUB thereby increasing ubiquitinated histone 2A, a transcriptional repressor. We identified multiple and specific DUBs inhibited by BA either in PCa cells or using recombinant DUBs. Similar results were obtained using another multi-DUB inhibitor WP1130, suggesting that these DUB inhibitors can decrease AR expression and increase PCa-specific death. Our results also suggest that combining multi-DUB inhibitors BA or WP1130 with enzalutamide may provide a novel strategy for CRPC by further decreasing AR expression and increasing apoptotic cell death.
Collapse
|
27
|
Winter M, Ries R, Kleiner C, Bischoff D, Luippold AH, Bretschneider T, Büttner FH. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry–Based Screening for Drug Discovery. SLAS Technol 2018; 24:209-221. [PMID: 30074850 DOI: 10.1177/2472630318791981] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Label-free, mass spectrometric (MS) deciphering of enzymatic reactions by direct analysis of substrate-to-product conversion provides the next step toward more physiological relevant assays within drug discovery campaigns. Reduced risk of suffering from compound interference combined with diminished necessity for tailored signal mediators emphasizes the valuable role of label-free readouts. However, MS-based detection has not hitherto met high-throughput screening (HTS) requirements because of the lack of HTS-compatible sample introduction. In the present study, we report on a fully automated liquid-handling concept built in-house to concatenate biochemical assays with matrix-assisted laser desorption/ionization time-of-flight closing this technological gap. The integrated reformatting from 384- to 1536-well format enables cycle times of 0.6 s/sample for automated spotting and 0.4 s/sample for MS analysis, matching the requirements of HTS compatibility. In-depth examination of spotting quality, quantification accuracy, and instrument robustness together with the implementation of a protein tyrosine phosphatase 1B (PTP1B) inhibitor screening (4896 compounds) demonstrate the potential of the heavily inquired HTS integration of the label-free MS readout. Overall, the presented data demonstrate that the introduced automation concept makes label-free MS-based readouts accessible for HTS within drug discovery campaigns but also in other research areas requiring ultrafast MS-based detection.
Collapse
Affiliation(s)
- Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Andreas H. Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H. Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
28
|
Weigt D, Sammour DA, Ulrich T, Munteanu B, Hopf C. Automated analysis of lipid drug-response markers by combined fast and high-resolution whole cell MALDI mass spectrometry biotyping. Sci Rep 2018; 8:11260. [PMID: 30050068 PMCID: PMC6062520 DOI: 10.1038/s41598-018-29677-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Recent advances in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have enabled whole cell-MALDI mass spectrometry biotyping of drug-treated cultured cells for rapid monitoring of known abundant pharmacodynamic protein markers such as polyacetylated histones. In contrast, generic and automated analytical workflows for discovery of such pharmacodynamic markers, in particular lipid markers, and their use in cellular tests of drug-like compounds are still lacking. Here, we introduce such a workflow and demonstrate its utility for cellular drug-response monitoring of BCR-ABL tyrosine kinase inhibitors in K562 leukemia cells: First, low-molecular mass features indicating drug responses are computationally extracted from groups of MALDI-TOF mass spectra. Then, the lipids/metabolites corresponding to these features are identified by MALDI-Fourier transformation mass spectrometry. To demonstrate utility of the method, we identify the potassium adduct of phosphatidylcholine PC(36:1) as well as heme B, a marker for erythroid differentiation, as markers for a label-free MALDI MS-based test of cellular responses to BCR-ABL inhibitors. Taken together, these results suggest that MALDI-TOF mass spectrometry of lipids and other low molecular mass metabolites could support cell-based drug profiling.
Collapse
Affiliation(s)
- David Weigt
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany
| | - Denis A Sammour
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Timon Ulrich
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Bogdan Munteanu
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany.
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
De Cesare V, Johnson C, Barlow V, Hastie J, Knebel A, Trost M. The MALDI-TOF E2/E3 Ligase Assay as Universal Tool for Drug Discovery in the Ubiquitin Pathway. Cell Chem Biol 2018; 25:1117-1127.e4. [PMID: 30017913 PMCID: PMC6162346 DOI: 10.1016/j.chembiol.2018.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Due to their role in many diseases, enzymes of the ubiquitin system have recently become interesting drug targets. Despite efforts, primary screenings of compound libraries targeting E2 enzymes and E3 ligases have been strongly limited by the lack of robust and fast high-throughput assays. Here we report a label-free high-throughput screening assay for ubiquitin E2 conjugating enzymes and E3 ligases based on MALDI-TOF mass spectrometry. The MALDI-TOF E2/E3 assay allows testing E2 enzymes and E3 ligases for their ubiquitin transfer activity, identifying E2/E3 active pairs, inhibitor potency and specificity and screening compound libraries in vitro without chemical or fluorescent probes. We demonstrate that the MALDI-TOF E2/E3 assay is a universal tool for drug discovery screening in the ubiquitin pathway as it is suitable for working with all E3 ligase families and requires a reduced amount of reagents, compared with standard biochemical assays. We have developed a high-throughput MALDI-TOF assay for E2/E3 enzymes It allows screening compound libraries without chemical or fluorescent probes We tested the screen on three disease-relevant E3 ligases: MDM2, ITCH, and HOIP We performed a proof-of-concept high-throughput screen against 1,430 compounds
Collapse
Affiliation(s)
- Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK.
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK
| | - Victoria Barlow
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK
| | - James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow St, Dundee DD1 5EH, Scotland, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 1HH, UK.
| |
Collapse
|
30
|
Lin S, Dikler S, Blincoe WD, Ferguson RD, Sheridan RP, Peng Z, Conway DV, Zawatzky K, Wang H, Cernak T, Davies IW, DiRocco DA, Sheng H, Welch CJ, Dreher SD. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 2018; 361:science.aar6236. [PMID: 29794218 DOI: 10.1126/science.aar6236] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/15/2018] [Indexed: 12/24/2022]
Abstract
Understanding the practical limitations of chemical reactions is critically important for efficiently planning the synthesis of compounds in pharmaceutical, agrochemical, and specialty chemical research and development. However, literature reports of the scope of new reactions are often cursory and biased toward successful results, severely limiting the ability to predict reaction outcomes for untested substrates. We herein illustrate strategies for carrying out large-scale surveys of chemical reactivity by using a material-sparing nanomole-scale automated synthesis platform with greatly expanded synthetic scope combined with ultrahigh-throughput matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Shishi Lin
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - William D Blincoe
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ronald D Ferguson
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Robert P Sheridan
- Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Zhengwei Peng
- Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Donald V Conway
- Discovery Sample Management, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Kerstin Zawatzky
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Heather Wang
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Tim Cernak
- Discovery Chemistry, Merck & Co., Inc., Boston, MA 02115 USA
| | - Ian W Davies
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Daniel A DiRocco
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Huaming Sheng
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Christopher J Welch
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Spencer D Dreher
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| |
Collapse
|
31
|
Diefenbach XW, Farasat I, Guetschow ED, Welch CJ, Kennedy RT, Sun S, Moore JC. Enabling Biocatalysis by High-Throughput Protein Engineering Using Droplet Microfluidics Coupled to Mass Spectrometry. ACS OMEGA 2018; 3:1498-1508. [PMID: 30023807 PMCID: PMC6044804 DOI: 10.1021/acsomega.7b01973] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/18/2018] [Indexed: 05/24/2023]
Abstract
Directed Evolution is a key technology driving the utility of biocatalysis in pharmaceutical synthesis. Conventional approaches to Directed Evolution are conducted using bacterial cells expressing enzymes in microplates, with catalyzed reactions measured by HPLC, high-performance liquid chromatography-mass spectrometry (HPLC-MS), or optical detectors, which require either long cycle times or tailor-made substrates. To better fit modern, fast-paced process chemistry development where solutions are rapidly needed for new substrates, droplet microfluidics interfaced with electrospray ionization (ESI)-MS provides a label-free high-throughput screening platform. To apply this method to industrial enzyme screening and to explore potential approaches that may further improve the overall throughput, we optimized the existing droplet-MS methods. Carryover between droplets, traditionally a significant issue, was reduced to undetectable level by replacing the stainless steel ESI needle with a Teflon needle within a capillary electrophoresis (CE)-MS source. Throughput was improved to 3 Hz with a wide range of droplet sizes (10-50 nL) by tuning the sheath flow within the CE-MS source. The optimized method was demonstrated by screening reactions using two different transaminase libraries. Good correlations (r2 ∼ 0.95) were found between the droplet-MS and LC-MS methods, with 100% match on hit variants. We further explored the capability of the system by performing in vitro transcription-translation inside the droplets and directly analyzing the intact reaction mixture droplets by MS. The synthesized protein attained comparable activity to the protein standard, and the complex samples appeared well tolerated by the MS. The success of the above applications indicates that the MS analysis of the microfluidic droplets is an available option for considerably accelerating the screening of enzyme evolution libraries.
Collapse
Affiliation(s)
- Xue W. Diefenbach
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Iman Farasat
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik D. Guetschow
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Christopher J. Welch
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
- Welch
Innovation, LLC., Cranbury, New Jersey 08512, United States
| | - Robert T. Kennedy
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shuwen Sun
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeffrey C. Moore
- Merck
Research Laboratory, Merck & Co., Inc., 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
32
|
Starchenko A, Lauffenburger DA. In vivo systems biology approaches to chronic immune/inflammatory pathophysiology. Curr Opin Biotechnol 2018; 52:9-16. [PMID: 29494996 DOI: 10.1016/j.copbio.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/11/2018] [Indexed: 12/19/2022]
Abstract
Systems biology offers an emphasis on integrative computational analysis of complex multi-component processes to enhance capability for predictive insights concerning operation of those processes. The immune system represents a prominent arena in which such processes are manifested for vital roles in physiology and pathology, encompassing dozens of cell types and hundreds of reciprocal interactions. Chronic, debilitating pathologies involving immune system dysregulation have become recognized as increasing in incidence over recent decades. While clinical consequences of immune dysregulation in such pathologies are well characterized, treatment options remain limited and focus on ameliorating symptoms. Because it is difficult to recapitulate more than a severely limited facet of the immune system in vitro, application of systems biology approaches to autoimmune and inflammatory pathophysiology in vivo has opened a new door toward discerning disease sub-groups and developing associated stratification strategies for patient treatment. In particular, early instances of these approaches have demonstrated advances in uncovering previously under-appreciated dysregulation of signaling networks between immune system and tissue cells, raising promise for improving upon current therapeutic approaches.
Collapse
Affiliation(s)
- Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Winter M, Bretschneider T, Kleiner C, Ries R, Hehn JP, Redemann N, Luippold AH, Bischoff D, Büttner FH. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction. SLAS DISCOVERY 2018; 23:561-573. [DOI: 10.1177/2472555218759267] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.
Collapse
Affiliation(s)
- Martin Winter
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carola Kleiner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Robert Ries
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jörg P. Hehn
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert Redemann
- Cardio-Metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Andreas H. Luippold
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Daniel Bischoff
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Frank H. Büttner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
34
|
Cornett DS, Scholle MD. Advances in MALDI Mass Spectrometry within Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:1179-1181. [PMID: 29153034 DOI: 10.1177/2472555217735067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
35
|
Mass spectrometry techniques for studying the ubiquitin system. Biochem Soc Trans 2017; 45:1137-1148. [PMID: 28939693 DOI: 10.1042/bst20170091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022]
Abstract
Post-translational control of proteins through covalent attachment of ubiquitin plays important roles in all eukaryotic cell functions. The ubiquitin system in humans consists of 2 E1, 35 E2 and >600 E3 ubiquitin ligases as well as hundreds of deubiquitylases, which reverse ubiquitin attachment. Moreover, there are hundreds of proteins with ubiquitin-binding domains that bind one of the eight possible polyubiquitin chains. Dysfunction of the ubiquitin system is associated with many diseases such as cancer, autoimmunity and neurodegeneration, demonstrating the importance of ubiquitylation. Therefore, enzymes of the ubiquitin system are considered highly attractive drug targets. In recent years, mass spectrometry (MS)-based techniques have become increasingly important in the deciphering of the ubiquitin system. This short review addresses the state-of-the-art MS techniques for the identification of ubiquitylated proteins and their ubiquitylation sites. We also discuss the identification and quantitation of ubiquitin chain topologies and highlight how the activity of enzymes in the ubiquitin pathway can be measured. Finally, we present current MS tools that can be used for drug discovery in the ubiquitin space.
Collapse
|