1
|
Tang B, Zheng X, Luo Q, Li X, Yang Y, Bi Y, Chen Y, Han L, Chen H, Lu C. Network pharmacology and gut microbiota insights: unraveling Shenling Baizhu powder's role in psoriasis treatment. Front Pharmacol 2024; 15:1362161. [PMID: 38425649 PMCID: PMC10904012 DOI: 10.3389/fphar.2024.1362161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Psoriasis, a chronic skin condition characterized by systemic inflammation and altered gut microbiota, has been a target of Traditional Chinese Medicine (TCM) for centuries. Shenling Baizhu Powder (SLBZP), a TCM formulation, holds promise for treating inflammatory diseases, but its specific role in psoriasis and impact on gut microbiota is not fully understood. Objective: This study aims to elucidate the mechanism of SLBZP in treating psoriasis, integrating component analysis, network pharmacology, and experimental validation in mice models. Methods: We commenced with a detailed component analysis of SLBZP using liquid chromatograph and mass spectrometer (LC-MS). Network pharmacology analysis was used to predict the potential action targets and pathways of SLBZP in psoriasis. An in vivo experiment was conducted with psoriasis mice models, treated with SLBZP. Therapeutic effects were assessed via symptomatology, histopathology, and immunohistochemical analysis. Gut microbiota composition was analyzed using 16S rRNA gene sequencing. Results: A total of 42 main components and quality markers were identified, primarily from licorice and ginseng, including flavonoids, saponins and other markers. PPI topology analysis showed that TNF, IL-6, IL-1β, TP53 and JUN were the core DEPs. 168 signaling pathways including lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway and Th17 cell differentiation were enriched by KEGG. SLBZP demonstrated significant therapeutic effects on psoriasis in mice, with alterations in skin pathology and biomarkers. Additionally, notable changes in gut microbiota composition were observed post-treatment, indicating a possible gut-skin axis involvement. Conclusion: This research has pinpointed lipid metabolism as a key pathway in the treatment of psoriasis with SLBZP. It explores how SLBZP's modulation of gut microbiota and lipid metabolism can alleviate psoriasis, suggesting that balancing gut microbiota may reduce inflammation mediators and offer therapeutic benefits. This underscores lipid metabolism modulation as a potential new strategy in psoriasis treatment.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggen Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Choksi H, Li S, Looby N, Kotlyar M, Jurisica I, Kulasingam V, Chandran V. Identifying Serum Metabolomic Markers Associated with Skin Disease Activity in Patients with Psoriatic Arthritis. Int J Mol Sci 2023; 24:15299. [PMID: 37894979 PMCID: PMC10607811 DOI: 10.3390/ijms242015299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Psoriatic arthritis (PsA) is a chronic, systemic, immune-mediated inflammatory disease causing cutaneous and musculoskeletal inflammation that affects 25% of patients with psoriasis. Current methods for evaluating PsA disease activity are not accurate enough for precision medicine. A metabolomics-based approach can elucidate psoriatic disease pathogenesis, providing potential objective biomarkers. With the hypothesis that serum metabolites are associated with skin disease activity, we aimed to identify serum metabolites associated with skin activity in PsA patients. We obtained serum samples from patients with PsA (n = 150) who were classified into mild, moderate and high disease activity groups based on the Psoriasis Area Severity Index. We used solid-phase microextraction (SPME) for sample preparation, followed by data acquisition via an untargeted liquid chromatography-mass spectrometry (LC-MS) approach. Disease activity levels were predicted using identified metabolites and machine learning algorithms. Some metabolites tentatively identified include eicosanoids with anti- or pro-inflammatory properties, like 12-Hydroxyeicosatetraenoic acid, which was previously implicated in joint disease activity in PsA. Other metabolites of interest were associated with dysregulation of fatty acid metabolism and belonged to classes such as bile acids, oxidized phospholipids, and long-chain fatty acids. We have identified potential metabolites associated with skin disease activity in PsA patients.
Collapse
Affiliation(s)
- Hani Choksi
- Schroeder Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (H.C.); (S.L.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shenghan Li
- Schroeder Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (H.C.); (S.L.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Nikita Looby
- Schroeder Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (H.C.); (S.L.); (N.L.)
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada; (M.K.); (I.J.)
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto, ON M5T 0S8, Canada; (M.K.); (I.J.)
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON M5S 1A1, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravská cesta 9, 845 10 Bratislava, Slovakia
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Clinical Biochemistry, Laboratory Medicine Program, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Vinod Chandran
- Schroeder Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; (H.C.); (S.L.); (N.L.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM, Bogdanos DP. Ceramides in Autoimmune Rheumatic Diseases: Existing Evidence and Therapeutic Considerations for Diet as an Anticeramide Treatment. Nutrients 2023; 15:nu15010229. [PMID: 36615886 PMCID: PMC9824311 DOI: 10.3390/nu15010229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autoimmune rheumatic diseases (AIRDs) constitute a set of connective tissue disorders and dysfunctions with akin clinical manifestations and autoantibody responses. AIRD treatment is based on a comprehensive approach, with the primary aim being achieving and attaining disease remission, through the control of inflammation. AIRD therapies have a low target specificity, and this usually propels metabolic disturbances, dyslipidemias and increased cardiovascular risk. Ceramides are implicated in inflammation through several different pathways, many of which sometimes intersect. They serve as signaling molecules for apoptosis, altering immune response and driving endothelial dysfunction and as regulators in the production of other molecules, including sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P). With lipid metabolism being severely altered in AIRD pathology, several studies show that the concentration and variety of ceramides in human tissues is altered in patients with rheumatic diseases compared to controls. As a result, many in vitro and some in vivo (animal) studies research the potential use of ceramides as therapeutic targets in rheumatoid arthritis (RA), ankylosing spondylitis, systemic lupus erythematosus, fibromyalgia syndrome, primary Sjögren's syndrome, systemic sclerosis, myositis, systemic vasculitis and psoriatic arthritis. Furthermore, the majority of ceramide synthesis is diet-centric and, as a result, dietary interventions may alter ceramide concentrations in the blood and affect health. Subsequently, more recently several clinical trials evaluated the possibility of distinct dietary patterns and nutrients to act as anti-ceramide regimes in humans. With nutrition being an important component of AIRD-related complications, the present review details the evidence regarding ceramide levels in patients with AIRDs, the results of anti-ceramide treatments and discusses the possibility of using medical nutritional therapy as a complementary anti-ceramide treatment in rheumatic disease.
Collapse
Affiliation(s)
- Ioanna Alexandropoulou
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Kalliopi K. Gkouskou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, GR-11527 Athens, Greece
| | - Agathi A. Pritsa
- Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, GR-57400 Thessaloniki, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, GR-11521 Athens, Greece
| | - Eirini Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Biopolis, GR-41222 Larissa, Greece
| | - Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 115, 40530 Gothenburg, Sweden
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
- Correspondence:
| |
Collapse
|
4
|
Kovács OT, Tóth E, Ozohanics O, Soltész-Katona E, Marton N, Buzás EI, Hunyady L, Drahos L, Turu G, Nagy G. Proteomic Changes of Osteoclast Differentiation in Rheumatoid and Psoriatic Arthritis Reveal Functional Differences. Front Immunol 2022; 13:892970. [PMID: 35860269 PMCID: PMC9289121 DOI: 10.3389/fimmu.2022.892970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOsteoclasts play a crucial role in the maintenance, repair, and remodeling of bones of the adult vertebral skeleton due to their bone resorption capability. Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are associated with increased activity of osteoclasts.ObjectivesOur study aimed to investigate the dynamic proteomic changes during osteoclast differentiation in healthy donors, in RA, and PsA.MethodsBlood samples of healthy donors, RA, and PsA patients were collected, and monocytes were isolated and differentiated into osteoclasts in vitro using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANK-L). Mass spectrometry-based proteomics was used to analyze proteins from cell lysates. The expression changes were analyzed with Gene Set Enrichment Analysis (GSEA).ResultsThe analysis of the proteomic changes revealed that during the differentiation of the human osteoclasts, expression of the proteins involved in metabolic activity, secretory function, and cell polarity is increased; by contrast, signaling pathways involved in the immune functions are downregulated. Interestingly, the differences between cells of healthy donors and RA/PsA patients are most pronounced after the final steps of differentiation to osteoclasts. In addition, both in RA and PsA the differentiation is characterized by decreased metabolic activity, associated with various immune pathway activities; furthermore by accelerated cytokine production in RA.ConclusionsOur results shed light on the characteristic proteomic changes during human osteoclast differentiation and expression differences in RA and PsA, which reveal important pathophysiological insights in both diseases.
Collapse
Affiliation(s)
- Orsolya Tünde Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Eszter Tóth
- Institute of Organic Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nikolett Marton
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Immune-Proteogenomics Research Group, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University (HCEMM-SU) Extracellular Vesicles Research Group, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- Institute of Enzymology, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Drahos
- Institute of Organic Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- *Correspondence: Gábor Turu,
| | - György Nagy
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Psoriasis and Cardiovascular Disease: Novel Mechanisms and Evolving Therapeutics. Curr Atheroscler Rep 2021; 23:67. [PMID: 34468875 PMCID: PMC9744099 DOI: 10.1007/s11883-021-00963-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Psoriasis is a chronic inflammatory skin condition that is associated with increased cardiovascular risk compared to those without psoriasis. This review will cover emerging mechanisms of cardiovascular risk, key pathways targeted with biologic therapies, and the current evidence on therapies to modulate this risk in patients with psoriasis. RECENT FINDINGS Recent scientific work has highlighted mechanisms that contribute to this enhanced risk, including the role of vascular endothelial dysfunction, platelet activation, dyslipidemia, and increased cardiometabolic comorbidities. Newer biologic and targeted synthetic therapies have transformed psoriasis treatment with high rates of clinical remission and durable skin disease control now possible. Epidemiological evidence suggests that many of these therapies may lower cardiovascular risk in psoriasis, although prospective interventional data is lacking (or mixed). Recently, caution has also been raised that some treatments may negatively affect cardiovascular risk. Overall, the current data suggests a positive or neutral ability to reduce cardiovascular risk for TNF, IL-17A, and IL-12/23p40 inhibitors, but current evidence remains conflicting for anti-IL-23/p19 and JAK inhibitors. More studies that include prospective cohorts, larger number of patients, treatment duration, and validated surrogate outcomes are needed to better evaluate the role of biologic therapies on cardiovascular risk in psoriasis.
Collapse
|