1
|
Zanellati MC, Hsu CH, Cohen S. Imaging interorganelle contacts at a glance. J Cell Sci 2024; 137:jcs262020. [PMID: 39440475 PMCID: PMC11529887 DOI: 10.1242/jcs.262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles that must coordinate their responses to stimuli. One way that organelles communicate is via membrane contact sites (MCSs), sites of close apposition between organelles used for the exchange of ions, lipids and information. In this Cell Science at a Glance article and the accompanying poster, we describe an explosion of new methods that have led to exciting progress in this area and discuss key examples of how these methods have advanced our understanding of MCSs. We discuss how diffraction-limited and super-resolution fluorescence imaging approaches have provided important insight into the biology of interorganelle communication. We also describe how the development of multiple proximity-based methods has enabled the detection of MCSs with high accuracy and precision. Finally, we assess how recent advances in electron microscopy (EM), considered the gold standard for detecting MCSs, have allowed the visualization of MCSs and associated proteins in 3D at ever greater resolution.
Collapse
Affiliation(s)
- Maria Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chih-Hsuan Hsu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Li X, Gamuyao R, Wu ML, Cho WJ, King SV, Petersen R, Stabley DR, Lindow C, Climer LK, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Zhou Y, Carisey AF, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. J Cell Biol 2024; 223:e202311126. [PMID: 38949658 PMCID: PMC11215687 DOI: 10.1083/jcb.202311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Leslie K. Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yiwang Zhou
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
3
|
Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol 2024; 161:99-132. [PMID: 38244103 PMCID: PMC10822820 DOI: 10.1007/s00418-023-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.
Collapse
Grants
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- European Union’s Horizon 2020 research and innovation programme
- Deutsches Zentrum für Herz-Kreislaufforschung
- German Research Foundation
- Medical Faculty Mannheim, University of Heidelberg
Collapse
Affiliation(s)
- Rechal Kumar
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, University of Heidelberg, 68167, Mannheim, Germany
| | - Harley Worthy
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ruth Carmichael
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Michael Schrader
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
4
|
Li X, Gamuyao R, Wu ML, Cho WJ, Kurtz NB, King SV, Petersen R, Stabley DR, Lindow C, Climer L, Shirinifard A, Ferrara F, Throm RE, Robinson CG, Carisey A, Tebo AG, Chang CL. A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569289. [PMID: 38076863 PMCID: PMC10705429 DOI: 10.1101/2023.11.29.569289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis. Detection of these contact sites at nanometer scale over time in living cells is challenging. Here, we developed a tool kit for detecting contact sites based on Fluorogen-Activated Bimolecular complementation at CONtact sites, FABCON, using a reversible, low affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic switch.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rico Gamuyao
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ming-Lun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Woo Jung Cho
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Nathan B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Sharon V. King
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - R.A. Petersen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Daniel R. Stabley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Caleb Lindow
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Leslie Climer
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Francesca Ferrara
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Robert E. Throm
- Vector Production and Development Laboratory, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alex Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alison G. Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
5
|
Costello JL, Koster J, Silva BSC, Worthy HL, Schrader TA, Hacker C, Passmore J, Kuypers FA, Waterham HR, Schrader M. Differential roles for ACBD4 and ACBD5 in peroxisome-ER interactions and lipid metabolism. J Biol Chem 2023; 299:105013. [PMID: 37414147 PMCID: PMC10410513 DOI: 10.1016/j.jbc.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal β-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of β-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.
Collapse
Affiliation(s)
| | - Janet Koster
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz S C Silva
- Department of Biosciences, University of Exeter, Exeter, UK; Luxembourg Centre for Systems Biomedicine, Campus Belval | House of Biomedicine II, Université du Luxembourg, Belvaux, Luxembourg
| | | | | | | | - Josiah Passmore
- Department of Biosciences, University of Exeter, Exeter, UK; Division of Cell Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Hans R Waterham
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
6
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Fujimoto S, Tashiro S, Tamura Y. Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231153621. [PMID: 37366411 PMCID: PMC10243572 DOI: 10.1177/25152564231153621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Numerous studies have revealed that organelle membrane contact sites (MCSs) play important roles in diverse cellular events, including the transport of lipids and ions between connected organelles. To understand MCS functions, it is essential to uncover proteins that accumulate at MCSs. Here, we develop a complementation assay system termed CsFiND (Complementation assay using Fusion of split-GFP and TurboID) for the simultaneous visualization of MCSs and identification of MCS-localized proteins. We express the CsFiND proteins on the endoplasmic reticulum and mitochondrial outer membrane in yeast to verify the reliability of CsFiND as a tool for identifying MCS-localized proteins.
Collapse
Affiliation(s)
| | - Shinya Tashiro
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
8
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
9
|
Kors S, Hacker C, Bolton C, Maier R, Reimann L, Kitchener EJA, Warscheid B, Costello JL, Schrader M. Regulating peroxisome-ER contacts via the ACBD5-VAPB tether by FFAT motif phosphorylation and GSK3β. J Cell Biol 2022; 221:212956. [PMID: 35019937 DOI: 10.1083/jcb.202003143/212956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A-binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein-associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome-ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB-and thus peroxisome-ER contact sites-differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome-ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Chloe Bolton
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Renate Maier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Reimann
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Emily J A Kitchener
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Kors S, Hacker C, Bolton C, Maier R, Reimann L, Kitchener EJA, Warscheid B, Costello JL, Schrader M. Regulating peroxisome-ER contacts via the ACBD5-VAPB tether by FFAT motif phosphorylation and GSK3β. J Cell Biol 2022; 221:212956. [PMID: 35019937 PMCID: PMC8759595 DOI: 10.1083/jcb.202003143] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A–binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein–associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome–ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB—and thus peroxisome–ER contact sites—differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome–ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Chloe Bolton
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Renate Maier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Reimann
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Emily J A Kitchener
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
11
|
Huang H, Liao X, Zhu G, Han C, Wang X, Yang C, Zhou X, Liang T, Huang K, Peng T. Acyl-CoA Binding Domain Containing 4 Polymorphism rs4986172 and Expression Can Serve as Overall Survival Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Patients After Hepatectomy. Pharmgenomics Pers Med 2022; 15:277-300. [PMID: 35378899 PMCID: PMC8976523 DOI: 10.2147/pgpm.s349350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background The aim of our study was to evaluate the potential of expression and single nucleotide polymorphism of Acyl-CoA binding domain containing 4 (ACBD4) gene as prognosis biomarkers in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after hepatectomy. Methods HBV-related HCC patients from the First Affiliated Hospital of Guangxi Medical University and GSE14520 were included in the current study, as well as The Cancer Genome Atlas (TCGA) HCC verification cohort. Prognostic analysis and multiple functional enrichment analysis methods were used to evaluate the prognostic value and potential biological functions of the ACBD4 gene in HBV-related HCC. Results We found that ACBD4 gene is highly expressed in normal liver tissues and markedly down-regulated in HBV-related HCC tissues. ACBD4 gene was significantly related to overall survival (OS) of HCC in TCGA and GSE14520 cohorts, and patients with low ACBD4 expression were markedly related to poor OS. Rs4986172 was observed as an OS biomarker after hepatectomy in the Guangxi HBV-related HCC cohort. The OS of rs4986172 GG genotype was worse than that of HCC patients with A allele (AA and AG genotypes). Multifunctional enrichment analysis suggested that ACBD4 gene is closely related to the metabolic, peroxisome proliferator-activated receptor and cytochrome P450 pathway. Through connectivity map, we also identified eight compounds that may be used as targeted therapeutic agents for ACBD4 gene in HBV-related HCC; these compounds were scopoletin, alfaxalone, bephenium hydroxynaphthoate, apramycin, 4,5-dianilinophthalimide, DL-thiorphan, aminohippuric acid and quinidine. Immune microenvironment analysis revealed that there were significant differences in immune scores of HBV-related HCC tumor tissues with different ACBD4 expression levels. Conclusion Our study reveals that ACBD4 expression and rs4986172 can be serve as biomarkers of OS in HBV-related HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Tao Peng; Xiwen Liao, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email ;
| |
Collapse
|
12
|
Carmichael RE, Schrader M. Determinants of Peroxisome Membrane Dynamics. Front Physiol 2022; 13:834411. [PMID: 35185625 PMCID: PMC8853631 DOI: 10.3389/fphys.2022.834411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Organelles within the cell are highly dynamic entities, requiring dramatic morphological changes to support their function and maintenance. As a result, organelle membranes are also highly dynamic, adapting to a range of topologies as the organelle changes shape. In particular, peroxisomes—small, ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis—display a striking plasticity, for example, during the growth and division process by which they proliferate. During this process, the membrane of an existing peroxisome elongates to form a tubule, which then constricts and ultimately undergoes scission to generate new peroxisomes. Dysfunction of this plasticity leads to diseases with developmental and neurological phenotypes, highlighting the importance of peroxisome dynamics for healthy cell function. What controls the dynamics of peroxisomal membranes, and how this influences the dynamics of the peroxisomes themselves, is just beginning to be understood. In this review, we consider how the composition, biophysical properties, and protein-lipid interactions of peroxisomal membranes impacts on their dynamics, and in turn on the biogenesis and function of peroxisomes. In particular, we focus on the effect of the peroxin PEX11 on the peroxisome membrane, and its function as a major regulator of growth and division. Understanding the roles and regulation of peroxisomal membrane dynamics necessitates a multidisciplinary approach, encompassing knowledge across a range of model species and a number of fields including lipid biochemistry, biophysics and computational biology. Here, we present an integrated overview of our current understanding of the determinants of peroxisome membrane dynamics, and reflect on the outstanding questions still remaining to be solved.
Collapse
Affiliation(s)
- Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Tashiro S, Kakimoto Y, Shinmyo M, Fujimoto S, Tamura Y. Improved Split-GFP Systems for Visualizing Organelle Contact Sites in Yeast and Human Cells. Front Cell Dev Biol 2020; 8:571388. [PMID: 33330450 PMCID: PMC7714769 DOI: 10.3389/fcell.2020.571388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Inter-organelle contact sites have attracted a lot of attention as functionally specialized regions that mediate the exchange of metabolites, including lipids and ions, between distinct organelles. However, studies on inter-organelle contact sites are at an early stage and it remains enigmatic what directly mediates the organelle-organelle interactions and how the number and degree of the contacts are regulated. As a first step to answer these questions, we previously developed split-GFP probes that could visualize and quantify multiple inter-organelle contact sites in the yeast and human cultured cells. However, the split-GFP probes possessed a disadvantage of inducing artificial connections between two different organelle membranes, especially when overexpressed. In the present study, we developed a way to express the split-GFP probes whose expressions remained at low levels, with minimal variations between different yeast cells. Besides, we constructed a HeLa cell line in which the expression of the split-GFP probes could be induced by the addition of doxycycline to minimize the artificial effects. The improved split-GFP systems may be faithful tools to quantify organelle contact sites and screen new factors involved in organelle-organelle tethering in yeast and mammalian cells.
Collapse
Affiliation(s)
- Shinya Tashiro
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Yuriko Kakimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | | | | | - Yasushi Tamura
- Faculty of Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
14
|
Tashiro S, Kakimoto Y, Shinmyo M, Fujimoto S, Tamura Y. Improved Split-GFP Systems for Visualizing Organelle Contact Sites in Yeast and Human Cells. Front Cell Dev Biol 2020. [PMID: 33330450 DOI: 10.3389/fcell.2020.571388.ecollection2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Inter-organelle contact sites have attracted a lot of attention as functionally specialized regions that mediate the exchange of metabolites, including lipids and ions, between distinct organelles. However, studies on inter-organelle contact sites are at an early stage and it remains enigmatic what directly mediates the organelle-organelle interactions and how the number and degree of the contacts are regulated. As a first step to answer these questions, we previously developed split-GFP probes that could visualize and quantify multiple inter-organelle contact sites in the yeast and human cultured cells. However, the split-GFP probes possessed a disadvantage of inducing artificial connections between two different organelle membranes, especially when overexpressed. In the present study, we developed a way to express the split-GFP probes whose expressions remained at low levels, with minimal variations between different yeast cells. Besides, we constructed a HeLa cell line in which the expression of the split-GFP probes could be induced by the addition of doxycycline to minimize the artificial effects. The improved split-GFP systems may be faithful tools to quantify organelle contact sites and screen new factors involved in organelle-organelle tethering in yeast and mammalian cells.
Collapse
Affiliation(s)
- Shinya Tashiro
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Yuriko Kakimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | | | | | - Yasushi Tamura
- Faculty of Science, Yamagata University, Yamagata, Japan
| |
Collapse
|