1
|
Ghadimi K, Abbas I, Karandish A, Crisman C, Eskandar EN, Kobets AJ. Cognitive Decline in Glioblastoma (GB) Patients with Different Treatment Modalities and Insights on Untreated Cases. Curr Oncol 2025; 32:152. [PMID: 40136356 PMCID: PMC11940939 DOI: 10.3390/curroncol32030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Cognitive decline is common in patients with Glioblastoma (GB), occurring in both treated and untreated cases. It frequently presents as impairments in memory, attention, language, or other cognitive functions. In addition, these cognitive deficits can affect quality of life, functional independence, and overall survival, and they are associated with psychiatric conditions such as anxiety and depression. METHODS This narrative review evaluates cognitive deficits in GB patients, both with and without treatment. It also explores the impact of tumor features such as size, location, and histology, along with patient characteristics such as age and education, and discusses the effects of standard therapies, such as surgery, chemotherapy, and radiotherapy, on cognitive outcomes. RESULTS Cognitive impairment in GB is influenced by tumor- and patient-specific factors, as well as treatment modalities. Initially, combination therapies such as surgery, radiotherapy, and chemotherapy may improve cognitive domains by reducing tumor burden, relieving cerebral edema, and reducing mass effects, subsequently bringing indirect effects of improved mental health and mood. While certain treatments like radiotherapy and chemotherapy carry risks of delayed neurotoxicity, studies indicate that, on balance, treated patients generally show better preservation or improvement in cognitive function than those who go untreated. However, excessive treatment aggressiveness and cumulative neurotoxic effects may diminish cognitive benefits. CONCLUSION Cognitive function is an independent factor in GB, which could affect survival in GB patients, therefore making routine cognitive assessments essential for prognosis, treatment planning, and rehabilitation. Neuroprotective agents, cognitive rehabilitation, and personalized, multidisciplinary strategies can help optimize both survival and cognitive preservation.
Collapse
|
2
|
Park JS, Yoon T, Park SA, Lee BH, Jeun SS, Eom TJ. Delineation of three-dimensional tumor margins based on normalized absolute difference mapping via volumetric optical coherence tomography. Sci Rep 2024; 14:7984. [PMID: 38575630 PMCID: PMC10994936 DOI: 10.1038/s41598-024-56239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
The extent of surgical resection is an important prognostic factor in the treatment of patients with glioblastoma. Optical coherence tomography (OCT) imaging is one of the adjunctive methods available to achieve the maximal surgical resection. In this study, the tumor margins were visualized with the OCT image obtained from a murine glioma model. A commercialized human glioblastoma cell line (U-87) was employed to develop the orthotopic murine glioma model. A swept-source OCT (SS-OCT) system of 1300 nm was used for three-dimensional imaging. Based on the OCT intensity signal, which was obtained via accumulation of each A-scan data, an en-face optical attenuation coefficient (OAC) map was drawn. Due to the limited working distance of the focused beam, OAC values decrease with depth, and using the OAC difference in the superficial area was chosen to outline the tumor boundary, presenting a challenge in analyzing the tumor margin along the depth direction. To overcome this and enable three-dimensional tumor margin detection, we converted the en-face OAC map into an en-face difference map with x- and y-directions and computed the normalized absolute difference (NAD) at each depth to construct a volumetric NAD map, which was compared with the corresponding H&E-stained image. The proposed method successfully revealed the tumor margin along the peripheral boundaries as well as the margin depth. We believe this method can serve as a useful adjunct in glioma surgery, with further studies necessary for real-world practical applications.
Collapse
Affiliation(s)
- Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Taeil Yoon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byeong Ha Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea.
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Whiteman AS, Bartsch AJ, Kang J, Johnson TD. Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions. Ann Appl Stat 2022; 16:2626-2647. [DOI: 10.1214/22-aoas1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew S. Whiteman
- Department of Biostatistics, University of Michigan School of Public Health
| | - Andreas J. Bartsch
- Radiologie Bamberg and Department of Neuroradiology, University of Heidelberg
| | - Jian Kang
- Department of Biostatistics, University of Michigan School of Public Health
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan School of Public Health
| |
Collapse
|
4
|
Yahanda AT, Rich KM, Dacey RG, Zipfel GJ, Dunn GP, Dowling JL, Smyth MD, Leuthardt EC, Limbrick DD, Honeycutt J, Sutherland GR, Jensen RL, Evans J, Chicoine MR. Survival After Resection of Newly-Diagnosed Intracranial Grade II Ependymomas: An Initial Multicenter Analysis and the Logistics of Intraoperative Magnetic Resonance Imaging. World Neurosurg 2022; 167:e757-e769. [PMID: 36028106 DOI: 10.1016/j.wneu.2022.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify factors, including the use of intraoperative magnetic resonance imaging (iMRI), impacting overall survival (OS) and progression-free survival (PFS) after resections of newly diagnosed intracranial grade II ependymomas performed across 4 different institutions. METHODS Analyses of a multicenter mixed retrospective/prospective database assessed the impact of patient, treatment, and tumor characteristics on OS and PFS. iMRI workflow and logistics were also outlined. RESULTS Forty-three patients were identified (mean age 25.4 years, mean follow-up 52.8 months). The mean OS was 52.8 ± 44.7 months. Univariate analyses failed to identify prognostic factors associated with OS, likely due to relatively shorter follow-up time for this less aggressive glioma subtype. The mean PFS was 43.7 ± 39.8 months. Multivariate analyses demonstrated that gross-total resection was associated with prolonged PFS compared to both subtotal resection (STR) (P = 0.005) and near-total resection (P = 0.01). Infratentorial location was associated with improved PFS compared to supratentorial location (P = 0.04). Log-rank analyses of Kaplan-Meier survival curves showed that increasing extent of resection (EOR) led to improved OS specifically for supratentorial tumors (P = 0.02) and improved PFS for all tumors (P < 0.001). Thirty cases (69.8%) utilized iMRI, of which 12 (27.9%) involved additional resection after iMRI. Of these, 8/12 (66.7%) resulted in gross-total resection, while 2/12 (16.7%) were near-total resection and 2/12 (16.7%) were subtotal resection. iMRI was not an independent prognosticator of PFS (P = 0.72). CONCLUSIONS Greater EOR and infratentorial location were associated with increased PFS for grade II ependymomas. Greater EOR was associated with longer OS only for supratentorial tumors. A longer follow-up is needed to establish prognostic factors for this cohort, including use of iMRI.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Matthew D Smyth
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - John Honeycutt
- Department of Neurological Surgery, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Garnette R Sutherland
- Department of Neurological Surgery, University of Calgary School of Medicine, Calgary, Alberta, Canada
| | - Randy L Jensen
- Department of Neurological Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John Evans
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Hou Y, Li Y, Li Q, Yu Y, Tang J. Full-course resection control strategy in glioma surgery using both intraoperative ultrasound and intraoperative MRI. Front Oncol 2022; 12:955807. [PMID: 36091111 PMCID: PMC9453394 DOI: 10.3389/fonc.2022.955807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntraoperative ultrasound(iUS) and intraoperative MRI (iMRI) are effective ways to perform resection control during glioma surgery. However, most published studies employed only one modality. Few studies have used both during surgery. How to combine these two techniques reasonably, and what advantages they could have for glioma surgery are still open questions.MethodsWe retrospectively reviewed a series of consecutive patients who underwent initial surgical treatment of supratentorial gliomas in our center. We utilized a full-course resection control strategy to combine iUS and iMRI: IUS for pre-resection assessment and intermediate resection control; iMRI for final resection control. The basic patient characteristics, surgical results, iMRI/iUS findings, and their impacts on surgical procedures were evaluated and reported.ResultsA total of 40 patients were included. The extent of resection was 95.43 ± 10.37%, and the gross total resection rate was 72.5%. The median residual tumor size was 6.39 cm3 (range 1.06–16.23 cm3). 5% (2/40) of patients had permanent neurological deficits after surgery. 17.5% (7/40) of patients received further resection after the first iMRI scan, resulting in four (10%) more patients achieving gross total resection. The number of iMRI scans per patient was 1.18 ± 0.38. The surgical time was 4.5 ± 3.6 hours. The pre-resection iUS scan revealed that an average of 3.8 borders of the tumor were beside sulci in 75% (30/40) patients. Intermediate resection control was utilized in 67.5% (27/40) of patients. In 37.5% (15/40) of patients, the surgical procedures were changed intraoperatively based on the iUS findings. Compared with iMRI, the sensitivity and specificity of iUS for residual tumors were 46% and 96%, respectively.ConclusionThe full-course resection control strategy by combining iUS and iMRI could be successfully implemented with good surgical results in initial glioma surgeries. This strategy might stabilize resection control quality and provide the surgeon with more intraoperative information to tailor the surgical strategy. Compared with iMRI-assisted glioma surgery, this strategy might improve efficiency by reducing the number of iMRI scans and shortening surgery time.
Collapse
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jie Tang,
| |
Collapse
|
6
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Ille S, Schwendner M, Zhang W, Schroeder A, Meyer B, Krieg SM. Tractography for Subcortical Resection of Gliomas Is Highly Accurate for Motor and Language Function: ioMRI-Based Elastic Fusion Disproves the Severity of Brain Shift. Cancers (Basel) 2021; 13:cancers13081787. [PMID: 33918598 PMCID: PMC8068819 DOI: 10.3390/cancers13081787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tractography enables the visualization of eloquent white matter pathways. Inaccuracies due to brain shift might occur intraoperatively. The aim of this study was to evaluate the impact of intraoperative magnetic resonance imaging (MRI)-based elastic fusion on preoperative tractography for subcortical resection of gliomas. We confirmed the high accuracy of tractography during the whole course of surgery. Abstract When using preoperative tractography intraoperatively, inaccuracies due to brain shift might occur. Intraoperative tractography is rarely performed. Elastic fusion (EF) is a tool developed to compensate for brain shift, gravity, and tissue resection based on intraoperative images. Our hypothesis was that preoperative tractography is accurate and adjustments of tractography by intraoperative magnetic resonance imaging (ioMRI)-based EF (IBEF) compensate for brain shift. Between February 2018 and June 2019, 78 patients underwent eloquent (46 motor, 32 language) glioma resection in our department using intraoperative MRI. Mean distances between the resection cavity and tractography were analyzed and correlated with clinical outcomes. The mean ± standard deviation (range) distance after the application of IBEF was 5.0 ± 2.9 mm (0–10 mm) in patients without surgery-related motor deficits compared with 1.1 ± 1.6 mm (0–5 mm) in patients who showed new permanent surgery-related motor deficits postoperatively (p < 0.001). For language, the distance was 0.7 ± 1.2 mm (0–2 mm) in patients with new permanent deficits compared with 3.1 ± 4.5 mm (0–14 mm) in patients without new permanent surgery-related language deficits (p = 0.541). Preoperative tractography corrected by IBEF for subcortical resection of gliomas is highly accurate. However, at least for such subcortical anatomy, the severity of brain shift was considerably overestimated in the past.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
- TUM Neuroimaging Center, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
- TUM Neuroimaging Center, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Wei Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
| | - Axel Schroeder
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
- TUM Neuroimaging Center, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; (S.I.); (M.S.); (W.Z.); (A.S.); (B.M.)
- TUM Neuroimaging Center, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-2151
| |
Collapse
|
8
|
Bopp MHA, Emde J, Carl B, Nimsky C, Saß B. Diffusion Kurtosis Imaging Fiber Tractography of Major White Matter Tracts in Neurosurgery. Brain Sci 2021; 11:brainsci11030381. [PMID: 33802710 PMCID: PMC8002557 DOI: 10.3390/brainsci11030381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 01/31/2023] Open
Abstract
Diffusion tensor imaging (DTI)-based fiber tractography is routinely used in clinical applications to visualize major white matter tracts, such as the corticospinal tract (CST), optic radiation (OR), and arcuate fascicle (AF). Nevertheless, DTI is limited due to its capability of resolving intra-voxel multi-fiber populations. Sophisticated models often require long acquisition times not applicable in clinical practice. Diffusion kurtosis imaging (DKI), as an extension of DTI, combines sophisticated modeling of the diffusion process with short acquisition times but has rarely been investigated in fiber tractography. In this study, DTI- and DKI-based fiber tractography of the CST, OR, and AF was investigated in healthy volunteers and glioma patients. For the CST, significantly larger tract volumes were seen in DKI-based fiber tractography. Similar results were obtained for the OR, except for the right OR in patients. In the case of the AF, results of both models were comparable with DTI-based fiber tractography showing even significantly larger tract volumes in patients. In the case of the CST and OR, DKI-based fiber tractography contributes to advanced visualization under clinical time constraints, whereas for the AF, other models should be considered.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
- Correspondence:
| | - Julia Emde
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (J.E.); (B.C.); (C.N.); (B.S.)
| |
Collapse
|
9
|
Mehidine H, Refregiers M, Jamme F, Varlet P, Juchaux M, Devaux B, Abi Haidar D. Molecular changes tracking through multiscale fluorescence microscopy differentiate Meningioma grades and non-tumoral brain tissues. Sci Rep 2021; 11:3816. [PMID: 33589651 PMCID: PMC7884789 DOI: 10.1038/s41598-020-78678-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
Meningioma is the most common primary intracranial extra-axial tumor. Total surgical removal is the standard therapeutic method to treat this type of brain tumors. However, the risk of recurrence depends on the tumor grade and the extent of the resection including the infiltrated dura mater and, if necessary, the infiltrated bone. Therefore, proper resection of all invasive tumor borders without touching eloquent areas is of primordial in order to decrease the risk of recurrence. Nowadays, none of the intraoperative used tools is able to provide a precise real-time histopathological information on the tumor surrounding areas to help the surgeon to achieve a gross total removal. To respond to this problem, our team is developing a multimodal two-photon fluorescence endomicroscope, compatible with the surgeon tool, to better delimitate tumor boundaries, relying on the endogenous fluorescence of brain tissues. In this context, we are building a tissue database in order to specify each brain tissue, whether healthy or tumoral, with its specific optical signature. In this study, we present a multimodal and multiscale optical measurements on non-tumoral control brain tissue obtained in epilepsy surgery patients and several meningioma grades. We investigated tissue auto-fluorescence to track the molecular changes associated with the tumor grade from deep ultra-violet (DUV) to near infrared (NIR) excitation. Micro-spectroscopy, fluorescence lifetime imaging, two-photon fluorescence imaging and Second Harmonic Generation (SHG) imaging were performed. Several optically derived parameters such as collagen crosslinks fluorescence in DUV, SHG emission in NIR and long lifetime intensity fraction of Nicotinamide Adenine Dinucleotide and Flavins were correlated to discriminate cancerous tissue from control one. While collagen response managed to discriminate meningioma grades from control samples with a 100% sensitivity and 90% specificity through a 3D discriminative algorithm.
Collapse
Affiliation(s)
- Hussein Mehidine
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
- Université de Paris, IJCLab, 91405, Orsay, France
| | | | - Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France
| | - Pascale Varlet
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de neuropathologie, 75014, Paris, France
- IMA BRAIN, INSERM U894, Centre de Psychiatrie Et de Neurosciences, 75014, Paris, France
- Université de Paris, 75006, Paris, France
| | - Marjorie Juchaux
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France
| | - Bertrand Devaux
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de neuropathologie, 75014, Paris, France
- Université de Paris, 75006, Paris, France
| | - Darine Abi Haidar
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.
- Université de Paris, IJCLab, 91405, Orsay, France.
| |
Collapse
|
10
|
Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis. Neurosurg Rev 2021; 44:2977-2990. [PMID: 33537890 PMCID: PMC8592967 DOI: 10.1007/s10143-021-01488-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 10/29/2022]
Abstract
Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections.
Collapse
|
11
|
Kutlay M, Durmaz O, Ozer İ, Kırık A, Yasar S, Kural C, Temiz Ç, Tehli Ö, Ezgu MC, Daneyemez M, Izci Y. Fluorescein Sodium-Guided Neuroendoscopic Resection of Deep-Seated Malignant Brain Tumors: Preliminary Results of 18 Patients. Oper Neurosurg (Hagerstown) 2021; 20:206-218. [PMID: 33047137 DOI: 10.1093/ons/opaa313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/02/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Deep-seated intracranial lesions are challenging to resect completely and safely. Fluorescence-guided surgery (FGS) promotes the resection of malignant brain tumors (MBTs). Classically, FGS is performed using microscope equipped with a special filter. Fluorescence-guided neuroendoscopic resection of deep-seated brain tumors has not been reported yet. OBJECTIVE To evaluate the feasibility, safety, and effectiveness of the fluorescence-guided neuroendoscopic surgery in deep-seated MBTs. METHODS A total of 18 patients with high-grade glioma (HGG) and metastatic tumor (MT) underwent fluorescein sodium (FS)-guided neuroendoscopic surgery. Tumor removal was carried out using bimanual microsurgical techniques under endoscopic view. The degree of fluorescence staining was classified as "helpful" and "unhelpful" based on surgical observation. Extent of resection was determined using magnetic resonance imaging (MRI). Karnofsky Performance Status (KPS) score was used for evaluation of general physical performances of patients. RESULTS A total of 11 patients had HGG, and 7 had MT. No technical difficulty was encountered regarding the use of endoscopic technique. "Helpful" fluorescence staining was observed in 16 patients and fluorescent tissue was completely removed. Postoperative MRI confirmed gross total resection (88.9%). In 2 patients, FS enhancement was not helpful enough for tumor demarcation and postoperative MRI revealed near total resection (11.1%). No complication, adverse events, or side effects were encountered regarding the use of FS. KPS score of patients was improved at 3-mo follow-up. CONCLUSION FS-guided endoscopic resection is a feasible technique for deep-seated MBTs. It is safe, effective, and allows for a high rate of resection. Future prospective randomized studies are needed to confirm these preliminary data.
Collapse
Affiliation(s)
- Murat Kutlay
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Ozan Durmaz
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - İlker Ozer
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Alpaslan Kırık
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Soner Yasar
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Cahit Kural
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Çağlar Temiz
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Özkan Tehli
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mehmet Can Ezgu
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mehmet Daneyemez
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| | - Yusuf Izci
- Department of Neurosurgery, Gulhane School of Medicine, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
12
|
Shah AS, Yahanda AT, Sylvester PT, Evans J, Dunn GP, Jensen RL, Honeycutt J, Cahill DP, Sutherland GR, Oswood M, Shah M, Abram SR, Rich KM, Dowling JL, Leuthardt EC, Dacey RG, Kim AH, Zipfel GJ, Limbrick DD, Smyth MD, Leonard J, Chicoine MR. Using Histopathology to Assess the Reliability of Intraoperative Magnetic Resonance Imaging in Guiding Additional Brain Tumor Resection: A Multicenter Study. Neurosurgery 2020; 88:E49-E59. [PMID: 32803226 PMCID: PMC11956845 DOI: 10.1093/neuros/nyaa338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intraoperative magnetic resonance imaging (iMRI) is a powerful tool for guiding brain tumor resections, provided that it accurately discerns residual tumor. OBJECTIVE To use histopathology to assess how reliably iMRI may discern additional tumor for a variety of tumor types, independent of the indications for iMRI. METHODS A multicenter database was used to calculate the odds of additional resection during the same surgical session for grade I to IV gliomas and pituitary adenomas. The reliability of iMRI for identifying residual tumor was assessed using histopathology of tissue resected after iMRI. RESULTS Gliomas (904/1517 cases, 59.6%) were more likely than pituitary adenomas (176/515, 34.2%) to receive additional resection after iMRI (P < .001), but these tumors were equally likely to have additional tissue sent for histopathology (398/904, 44.4% vs 66/176, 37.5%; P = .11). Tissue samples were available for resections after iMRI for 464 cases, with 415 (89.4%) positive for tumor. Additional resections after iMRI for gliomas (361/398, 90.7%) were more likely to yield additional tumor compared to pituitary adenomas (54/66, 81.8%) (P = .03). There were no significant differences in resection after iMRI yielding histopathologically positive tumor between grade I (58/65 cases, 89.2%; referent), grade II (82/92, 89.1%) (P = .98), grade III (72/81, 88.9%) (P = .95), or grade IV gliomas (149/160, 93.1%) (P = .33). Additional resection for previously resected tumors (122/135 cases, 90.4%) was equally likely to yield histopathologically confirmed tumor compared to newly-diagnosed tumors (293/329, 89.0%) (P = .83). CONCLUSION Histopathological analysis of tissue resected after use of iMRI for grade I to IV gliomas and pituitary adenomas demonstrates that iMRI is highly reliable for identifying residual tumor.
Collapse
Affiliation(s)
- Amar S Shah
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - John Evans
- Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- Washington University School of Medicine, St. Louis, Missouri
| | - Randy L Jensen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | | | | | - Mark Oswood
- University of Minnesota, Minneapolis, Minnesota
- Allina Health, Minneapolis, Minnesota
| | - Mitesh Shah
- Goodman Campbell and Indiana University, Indianapolis, Indiana
| | | | - Keith M Rich
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Ralph G Dacey
- Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Matthew D Smyth
- Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, Ohio
| | | |
Collapse
|
13
|
Orillac C, Stummer W, Orringer DA. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2020; 89:727-736. [PMID: 33289518 DOI: 10.1093/neuros/nyaa475] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated. Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection. This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.
Collapse
Affiliation(s)
- Cordelia Orillac
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
14
|
Intraoperative MRI guidance for right deep fronto-temporal glioma resection: how I do it. Acta Neurochir (Wien) 2020; 162:3037-3041. [PMID: 32613376 DOI: 10.1007/s00701-020-04474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND For glial tumor management, the extent of resection (EOR) is the key to enhance tumor control and improve patient outcomes. Intraoperative MRI (IoMRI) neuronavigated microsurgery emerged as a useful neuroimaging tool for performing optimal and safe tumor resection. METHOD Here, we present the different steps of the microsurgical resection of a challenging deeply located right fronto-temporal glioma, using intraoperative MRI in an integrated IoMRI imaging platform. CONCLUSION Intraoperative MRI neuronavigated microsurgery helps to enhance the tumor resection, while reducing unintended area damages. The use of IoMRI fosters a "staged volume resection," to keep safe, taking into account the progressive intraoperative brain shift.
Collapse
|
15
|
Yahanda AT, Goble TJ, Sylvester PT, Lessman G, Goddard S, McCollough B, Shah A, Andrews T, Benzinger TLS, Chicoine MR. Impact of 3-Dimensional Versus 2-Dimensional Image Distortion Correction on Stereotactic Neurosurgical Navigation Image Fusion Reliability for Images Acquired With Intraoperative Magnetic Resonance Imaging. Oper Neurosurg (Hagerstown) 2020; 19:599-607. [PMID: 32521010 DOI: 10.1093/ons/opaa152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fusion of preoperative and intraoperative magnetic resonance imaging (iMRI) studies during stereotactic navigation may be very useful for procedures such as tumor resections but can be subject to error because of image distortion. OBJECTIVE To assess the impact of 3-dimensional (3D) vs 2-dimensional (2D) image distortion correction on the accuracy of auto-merge image fusion for stereotactic neurosurgical images acquired with iMRI using a head phantom in different surgical positions. METHODS T1-weighted intraoperative images of the head phantom were obtained using 1.5T iMRI. Images were postprocessed with 2D and 3D image distortion correction. These studies were fused to T1-weighted preoperative MRI studies performed on a 1.5T diagnostic MRI. The reliability of the auto-merge fusion of these images for 2D and 3D correction techniques was assessed both manually using the stereotactic navigation system and via image analysis software. RESULTS Eight surgical positions of the head phantom were imaged with iMRI. Greater image distortion occurred with increased distance from isocenter in all 3 axes, reducing accuracy of image fusion to preoperative images. Visually reliable image fusions were accomplished in 2/8 surgical positions using 2D distortion correction and 5/8 using 3D correction. Three-dimensional correction yielded superior image registration quality as defined by higher maximum mutual information values, with improvements ranging between 2.3% and 14.3% over 2D correction. CONCLUSION Using 3D distortion correction enhanced the reliability of surgical navigation auto-merge fusion of phantom images acquired with iMRI across a wider range of head positions and may improve the accuracy of stereotactic navigation using iMRI images.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Peter T Sylvester
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Amar Shah
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor Andrews
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tammie L S Benzinger
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Yahanda AT, Patel B, Shah AS, Cahill DP, Sutherland G, Honeycutt J, Jensen RL, Rich KM, Dowling JL, Limbrick DD, Dacey RG, Kim AH, Leuthardt EC, Dunn GP, Zipfel GJ, Leonard JR, Smyth MD, Shah MV, Abram SR, Evans J, Chicoine MR. Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study. Neurosurgery 2020; 88:63-73. [DOI: 10.1093/neuros/nyaa320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Few studies use large, multi-institutional patient cohorts to examine the role of intraoperative magnetic resonance imaging (iMRI) in the resection of grade II gliomas.
OBJECTIVE
To assess the impact of iMRI and other factors on overall survival (OS) and progression-free survival (PFS) for newly diagnosed grade II astrocytomas and oligodendrogliomas.
METHODS
Retrospective analyses of a multicenter database assessed the impact of patient-, treatment-, and tumor-related factors on OS and PFS.
RESULTS
A total of 232 resections (112 astrocytomas and 120 oligodendrogliomas) were analyzed. Oligodendrogliomas had longer OS (P < .001) and PFS (P = .01) than astrocytomas. Multivariate analyses demonstrated improved OS for gross total resection (GTR) vs subtotal resection (STR; P = .006, hazard ratio [HR]: .23) and near total resection (NTR; P = .02, HR: .64). GTR vs STR (P = .02, HR: .54), GTR vs NTR (P = .04, HR: .49), and iMRI use (P = .02, HR: .54) were associated with longer PFS. Frontal (P = .048, HR: 2.11) and occipital/parietal (P = .003, HR: 3.59) locations were associated with shorter PFS (vs temporal). Kaplan-Meier analyses showed longer OS with increasing extent of surgical resection (EOR) (P = .03) and 1p/19q gene deletions (P = .02). PFS improved with increasing EOR (P = .01), GTR vs NTR (P = .02), and resections above STR (P = .04). Factors influencing adjuvant treatment (35.3% of patients) included age (P = .002, odds ratio [OR]: 1.04) and EOR (P = .003, OR: .39) but not glioma subtype or location. Additional tumor resection after iMRI was performed in 105/159 (66%) iMRI cases, yielding GTR in 54.5% of these instances.
CONCLUSION
EOR is a major determinant of OS and PFS for patients with grade II astrocytomas and oligodendrogliomas. Intraoperative MRI may improve EOR and was associated with increased PFS.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Bhuvic Patel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Amar S Shah
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daniel P Cahill
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Garnette Sutherland
- Department of Neurological Surgery, University of Calgary School of Medicine, Calgary, Canada
| | - John Honeycutt
- Department of Neurological Surgery, Cook Children's Medical Center, Fort Worth, Texas
| | - Randy L Jensen
- Department of Neurological Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Keith M Rich
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joshua L Dowling
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Ralph G Dacey
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew D Smyth
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mitesh V Shah
- Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indianapolis, Indiana
| | - Steven R Abram
- Department of Neurological Surgery, St. Thomas Hospital, Nashville, Tennessee
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
17
|
Mehidine H, Li M, Lendresse JF, Bouvet F, Xie H, Abi Haidar D. A Customized Two Photon Fluorescence Imaging Probe Based on 2D scanning MEMS Mirror Including Electrothermal Two-Level-Ladder Dual S-Shaped Actuators. MICROMACHINES 2020; 11:mi11070704. [PMID: 32708126 PMCID: PMC7408598 DOI: 10.3390/mi11070704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
We report the design and characterization of a two-photon fluorescence imaging miniature probe. This customized two-axis scanning probe is dedicated for intraoperative two-photon fluorescence imaging endomicroscopic use and is based on a micro-electro-mechanical system (MEMS) mirror with a high reflectivity plate and two-level-ladder double S-shaped electrothermal bimorph actuators. The fully assembled probe has a total outer diameter of 4 mm including all elements. With a two-lens configuration and a small aperture MEMS mirror, this probe can generate a large optical scan angle of 24° with 4 V drive voltage and can achieve a 450 µm FOV with a 2-fps frame rate. A uniform Pixel Dwell Time and a stable scanning speed along a raster pattern were demonstrated while a 57-fs pulse duration of the excitation beam was measured at the exit of the probe head. This miniature imaging probe will be coupled to a two-photon fluorescence endomicroscope oriented towards clinical use.
Collapse
Affiliation(s)
- Hussein Mehidine
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; (H.M.); (J.-F.L.); (F.B.)
- Université de Paris, IJCLab, 91405 Orsay, France
| | - Min Li
- Suzhou Institute of Biomedical Engineering and Technology (SIBET) Chinese Academy of Sciences (CAS), Suzhou 215163, China;
| | | | - Francoise Bouvet
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; (H.M.); (J.-F.L.); (F.B.)
| | - Huikai Xie
- School of Information and Electronics Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Darine Abi Haidar
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; (H.M.); (J.-F.L.); (F.B.)
- Université de Paris, IJCLab, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
18
|
Guerin JB, Greiner HM, Mangano FT, Leach JL. Functional MRI in Children: Current Clinical Applications. Semin Pediatr Neurol 2020; 33:100800. [PMID: 32331615 DOI: 10.1016/j.spen.2020.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging has become a critical research tool for evaluating brain function during active tasks and resting states. This has improved our understanding of developmental trajectories in children as well as the plasticity of neural networks in disease states. In the clinical setting, functional maps of eloquent cortex in patients with brain lesions and/or epilepsy provides crucial information for presurgical planning. Although children are inherently challenging to scan in this setting, preparing them appropriately and providing adequate resources can help achieve useful clinical data. This article will review the basic underlying physiologic aspects of functional magnetic resonance imaging, review clinically relevant research applications, describe known validation data compared to gold standard techniques and detail future directions of this technology.
Collapse
Affiliation(s)
- Julie B Guerin
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, University of Cincinnati College of Medicine Department of Neurosurgery, Cincinnati, OH
| | - James L Leach
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
19
|
A Multi-Institutional Analysis of Factors Influencing Surgical Outcomes for Patients with Newly Diagnosed Grade I Gliomas. World Neurosurg 2019; 135:e754-e764. [PMID: 31901497 DOI: 10.1016/j.wneu.2019.12.156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess the impact of intraoperative magnetic resonance imaging (iMRI), extent of resection (EOR), and other factors on overall survival (OS) and progression-free survival (PFS) for patients with newly diagnosed grade I gliomas. METHODS A multicenter database was queried to identify patients with grade I gliomas. Retrospective analyses assessed the impact of patient, treatment, and tumor characteristics on OS and PFS. RESULTS A total of 284 patients underwent treatment for grade I gliomas, including 248 resections (205 with iMRI, 43 without), 23 biopsies, and 13 laser interstitial thermal therapy treatments. Log-rank analyses of Kaplan-Meier plots showed improved 5-year OS (P = 0.0107) and PFS (P = 0.0009) with increasing EOR, and a trend toward improved 5-year OS for patients with lower American Society of Anesthesiologists score (P = 0.0528). Greater EOR was associated with significantly increased 5-year PFS for pilocytic astrocytoma (P < 0.0001), but not for ganglioglioma (P = 0.10) or dysembryoplastic neuroepithelial tumor (P = 0.57). Temporal tumors (P = 0.04) and location of "other" (P = 0.04) were associated with improved PFS, and occipital/parietal tumors (P = 0.02) were associated with decreased PFS compared with all other locations. Additional tumor resection was performed after iMRI in 49.7% of cases using iMRI, which produced gross total resection in 64% of these additional resection cases. CONCLUSIONS Patients with grade I gliomas have extended OS and PFS, which correlates positively with increasing EOR, especially for patients with pilocytic astrocytoma. iMRI may increase EOR, indicated by the rate of gross total resection after iMRI use but was not independently associated with increased OS or PFS.
Collapse
|
20
|
Liang C, Li M, Gong J, Zhang B, Lin C, He H, Zhang K, Guo Y. A new application of ultrasound-magnetic resonance multimodal fusion virtual navigation in glioma surgery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:736. [PMID: 32042752 DOI: 10.21037/atm.2019.11.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Long-term survival and high-quality life of patients with gliomas depends on the extent of resection (EOR) and the protection of functional white matter fibers. The navigation system provides precise positioning for surgery based on preoperative magnetic resonance imaging (MRI) but the precision decreases when intraoperative brain drift occurs. Ultrasound (US) can support real-time imaging and correct brain shift. The real-time US-MRI multimodal fusion virtual navigation system (UMNS) is a new technique for glioma surgery. In order to obtain a maximum EOR and functional protection, this study aimed to explore the feasibility, efficiency, and safety of real-time UMNS for glioma surgery, and to evaluate the benefit of the new application by UMNS presetting markers between the tumor and functional white matter fiber surgery. Methods A retrospective analysis included 45 patients who underwent glioma surgery, 19 patients with only intraoperative US, and 26 patients with UMNS. A preoperative plan was made by 3D-slicer software based on preoperative MRI. This was combined with a reconstruction of diffusion tensor imaging (DTI) that designed the important locations as "warning points" between functional white matter fibers and tumor. Following patient registration, markers were injected into preset "warning points" under image-guided UMNS in order to give us a warning during surgery in case of postoperative function deficits. The operating time, volumetric assessment in glioma resection, and postoperative complications were evaluated and used to compared those surgeries using intraoperative US (iUS) with those surgeries using intraoperate MRI (iMRI) navigation. Results A total of 45 patients underwent glioma surgery. Gross total removal (GTR) of iUS alone was achieved in 6 of 19 cases, while this was achieved in 22 of 26 cases with UMNS alone, demonstrating an improvement in rate of GTR from 31.58% to 84.62%, respectively. This may be attributable to the superior US image quality provided by UMNS. In 13 of 26 cases, there was improved image quality (from poor/moderate to moderate/good) with the aid of UMNS. In addition, the consistency of EOR of postoperative MRI evaluated by UMNS (92.31%) was higher than when using iUS alone (42.11%). The whole process of intraoperative scanning time and marker injection did not lead to a significant delay of the operating time compared to using iUS alone, and has been reported to be shorter than with iMRI as well. Furthermore, the percentage of postoperative morbidity in the UMNS group was lower than that in the iUS group (motor deficit: 11.54% vs. 42.11%; aphasia: P =3.85% vs. 31.58%, respectively). Conclusions Real-time UMNS is an effective, timesaving technology that offers high quality intraoperative imaging. Injection markers between functional white matter fibers and tumor by UMNS can help to obtain a maximum EOR of glioma and functional protection postoperatively. The integration of iUS into the neuronavigation system offered quick and helpful intra-operative images.
Collapse
Affiliation(s)
- Chaofeng Liang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Manting Li
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Jin Gong
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Baoyu Zhang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Cong Lin
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Haiyong He
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Zhang
- Department of Radiology, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Guo
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
21
|
Optical Signatures Derived From Deep UV to NIR Excitation Discriminates Healthy Samples From Low and High Grades Glioma. Sci Rep 2019; 9:8786. [PMID: 31217542 PMCID: PMC6584506 DOI: 10.1038/s41598-019-45181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Among all the tumors of the central nervous system (CNS), glioma are the most deadly and the most malignant. Surgical resection is the standard therapeutic method to treat this type of brain cancer. But the diffusive character of these tumors create many problems for surgeons during the operation. In fact, these tumors migrate outside the tumor solid zone and invade the surrounding healthy tissues. These infiltrative tissues have the same visual appearance as healthy tissues, making it very difficult for surgeons to distinguish the healthy ones from the diffused ones. The surgeon, therefore, cannot properly remove the tumor margins increasing the recurrence risk of the tumor. To resolve this problem, our team has developed a multimodal two-photon fibered endomicroscope, compatible with the surgeon trocar, to better delimitate tumor boundaries by relying on the endogenous fluorescence of brain tissues. In this context, and in order to characterize the optical signature of glioma tumors, this study offers multimodal and multi-scaled optical measurements from healthy tissues to high grade glioma. We can interrogate tissue from deep ultra-violet to near infrared excitation by working with spectroscopy, fluorescence lifetime imaging, two-photon fluorescene imaging and Second Harmonic Generation (SHG) imaging. Optically derived ratios such as the Tryptophan/Collagen ratio, the optical redox ratio and the long lifetime intensity fraction, discriminated diseased tissue from its normal counterparts when fitted by Gaussian ellipsoids and choosing a threshold for each. Additionally two-photon fluorescence and SHG images were shown to display similar histological features as Hematoxylin-Eosin stained images.
Collapse
|
22
|
Suero Molina E, Schipmann S, Stummer W. Maximizing safe resections: the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev 2019; 42:197-208. [PMID: 28921173 PMCID: PMC6502775 DOI: 10.1007/s10143-017-0907-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022]
Abstract
Malignant glioma surgery involves the challenge of preserving the neurological status of patients harboring these lesions while pursuing a maximal tumor resection, which is correlated with overall and progression-free survival. Presently, several tools exist for assisting neurosurgeons in visualizing malignant tissue. Fluorescence-guided surgery (FGS) with 5-aminolevulinic acid (5-ALA) has increasingly been used during the last decade for identifying malignant glioma. Intraoperative magnetic resonance imaging (iMRI), first introduced in the mid-1990s, is being evaluated as a further tool to maximize the extent of resection. We aimed to evaluate the literature and discuss synergies and differences between FGS with 5-ALA and iMRI. We conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. After excluding non-relevant articles, 16 articles were evaluated and included in the qualitative analysis, comprising 2 (n = 2) reviews of the literatures, 1 (n = 1) book chapter, and 13 (n = 13) clinical articles. ALA-induced fluorescence goes beyond the borders of gadolinium contrast enhancement. Several studies stress the synergy between both tools, enabling increase in extent of resection. We point out advantages of combining both methods. iMRI, however, is not widely available, is expensive, and is not recommended as sole resection control tool in high-grade glioma. For these centers, FGS together with mapping and monitoring techniques, neuronavigation and, when needed, intraoperative ultrasound provides an excellent setting for achieving state-of-the-art gross total resection of high-grade gliomas.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| | - S Schipmann
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - W Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| |
Collapse
|
23
|
Determination of optimal time window for cortical mapping in awake craniotomy: assessment of intraoperative reaction speed. Neurosurg Rev 2019; 43:633-642. [PMID: 30877481 DOI: 10.1007/s10143-019-01094-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/18/2019] [Accepted: 03/03/2019] [Indexed: 11/27/2022]
Abstract
Currently, there is no known time frame when the patients are the most responsive during awake craniotomy. The aim of this work is therefore to determine when the patient has the shortest reaction time and so to extrapolate the optimal time window for cortical mapping. In this analytic observational study, our group has recorded the reaction times of 35 patients undergoing an awake craniotomy and compared them with the preoperative baseline. The operations were performed according to a "sleep-awake-awake" protocol. Data collection was performed in parallel with standard methods for evaluation of language and cognitive functions. The preoperative reaction times of our patient cohort (average ± SD = 510 ± 124 ms) were significantly shorter than those measured during the operation 786 ± 280 ms, p < .001. A one-factor ANOVA within subjects showed a significant increase in reaction times; p < .001. Post hoc comparisons on a Bonferroni-corrected α-error level of .05 showed significant differences between the reaction speed during the 0-10 min time frame and the preoperative baseline, as well as the intraoperative reaction times during the 20-30 min, 30-40 min, and the t > 40 min time frames. In conclusion, measurement of intraoperative reaction speed seems to be a technically feasible method that is well tolerated by the patients. The intraoperative reaction speed performance was shown to be significantly slower than on the day before the operation. The patients seem to be the slowest directly after extubation and gradually wake up during the awake phase. The poorest wakefulness is demonstrated during the first 20 min after extubation.
Collapse
|
24
|
Göker B, Kırış T. Sodium fluorescein-guided brain tumor surgery under the YELLOW-560-nm surgical microscope filter in pediatric age group: feasibility and preliminary results. Childs Nerv Syst 2019; 35:429-435. [PMID: 30610485 DOI: 10.1007/s00381-018-04037-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the feasibility and safety of sodium fluorescein (Na-Fl)-guided surgery with the use of the PENTERO 900 surgical microscope (Carl Zeiss, Meditec, Oberkochen, Germany) equipped with the YELLOW-560-nm filter and low-dose Na-Fl (2 mg/kg) in pediatric brain tumor surgery. METHODS The study included 23 pediatric patients with various intracranial pathologies, who underwent Na-Fl-guided surgery between April 2015 and February 2018. Clinical features, surgical observations, extent of resection, and tumor histopathology were retrospectively analyzed. The use of YELLOW-560-nm filter was found "helpful" if the discrimination of the pinkish brain tissue and bright yellow stained tumor tissue was clear. Otherwise, it was described as "not helpful." RESULTS There were 11 female and 12 male patients with a mean age of 9.4 years. There were 7 brain stem/tectal plate gliomas, 6 supratentorial tumors, 4 intraventricular tumors, 2 pineal tumors, 2 infratentorial tumors, 1 clivus tumor, and 1 tumor with supra- and infratentorial extensions in the current series. Na-Fl was found helpful by means of the tumor demarcation in 20 instances (87%). In 11 of these 20 operations (55%), a total resection was achieved regardless of the tumor pathology. A subtotal resection was achieved in the remaining 9 patients (45%). No adverse events or side effects were encountered with regard to Na-Fl use. CONCLUSION Na-Fl guidance with the use of the YELLOW-560 filter is safe and effective during brain tumor surgery in pediatric age group.
Collapse
Affiliation(s)
- Burcu Göker
- Department of Neurosurgery, Liv Hospital Ulus, Istanbul, Turkey. .,Department of Neurosurgery, Istinye University Medical Faculty, Istanbul, Turkey.
| | - Talat Kırış
- Department of Neurosurgery, Liv Hospital Ulus, Istanbul, Turkey.,Department of Neurosurgery, Istinye University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
25
|
Bopp MH, Pietruk PM, Nimsky C, Carl B. Fiber tractography of the optic radiations: impact of diffusion model, voxel shape and orientation. J Neurosurg Sci 2019; 65:494-502. [PMID: 30724054 DOI: 10.23736/s0390-5616.19.04622-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reliable visualization of the optic radiations (OR) is of major importance in tumor surgery close to the OR to prevent permanent visual field deficits. Diffusion tensor imaging (DTI) based fiber tractography (FT) has become a standard tool to visualize major white matter tracts and to support the prevention of postoperative deficits. Nevertheless, FT of the OR is notoriously challenging due to its high neuroanatomical complexity. METHODS To improve FT of the OR we analyzed the effect of a more complex diffusion model and the effect of different voxel shapes and orientations. MRI data of 21 healthy subjects was acquired using isometric and anisometric voxel sizes and standard and adapted slice angulation. FT was performed using the DTI based approach and an orientation distribution function (ODF) based approach. Results were visually inspected, and fiber tract volumes were compared. RESULTS DTI based FT led to poor results, failing to reconstruct plausible tracts at all in up to 26.11 % of all cases. The ODF based approach resulted in more compound and solid tracts showing also significantly larger tract volumes. Voxel shape or orientation did not influence DTI but ODF based FT. Isometric or anisometric voxels with standard slice orientation revealed highest tract volumes. Adapted orientation in combination with anisometric voxels led to significantly smaller tract volumes. CONCLUSIONS Plausible tractography of the OR can be achieved using ODF based fiber tracking within a clinically feasible timeframe. Voxel shape and orientation seem to be of minor importance and might be kept to isometric voxel for flexible application of FT.
Collapse
Affiliation(s)
- Miriam H Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany - .,Marburg Center for Mind, Brain and Behavior, Marburg, Germany -
| | - Peter M Pietruk
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
26
|
Lu CY, Chen XL, Chen XL, Fang XJ, Zhao YL. Clinical application of 3.0 T intraoperative magnetic resonance combined with multimodal neuronavigation in resection of cerebral eloquent area glioma. Medicine (Baltimore) 2018; 97:e11702. [PMID: 30142758 PMCID: PMC6112991 DOI: 10.1097/md.0000000000011702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common tumor among central nervous system tumors; surgical intervention presents difficulties. This is especially the case for gliomas in so-called "eloquent areas," as surgical resection threatens vital structures adjacent to the tumor. Intraoperative magnetic resonance imaging (iMRI) combined with multimodal neuronavigation may prove beneficial during surgery. This study explored the applicability of 3.0 T high field iMRI combined with multimodal neuronavigation in the resection of gliomas in eloquent brain areas.We reviewed 40 patients with a glioma located in the eloquent brains areas who underwent treatment in the Neurosurgery Department of Peking University International Hospital between December 2015 and August 2017. The experimental group included 20 patients treated using iMRI assistance technology (iMRI group). The remaining 20 patients underwent treatment by conventional neuronavigation (non-iMRI group). Tumor resection degree, preoperative and postoperative ability of daily living scale (Barthel index), infection rate, and operative time were compared between the 2 groups.No difference in infection rate was observed between the 2 groups. However, compared with the non-iMRI group, the iMRI group had a higher resection rate (96.55 ± 4.03% vs 87.70 ± 10.98%, P = .002), postoperative Barthel index (90.75 ± 12.90 vs 9.25 ± 16.41, P = .018), as well as a longer operation time (355.85 ± 61.40 vs 302.45 ± 64.09, P = .011).The use of iMRI technology can achieve a relatively higher resection rate among cases of gliomas in eloquent brain areas, with less incidence of postoperative neurological deficits. Although the operative time using iMRI was longer than that taken to perform conventional navigation surgery, the surgical infection rate in these 2 procedures showed no significant difference.
Collapse
Affiliation(s)
- Chang-Yu Lu
- Department of Neurosurgery, Peking University International Hospital
| | - Xiao-Lin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Xiao-Lei Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Jing Fang
- Department of Neurosurgery, Peking University International Hospital
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
27
|
Bopp MHA, Yang J, Nimsky C, Carl B. The effect of pulsatile motion and cardiac-gating on reconstruction and diffusion tensor properties of the corticospinal tract. Sci Rep 2018; 8:11204. [PMID: 30046120 PMCID: PMC6060167 DOI: 10.1038/s41598-018-29525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Pulsatile motion occurs in the cardiac systolic period and leads to significantly larger displacement of water molecules as it is observed during diffusion weighted image acquisition. Obvious pulsatile motion arises in the brain stem and basal ganglia and might affect the corticospinal tract. So far there is no consensus on the real effect of pulsatile motion on diffusion properties, diffusion tensor parameters and fiber tractography and on the role of cardiac-gating to overcome these effects. The present study aimed at detecting effects of pulsatile motion on imaging properties and reconstruction of the corticospinal tract. Non-gated and cardiac-gated data of 22 healthy subjects was acquired using clinical standard protocols and analysed with regard to effects on signal intensities, diffusion tensor properties and tractography results concerning the corticospinal tract. Analyses resulted in obvious effects of pulsatile motion on signal intensities, especially alterations in diffusion tensor properties, compensated by the application of cardiac-gating, whereas no effect on fiber tract volume was seen. Therefore, pulsatile motion and cardiac-gating should be kept in mind as critical aspects when analysing and interpreting diffusion tensor properties within the human brain, but are of minor interest when considering fiber tractography of the corticospinal tract.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany.
| | - Jia Yang
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| | - Christopher Nimsky
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| | - Barbara Carl
- Philipps University Marburg, Department of Neurosurgery, Baldingerstrasse, Marburg, 35043, Germany
| |
Collapse
|
28
|
Lenski M, Hofereiter J, Terpolilli N, Sandner T, Zausinger S, Tonn JC, Kreth FW, Schichor C. Dual-room CT with a sliding gantry for intraoperative imaging: feasibility and workflow analysis of an interdisciplinary concept. Int J Comput Assist Radiol Surg 2018; 14:397-407. [DOI: 10.1007/s11548-018-1812-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
29
|
Awake mapping is not an additional surgical technique but an alternative philosophy in the management of low-grade glioma patients. Neurosurg Rev 2018; 41:697-698. [DOI: 10.1007/s10143-018-0960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
30
|
Intraoperative 3 tesla magnetic resonance imaging: Our experience in tumors. RADIOLOGIA 2018. [DOI: 10.1016/j.rxeng.2018.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
García-Baizán A, Tomás-Biosca A, Bartolomé Leal P, Domínguez P, García de Eulate Ruiz R, Tejada S, Zubieta J. Resonancia magnética intraoperatoria de 3 teslas: Nuestra experiencia en patología tumoral. RADIOLOGIA 2018; 60:136-142. [DOI: 10.1016/j.rx.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
|
32
|
Frati A, Pesce A, D'Andrea G, Fraschetti F, Salvati M, Cimatti M, Esposito V, Raco A. A purely functional Imaging based approach for transcortical resection of lesion involving the dominant atrium: Towards safer, imaging-guided, tailored cortico-leucotomies. J Clin Neurosci 2018; 50:252-261. [PMID: 29429789 DOI: 10.1016/j.jocn.2018.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND STUDY OBJECT The Dominant Atrium (DA) is a crossroad of eloquent white matter bundles difficult to preserve with a standard "anatomical" approach. The aim of this work is to evaluate the results of a cohort of patients who underwent surgery with the aid of a purely functional MRI and DTI-based approach. MATERIALS AND METHODS 43 patients suffering from lesions involving the DA have been included in the final cohort and studied in regards to quality of life (KPS); a special attention was lent on the incidence of new or worsening of preexisting neurological deficits, with a focus on motor, visual and speech disturbances after the surgical treatment. Patient, surgery and lesion-related data were recorded to identify the relationships with outcome. Eloquent areas fMRI and the course of Arcuate Fasciculus (AF), Inferior frontooccipital fasciculus (IFOF), Optic radiation (OR) and corticospinal tract (CST) have been investigated with preoperative MRI sequences and DTI reconstruction. RESULTS The final cohort consisted of 43 patients, 19 males and 24 females; average age was 56.8 years. We recorded 9 transient and 3 permanent postoperative deficits, only one of those was caused by an edema interference with DTI reconstruction. Preoperative functional status, histology and volume of the lesion proved to be independent factors affecting results. CONCLUSIONS A purely functional surgical approach to the DA provided promising preliminary results. A direct DTI-fMRI visualization of the eloquent structures proximal to DA allows surgeon to conceive an ultra-precise and "tailored" cortico-leucotomy for an optimal exposure of the lesion.
Collapse
Affiliation(s)
- Alessandro Frati
- IRCCS "Neuromed" - Neurosurgery - "Sapienza" Univesity, Pozzilli (IS), Italy
| | - Alessandro Pesce
- NESMOS Department Neurosurgery Department "Sapienza" University, Roma, Italy; Azienda Ospedaliera Sant'Andrea, Roma, Italy
| | | | - Flavia Fraschetti
- NESMOS Department Neurosurgery Department "Sapienza" University, Roma, Italy; Azienda Ospedaliera Sant'Andrea, Roma, Italy.
| | - Maurizio Salvati
- IRCCS "Neuromed" - Neurosurgery - "Sapienza" Univesity, Pozzilli (IS), Italy
| | - Marco Cimatti
- NESMOS Department Neurosurgery Department "Sapienza" University, Roma, Italy; Azienda Ospedaliera Sant'Andrea, Roma, Italy
| | - Vincenzo Esposito
- IRCCS "Neuromed" - Neurosurgery - "Sapienza" Univesity, Pozzilli (IS), Italy
| | - Antonino Raco
- NESMOS Department Neurosurgery Department "Sapienza" University, Roma, Italy; Azienda Ospedaliera Sant'Andrea, Roma, Italy
| |
Collapse
|
33
|
Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model. Int J Comput Assist Radiol Surg 2018; 13:471-478. [PMID: 29368236 DOI: 10.1007/s11548-018-1705-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/13/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). METHODS An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. RESULTS Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. CONCLUSIONS LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.
Collapse
|
34
|
Eyüpoglu IY, Hore N, Merkel A, Buslei R, Buchfelder M, Savaskan N. Supra-complete surgery via dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget 2017; 7:25755-68. [PMID: 27036027 PMCID: PMC5041941 DOI: 10.18632/oncotarget.8367] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022] Open
Abstract
Safe and complete resection represents the first step in the treatment of glioblastomas and is mandatory in increasing the effectiveness of adjuvant therapy to prolong overall survival. With gross total resection currently limited in extent to MRI contrast enhancing areas, the extent to which supra-complete resection beyond obvious contrast enhancement could have impact on overall survival remains unclear. DiVA (dual intraoperative visualization approach) redefines gross total resection as currently accepted by enabling for the first time supra-complete surgery without compromising patient safety. This approach exploits the advantages of two already accepted surgical techniques combining intraoperative MRI with integrated functional neuronavigation and 5-ALA by integrating them into a single surgical approach. We investigated whether this technique has impact on overall outcome in GBM patients. 105 patients with GBM were included. We achieved complete resection with intraoperative MRI alone according to current best-practice in glioma surgery in 75 patients. 30 patients received surgery with supra-complete resection. The control arm showed a median life expectancy of 14 months, reflecting current standards-of-care and outcome. In contrast, patients receiving supra-complete surgery displayed significant increase in median survival time to 18.5 months with overall survival time correlating directly with extent of supra-complete resection. This extension of overall survival did not come at the cost of neurological deterioration. We show for the first time that supra-complete glioma surgery leads to significant prolongation of overall survival time in GBM patients.
Collapse
Affiliation(s)
- Ilker Y Eyüpoglu
- Department of Neurosurgery, Translational Neurooncology Division, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nirjhar Hore
- Department of Neurosurgery, Translational Neurooncology Division, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Merkel
- Department of Neurosurgery, Translational Neurooncology Division, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Buslei
- Department of Neuropathology, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Translational Neurooncology Division, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolai Savaskan
- Department of Neurosurgery, Translational Neurooncology Division, Medical Faculty of The Friedrich Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
35
|
Mahboob SO, Eljamel M. Intraoperative image-guided surgery in neuro-oncology with specific focus on high-grade gliomas. Future Oncol 2017; 13:2349-2361. [PMID: 29121778 DOI: 10.2217/fon-2017-0195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Surgery is paramount in glioma management and extent of resection is an independent significant prognostic factor. However, these tumors are often invisible intraoperatively. Hence imaging plays an important role in surgical guidance. A critical literature review, using MEDLINE/PubMed service was carried out. It demonstrated a gross total resection (GTR) with neuronavigation (NNS) of 31-36%, adding 5-aminolevulinic acid or fluorescein fluorescence, or intraoperative ultrasound or MRI improved GTR to 69.1, 84.4, 73.4 and 70% respectively. The differences between the four intraoperative technologies were not statistically significant. Therefore, NNS provided a platform for planning surgical approaches and localization of lesions, however significant brain shift rendered NNS useless without the addition of intraoperative imaging, of which 5-aminolevulinic acid, fluorescein, intraoperative ultrasound and intraoperative MRI significantly improved GTR and outcome of glioma surgery.
Collapse
Affiliation(s)
| | - Muftah Eljamel
- Neurosciences, HTNMS, 20/22 Torphichen Street, Edinburgh, EH3 8JB, UK
| |
Collapse
|
36
|
Buchfelder M, Zhao Y. Is awake surgery for supratentorial adult low-grade gliomas the gold standard? Neurosurg Rev 2017; 41:1-2. [DOI: 10.1007/s10143-017-0916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
|
38
|
Fluorescein-Guided Surgery for High-Grade Glioma Resection: An Intraoperative “Contrast-Enhancer”. World Neurosurg 2017; 104:239-247. [DOI: 10.1016/j.wneu.2017.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022]
|
39
|
Celtikci P, Celtikci E, Emmez H, Ucar M, Börcek AÖ. Utilization of Bone Wax as a Marker for Spatial Orientation in Intraoperative Magnetic Resonance Imaging. Clin Neuroradiol 2017; 28:117-121. [PMID: 28509935 DOI: 10.1007/s00062-017-0595-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Pinar Celtikci
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, Suite B‑400, 15213, Pittsburgh, PA, USA.
| | - Emrah Celtikci
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 200 Lothrop St, Suite B‑400, 15213, Pittsburgh, PA, USA
| | - Hakan Emmez
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Murat Ucar
- Department of Radiology, Gazi University Faculty of Medicine, Besevler, Ankara, Turkey
| | - Alp Özgün Börcek
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
40
|
Motomura K, Natsume A, Iijima K, Kuramitsu S, Fujii M, Yamamoto T, Maesawa S, Sugiura J, Wakabayashi T. Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas. J Neurosurg 2017; 127:790-797. [PMID: 28059650 DOI: 10.3171/2016.9.jns16152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain. METHODS The authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection. RESULTS Intraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001). CONCLUSIONS This study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were noted for patients with tumors with complex anatomy, such as those associated with the insular lobe.
Collapse
Affiliation(s)
- Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya
| | - Kentaro Iijima
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya
| | | | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima
| | - Takashi Yamamoto
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University Graduate School of Medicine; and
| | - Junko Sugiura
- Department of Rehabilitation, Nagoya University Hospital, Nagoya, Japan
| | | |
Collapse
|
41
|
Eljamel MS, Mahboob SO. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagnosis Photodyn Ther 2016; 16:35-43. [PMID: 27491856 DOI: 10.1016/j.pdpdt.2016.07.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/19/2016] [Accepted: 07/30/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Surgical resection of high-grade gliomas (HGG) is standard therapy because it imparts significant progression free (PFS) and overall survival (OS). However, HGG-tumor margins are indistinguishable from normal brain during surgery. Hence intraoperative technology such as fluorescence (ALA, fluorescein) and intraoperative ultrasound (IoUS) and MRI (IoMRI) has been deployed. This study compares the effectiveness and cost-effectiveness of these technologies. METHODS Critical literature review and meta-analyses, using MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ALA, fluorescein (FLCN), IoUS or IoMRI to guide HGG-surgery. The meta-analyses were conducted according to statistical heterogeneity between studies. If there was no heterogeneity, fixed effects model was used; otherwise, a random effects model was used. Statistical heterogeneity was explored by χ2 and inconsistency (I2) statistics. To assess cost-effectiveness, we calculated the incremental cost per quality-adjusted life-year (QALY). RESULTS Gross total resection (GTR) after ALA, FLCN, IoUS and IoMRI was 69.1%, 84.4%, 73.4% and 70% respectively. The differences were not statistically significant. All four techniques led to significant prolongation of PFS and tended to prolong OS. However none of these technologies led to significant prolongation of OS compared to controls. The cost/QALY was $16,218, $3181, $6049 and $32,954 for ALA, FLCN, IoUS and IoMRI respectively. CONCLUSIONS ALA, FLCN, IoUS and IoMRI significantly improve GTR and PFS of HGG. Their incremental cost was below the threshold for cost-effectiveness of HGG-therapy, denoting that each intraoperative technology was cost-effective on its own.
Collapse
|
42
|
Coenen VA, Jenkner C, Honey CR, Mädler B. Electrophysiologic Validation of Diffusion Tensor Imaging Tractography during Deep Brain Stimulation Surgery. AJNR Am J Neuroradiol 2016; 37:1470-8. [PMID: 27032969 DOI: 10.3174/ajnr.a4753] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Diffusion tensor imaging fiber tractography-assisted planning of deep brain stimulation is an emerging technology. We investigated its accuracy by using electrophysiology under clinical conditions. We hypothesized that a level of concordance between electrophysiology and DTI fiber tractography can be reached, comparable with published modeling approaches for deep brain stimulation surgery. MATERIALS AND METHODS Eleven patients underwent subthalamic nucleus deep brain stimulation. DTI scans and high-resolution T1- and T2-weighted MR imaging was performed at 3T. Corticospinal tracts were traced. We studied electrode positions and current amplitudes that elicited corticospinal tract effects during the operation to determine relative corticospinal tract distance. Postoperatively, 3D deep brain stimulation electrode contact locations and stimulation patterns were applied for the same corticospinal tract distance estimation. RESULTS Intraoperative electrophysiologic (n = 40) clinical effects in 11 patients were detected. The mean intraoperative electrophysiologic corticospinal tract distance was 3.0 ± 0.6 mm; the mean image-derived corticospinal tract distance (DTI fiber tractography) was 3.0 ± 1.3 mm. The 95% limits of agreement were ±2.4 mm. Postoperative electrophysiology (n = 44) corticospinal tract activation effects were encountered in 9 patients; 39 were further evaluated. Mean electrophysiologic corticospinal tract distance was 3.7 ± 0.7 mm; for DTI fiber tractography, it was 3.2 ± 1.9 mm. The 95% limits of agreement were ±2.5 mm. CONCLUSIONS DTI fiber tractography depicted the medial corticospinal tract border with proved concordance. Although the overall range of measurements was relatively small and variance was high, we believe that further use of DTI fiber tractography to assist deep brain stimulation procedures is advisable if inherent limitations are respected. These results confirm our previously published electric field simulation studies.
Collapse
Affiliation(s)
- V A Coenen
- From the Department of Stereotactic and Functional Neurosurgery (V.A.C., B.M.)
| | - C Jenkner
- the Clinical Trial Unit (C.J.), Freiburg University Medical Center, Freiburg, Germany
| | - C R Honey
- Surgical Center for Movement Disorders/Division of Neurosurgery (C.R.H.)
| | - B Mädler
- From the Department of Stereotactic and Functional Neurosurgery (V.A.C., B.M.) Department of Physics and Astronomy (B.M.), University of British Columbia, Vancouver, British Columbia, Canada Philips Healthcare (B.M.), Hamburg, Germany
| |
Collapse
|
43
|
Mahboob S, McPhillips R, Qiu Z, Jiang Y, Meggs C, Schiavone G, Button T, Desmulliez M, Demore C, Cochran S, Eljamel S. Intraoperative Ultrasound-Guided Resection of Gliomas: A Meta-Analysis and Review of the Literature. World Neurosurg 2016; 92:255-263. [PMID: 27178235 DOI: 10.1016/j.wneu.2016.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Image-guided surgery has become standard practice during surgical resection, using preoperative magnetic resonance imaging. Intraoperative ultrasound (IoUS) has attracted interest because of its perceived safety, portability, and real-time imaging. This report is a meta-analysis of intraoperative ultrasound in gliomas. METHODS Critical literature review and meta-analyses, using the MEDLINE/PubMed service. The list of references in each article was double-checked for any missing references. We included all studies that reported the use of ultrasound to guide glioma-surgery. The meta-analyses were conducted according to statistical heterogeneity between the studies using Open MetaAnalyst Software. If there was no heterogeneity, fixed effects model was used for meta-analysis; otherwise, a random effect model was used. Statistical heterogeneity was explored by χ(2) and inconsistency (I(2)) statistics; an I(2) value of 50% or more represented substantial heterogeneity. RESULTS A wide search yielded 19,109 studies that might be relevant, of which 4819 were ultrasound in neurosurgery; 756 studies used ultrasound in cranial surgery, of which 24 studies used intraoperative ultrasound to guide surgical resection and 74 studies used it to guide biopsy. Fifteen studies fulfilled our stringent inclusion criteria, giving a total of 739 patients. The estimated average gross total resection rate was 77%. Furthermore, the relationship between extent of surgical resection and study population was not linear. Gross total resection was more likely under IoUS when the lesion was solitary and subcortical, with no history of surgery or radiotherapy. IoUS image quality, sensitivity, specificity, and positive and negative predictive values deteriorated as surgical resection proceeded. CONCLUSION IoUS-guided surgical resection of gliomas is a useful tool for guiding the resection and for improving the extent of resection. IoUS can be used in conjunction with other complementary technologies that can improve anatomic orientation during surgery. Real-time imaging, improved image quality, small probe sizes, repeatability, portability, and relatively low cost make IoUS a realistic, cost-effective tool that complements any existing tools in any neurosurgical operating environment.
Collapse
Affiliation(s)
- Syed Mahboob
- Division of Neuroscience, University of Dundee and Ninewells Hospital, Dundee, United Kingdom
| | - Rachael McPhillips
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Zhen Qiu
- Institute of Medical Science and Technology, University of Dundee, Dundee, United Kingdom
| | - Yun Jiang
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Carl Meggs
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Giuseppe Schiavone
- Research Institute in Signals, Sensors and Systems, Heriot Watt University, Edinburgh, United Kingdom
| | - Tim Button
- Applied Functional Materials Ltd, University of Birmingham, Birmingham, United Kingdom
| | - Marc Desmulliez
- Research Institute in Signals, Sensors and Systems, Heriot Watt University, Edinburgh, United Kingdom
| | - Christine Demore
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Sandy Cochran
- Division of Imaging and Technology, University of Dundee, Dundee, United Kingdom
| | - Sam Eljamel
- Department of Neurosurgery, University of Dundee and Ninewells Hospital, Dundee, United Kingdom.
| |
Collapse
|
44
|
Sacino MF, Ho CY, Murnick J, Keating RF, Gaillard WD, Oluigbo CO. The role of intraoperative MRI in resective epilepsy surgery for peri-eloquent cortex cortical dysplasias and heterotopias in pediatric patients. Neurosurg Focus 2016; 40:E16. [DOI: 10.3171/2016.1.focus15538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Previous studies have demonstrated that an important factor in seizure freedom following surgery for lesional epilepsy in the peri-eloquent cortex is completeness of resection. However, aggressive resection of epileptic tissue localized to this region must be balanced with the competing objective of retaining postoperative neurological functioning. The objective of this study was to investigate the role of intraoperative MRI (iMRI) as a complement to existing epilepsy protocol techniques and to compare rates of seizure freedom and neurological deficit in pediatric patients undergoing resection of perieloquent lesions.
METHODS
The authors retrospectively reviewed the medical records of pediatric patients who underwent resection of focal cortical dysplasia (FCD) or heterotopia localized to eloquent cortex regions at the Children's National Health System between March 2005 and August 2015. Patients were grouped into two categories depending on whether they underwent conventional resection (n = 18) or iMRI-assisted resection (n = 11). Patient records were reviewed for factors including demographics, length of hospitalization, postoperative seizure freedom, postoperative neurological deficit, and need for reoperation. Postsurgical seizure outcome was assessed at the last postoperative follow-up evaluation using the Engel Epilepsy Surgery Outcome Scale.
RESULTS
At the time of the last postoperative follow-up examination, 9 (82%) of the 11 patients in the iMRI resection group were seizure free (Engel Class I), compared with 7 (39%) of the 18 patients in the control resection group (p = 0.05). Ten (91%) of the 11 patients in the iMRI cohort achieved gross-total resection (GTR), compared with 8 (44%) of 18 patients in the conventional resection cohort (p = 0.02). One patient in the iMRI-assisted resection group underwent successful reoperation at a later date for residual dysplasia, compared with 7 patients in the conventional resection cohort (with 2/7 achieving complete resection). Four (36%) of the patients in the iMRI cohort developed postoperative neurological deficits, compared with 15 patients (83%) in the conventional resection cohort (p = 0.02).
CONCLUSIONS
These results suggest that in comparison with a conventional surgical protocol and technique for resection of epileptic lesions in peri-eloquent cortex, the incorporation of iMRI led to elevated rates of GTR and postoperative seizure freedom. Furthermore, this study suggests that iMRI-assisted surgeries are associated with a reduction in neurological deficits due to intraoperative damage of eloquent cortex.
Collapse
|
45
|
Hamamcıoğlu MK, Akçakaya MO, Göker B, Kasımcan MÖ, Kırış T. The use of the YELLOW 560 nm surgical microscope filter for sodium fluorescein-guided resection of brain tumors: Our preliminary results in a series of 28 patients. Clin Neurol Neurosurg 2016; 143:39-45. [PMID: 26895208 DOI: 10.1016/j.clineuro.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Sodium fluorescein (Na-Fl) is a fluorescent dye that accumulates in tumoral tissues via disrupted blood-brain barrier. It has been used in fluorescence-guided surgery for various brain tumors. Herein, we report our initial experience and preliminary results for the first 28 patients who were operated on under Na-Fl guidance with the use of a special filter on the surgical microscope. PATIENT AND METHODS Between January and November 2015, 200 mg (2-4 mg/kg) of Na-Fl was administered in 28 patients (30 surgeries) after anesthesia induction. The clinical features, surgical observations, extent of resection on the postoperative magnetic resonance imaging (MRI) and histopathology of the tumors were retrospectively analyzed. The use of YELLOW 560 nm filter was found "helpful" if the discrimination of the pinkish brain tissue and bright yellow stained tumor tissue was clear. Otherwise, it was described as "not helpful. RESULTS There were 23 high-grade and 7 metastatic tumors in our study group. Na-Fl was found helpful by means of the tumor demarcation in 29 of 30 operations (97%). In 23 of these 29 operations (79%), a total resection was achieved regardless of the tumor pathology. No adverse events were encountered regarding the use of Na-Fl. CONCLUSION Na-Fl guidance with the use of a YELLOW 560 filter is safe and effective in high-grade glioma and metastatic tumor surgery. We think it is feasible for increasing the extent of resection in these tumors.
Collapse
Affiliation(s)
| | | | - Burcu Göker
- Department of Neurosurgery, Liv Hospital, Istanbul, Turkey
| | | | - Talat Kırış
- Department of Neurosurgery, Liv Hospital, Istanbul, Turkey
| |
Collapse
|
46
|
Aghi MK, Nahed BV, Sloan AE, Ryken TC, Kalkanis SN, Olson JJ. The role of surgery in the management of patients with diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:503-30. [PMID: 26530265 DOI: 10.1007/s11060-015-1867-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
QUESTION Should patients with imaging suggestive of low grade glioma (LGG) undergo observation versus treatment involving a surgical procedure? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS Surgical resection is recommended over observation to improve overall survival for patients with diffuse low-grade glioma (Level III) although observation has no negative impact on cognitive performance and quality of life (Level II). QUESTION What is the impact of extent of resection on progression free survival (PFS) or overall survival (OS) in LGG patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS IMPACT OF EXTENT OF RESECTION ON PFS: LEVEL II It is recommended that GTR or STR be accomplished instead of biopsy alone when safe and feasible so as to decrease the frequency of tumor progression recognizing that the rate of progression after GTR is fairly high. IMPACT OF EXTENT OF RESECTION ON OS LEVEL III Greater extent of resection can improve OS in LGG patients. QUESTION What tools are available to increase extent of resection in LGG patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS INTRAOPERATIVE MRI DURING SURGERY: LEVEL III The use of intraoperative MRI should be considered as a method of increasing the extent of resection of LGGs. QUESTION What is the impact of surgical resection on seizure control and accuracy of pathology in low grade glioma patients? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS SURGICAL RESECTION AND SEIZURE CONTROL: LEVEL III After taking into account the patient's clinical status and tumor location, gross total resection is recommended for patients with diffuse LGG as a way to achieve more favorable seizure control. ACCURACY OF DIAGNOSIS LEVEL III Taking into account the patient's clinical status and tumor location, surgical resection should be carried out to maximize the chance of accurate diagnosis. QUESTION What tools can improve the safety of surgery for LGGs in eloquent locations? TARGET POPULATION These recommendations apply to adults with imaging suggestive of a WHO grade 2 glioma (oligodendroglioma, astrocytoma, or oligo-astrocytoma). RECOMMENDATIONS PREOPERATIVE IMAGING: LEVEL III It is recommended that preoperative functional MRI and diffusion tensor imaging be utilized in the appropriate clinical setting to improve functional outcome after surgery for LGG. INTRAOPERATIVE MAPPING OF TUMORS IN ELOQUENT AREAS LEVEL III Intraoperative mapping is recommended for patients with diffuse LGGs in eloquent locations compared to patients with non-eloquently located diffuse LGGs as a way of preserving function.
Collapse
Affiliation(s)
- Manish K Aghi
- Department of Neurosurgery, University of California, 505 Parnassus Avenue, Room M779, San Francisco, CA, 94143-0112, USA.
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew E Sloan
- Department of Neurosurgery, University Hospitals, Cleveland, OH, USA
| | - Timothy C Ryken
- Department of Neurosurgery, Kansas University Medical Center, Kansas City, KS, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
47
|
Terpolilli NA, Rachinger W, Kunz M, Thon N, Flatz WH, Tonn JC, Schichor C. Orbit-associated tumors: navigation and control of resection using intraoperative computed tomography. J Neurosurg 2015; 124:1319-27. [PMID: 26566206 DOI: 10.3171/2015.5.jns15330] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Treatment of skull base lesions is complex and usually requires a multidisciplinary approach. In meningioma, which is the most common tumor entity in this region, resection is considered to be the most important therapeutic step to avoid tumor recurrence. However, resection of skull base lesions with orbital or optic nerve involvement poses a challenge due to their anatomical structure and their proximity to eloquent areas. Therefore the main goal of surgery should be to achieve the maximum extent of resection while preserving neurological function. In the postoperative course, medical and radiotherapeutic strategies may then be successfully used to treat possible tumor residues. Methods to safely improve the extent of resection in skull base lesions therefore are desirable. The current study reports the authors' experience with the use of intraoperative CT (iCT) combined with neuronavigation with regard to feasibility and possible benefits of the method. METHODS Those patients with tumorous lesions in relationship to the orbit, sphenoid wing, or cavernous sinus who were surgically treated between October 2008 and December 2013 using iCT-based neuronavigation and in whom an intraoperative scan was obtained for control of resection were included. In all cases a second iCT scan was performed under sterile conditions after completion of navigation-guided microsurgical tumor resection. The surgical strategy was adapted accordingly; if necessary, resection was continued. RESULTS Twenty-three patients (19 with WHO Grade I meningioma and 4 with other lesions) were included. The most common clinical symptoms were loss of visual acuity and exophthalmus. Intraoperative control of resection by iCT was successfully obtained in all cases. Intraoperative imaging changed the surgical approach in more than half (52.2%) of these patients, either because iCT demonstrated unexpected residual tumor masses or because the second scan revealed additional tumor tissue that was not detected in the first scan due to overlay by osseous tumor parts; in these cases resection was continued. In the remaining cases resection was concluded as planned because iCT verified the surgeon's microscopic estimation of tumor resection status. Postoperative visual outcome was favorable in more than 80% of patients. CONCLUSIONS Intraoperative CT allows control of resection in case of uncertainty and can help to improve the extent of maximal safe resection, especially in case of osseous tumor parts and masses within the orbit.
Collapse
Affiliation(s)
| | | | | | | | - Wilhelm H Flatz
- Clinical Radiology, Munich University Medical Center, Munich, Germany
| | | | | |
Collapse
|
48
|
Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 2015; 124:1300-9. [PMID: 26544781 DOI: 10.3171/2015.5.jns1577] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT There is evidence that 5-aminolevulinic acid (ALA) facilitates greater extent of resection and improves 6-month progression-free survival in patients with high-grade gliomas. But there remains a paucity of studies that have examined whether the intensity of ALA fluorescence correlates with tumor cellularity. Therefore, a Phase II clinical trial was undertaken to examine the correlation of intensity of ALA fluorescence with the degree of tumor cellularity. METHODS A single-center, prospective, single-arm, open-label Phase II clinical trial of ALA fluorescence-guided resection of high-grade gliomas (Grade III and IV) was held over a 43-month period (August 2010 to February 2014). ALA was administered at a dose of 20 mg/kg body weight. Intraoperative biopsies from resection cavities were collected. The biopsies were graded on a 4-point scale (0 to 3) based on ALA fluorescence intensity by the surgeon and independently based on tumor cellularity by a neuropathologist. The primary outcome of interest was the correlation of ALA fluorescence intensity to tumor cellularity. The secondary outcome of interest was ALA adverse events. Sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Spearman correlation coefficients were calculated. RESULTS A total of 211 biopsies from 59 patients were included. Mean age was 53.3 years and 59.5% were male. The majority of biopsies were glioblastoma (GBM) (79.7%). Slightly more than half (52.5%) of all tumors were recurrent. ALA intensity of 3 correlated with presence of tumor 97.4% (PPV) of the time. However, absence of ALA fluorescence (intensity 0) correlated with the absence of tumor only 37.7% (NPV) of the time. For all tumor types, GBM, Grade III gliomas, and recurrent tumors, ALA intensity 3 correlated strongly with cellularity Grade 3; Spearman correlation coefficients (r) were 0.65, 0.66, 0.65, and 0.62, respectively. The specificity and PPV of ALA intensity 3 correlating with cellularity Grade 3 ranged from 95% to 100% and 86% to 100%, respectively. In biopsies without tumor (cellularity Grade 0), 35.4% still demonstrated ALA fluorescence. Of those biopsies, 90.9% contained abnormal brain tissue, characterized by reactive astrocytes, scattered atypical cells, or inflammation, and 8.1% had normal brain. In nonfluorescent (ALA intensity 0) biopsies, 62.3% had tumor cells present. The ALA-associated complication rate among the study cohort was 3.4%. CONCLUSIONS The PPV of utilizing the most robust ALA fluorescence intensity (lava-like orange) as a predictor of tumor presence is high. However, the NPV of utilizing the absence of fluorescence as an indicator of no tumor is poor. ALA intensity is a strong predictor for degree of tumor cellularity for the most fluorescent areas but less so for lower ALA intensities. Even in the absence of tumor cells, reactive changes may lead to ALA fluorescence.
Collapse
Affiliation(s)
| | | | | | - Annette M Molinaro
- Departments of 1 Neurological Surgery.,Epidemiology and Biostatistics, and
| | | | - Joanna J Phillips
- Departments of 1 Neurological Surgery.,Pathology, University of California, San Francisco, California
| | | |
Collapse
|
49
|
Bai SC, Xu BN, Wei SH, Geng JF, Wu DD, Yu XG, Chen XL. Intraoperative high-field magnetic resonance imaging combined with functional neuronavigation in resection of low-grade temporal lobe tumors. World J Surg Oncol 2015; 13:286. [PMID: 26410079 PMCID: PMC4583990 DOI: 10.1186/s12957-015-0690-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/07/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the role of intraoperative MR imaging in temporal lobe low-grade glioma (LGG) surgery and to report the surgical outcome in our series with regard to seizures, neurological defects, and quality of life. METHODS Patients with temporal lobe contrast-nonenhancing gliomas who presented with seizures in the course of their disease were enrolled in our prospective study. We non-randomly assigned patients to undergo intraoperative magnetic resonance imaging (iMRI)-guided surgery or conventional surgery. Extent of resection (EOR) and surgical outcomes were compared between the two groups. RESULTS Forty-one patients were allocated in the iMRI group, and 14 were in the conventional group. Comparable EOR was achieved for the two groups (p = 0.634) although preoperative tumor volumes were significantly larger for the iMRI group. Seizure outcome tended to be better for the iMRI group (Engel class I achieved for 89.7% (35/39) vs 75% (9/12)) although this difference was not statistically different. Newly developed neurological deficits were observed in four patients (10.3%) and two patients (16.7%), respectively (p = 0.928). Free of seizures and neurological morbidity led to a return-to-work or return-to-school rate of 84.6% (33/39) vs 75% (9/12), respectively (p = 0.741). CONCLUSIONS Our study provided evidence that iMRI was a safe and useful tool in temporal lobe LGG surgery. Optimal extent of resection contributed to favorable seizure outcome in our series with low morbidity rate, which led to a high return-to-work rate.
Collapse
Affiliation(s)
- Shao-cong Bai
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Bai-nan Xu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Shi-hui Wei
- Department of Ophthalmology, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jie-feng Geng
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Dong-dong Wu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xin-guang Yu
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiao-lei Chen
- Department of Neurosurgery, PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
50
|
Abstract
Despite advances in multimodal treatments, malignant gliomas remain characterized by a short survival time. Surgical treatment is accepted to be the first line of therapy, with recent studies revealing that maximal possible tumor reduction exerts significant impact on patient outcome. Consideration of tumor localization in relation to functionally eloquent brain areas has been gaining increasing importance. Despite existing assessment methods, the availability of a simple but reliable preoperative grading based on functional data would therefore prove to be indispensable for the prediction of postoperative outcome and hence for overall survival in glioma patients. We performed a clinical investigation comprising 322 patients with gliomas and developed a novel classification system of preoperative tumor status, which considers tumor operability based on two graduations (Friedlein Grading - FG): FGA with lesions at safe distance to eloquent regions which can be completely resected, and FGB referring to tumors which can only be partially resected or biopsied. Investigation of outcome revealed that FGA were characterized by a significantly longer overall survival time compared to FGB. We offer the opportunity to classify brain tumors in a dependable and reproducible manner. The FGA/B grading method provides high prognostic value with respect to overall survival time in relation to the extent of location-dependent tumor resection.
Collapse
|