1
|
Malomo T, Allard Brown A, Bale K, Yung A, Kozlowski P, Heran M, Streijger F, Kwon BK. Quantifying Intraparenchymal Hemorrhage after Traumatic Spinal Cord Injury: A Review of Methodology. J Neurotrauma 2022; 39:1603-1635. [PMID: 35538847 DOI: 10.1089/neu.2021.0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intraparenchymal hemorrhage (IPH) after a traumatic injury has been associated with poor neurological outcomes. Although IPH may result from the initial mechanical trauma, the blood and its breakdown products have potentially deleterious effects. Further, the degree of IPH has been correlated with injury severity and the extent of subsequent recovery. Therefore, accurate evaluation and quantification of IPH following traumatic spinal cord injury (SCI) is important to define treatments' effects on IPH progression and secondary neuronal injury. Imaging modalities, such as magnetic resonance imaging (MRI) and ultrasound (US), have been explored by researchers for the detection and quantification of IPH following SCI. Both quantitative and semiquantitative MRI and US measurements have been applied to objectively assess IPH following SCI, but the optimal methods for doing so are not well established. Studies in animal SCI models (rodent and porcine) have explored US and histological techniques in evaluating SCI and have demonstrated the potential to detect and quantify IPH. Newer techniques using machine learning algorithms (such as convolutional neural networks [CNN]) have also been studied to calculate IPH volume and have yielded promising results. Despite long-standing recognition of the potential pathological significance of IPH within the spinal cord, quantifying IPH with MRI or US is a relatively new area of research. Further studies are warranted to investigate their potential use. Here, we review the different and emerging quantitative MRI, US, and histological approaches used to detect and quantify IPH following SCI.
Collapse
Affiliation(s)
- Toluyemi Malomo
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aysha Allard Brown
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirsten Bale
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Yung
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,UBC MRI Research Center, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manraj Heran
- Department of Radiology, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopaedics, and Division of Neuroradiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Khalatbary AR. Stem cell-derived exosomes as a cell free therapy against spinal cord injury. Tissue Cell 2021; 71:101559. [PMID: 34052745 DOI: 10.1016/j.tice.2021.101559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on spinal cord injury. It was subsequently established that these beneficial effects may be mediated through release of paracrine factors, a kind of extracellular vesicle known as exosomes. Stem cell-secreted nano-sized exosomes have shown great potential to reduce apoptosis and inflammation, enhance angiogenesis, and improve functional behavioral recovery following spinal cord injury. This review summarizes current knowledge about the influence of exosomes derived from stem cells on spinal cord protection and regeneration with their molecular mechanisms after injury.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Xing H, Yin H, Sun C, Ren X, Tian Y, Yu M, Jiang T. Preparation of an acellular spinal cord scaffold to improve its biological properties. Mol Med Rep 2019; 20:1075-1084. [PMID: 31173271 PMCID: PMC6625434 DOI: 10.3892/mmr.2019.10364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/30/2019] [Indexed: 11/14/2022] Open
Abstract
In recent years, acellular spinal cord scaffolds have been extensively studied in tissue engineering. Notably, acellular spinal cord scaffolds may be used to treat spinal cord injury; however, the method of preparation can result in low efficiency and may affect the biological properties of cells. This study aimed to use EDC crosslinking, combined with chemical extraction for tissue decellularization, in order to improve the efficiency of acellular scaffolds. To make the improved stent available for the clinical treatment of spinal cord injury, it is necessary to study its immunogenicity. Therefore, this study also focused on the adherence of rat bone marrow mesenchymal stem cells to scaffolds, and their differentiation into neuron-like cells in the presence of suitable trophic factors. The results revealed that EDC crosslinking combined with chemical extraction methods may significantly improve the efficiency of acellular scaffolds, and may also confer better biological characteristics, including improved immunogenicity. Notably, it was able to promote adhesion of rat bone marrow mesenchymal stem cells and their differentiation into neuron-like cells. These results suggested that the improved preparation method may be promising for the construction of multifunctional acellular scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yongyang Tian
- Emergency Department of University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
4
|
Decreased GFAP expression and improved functional recovery in contused spinal cord of rats following valproic acid therapy. Neurochem Res 2014; 39:2319-33. [PMID: 25205382 DOI: 10.1007/s11064-014-1429-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Many studies have illustrated that much of the post-traumatic degeneration of the spinal cord cells is caused by the secondary mechanism. The aim of this study is to evaluate the effect of the anti-inflammatory property of valproic acid (VPA) on injured spinal cords (SC). The rats with the contused SC received intraperitoneal single injection of VPA (150, 200, 300, 400 or 500 mg/kg) at 2, 6, 12 and 24 h post-injury. Basso-Beattie-Bresnahan (BBB) test and H-reflex evaluated the functional outcome for 12 weeks. The SC were investigated 3 months post-injury using morphometry and glial fibrillary acid protein (GFAP) expression. Reduction in cavitation, H/M ratio, BBB scores and GFAP expression in the treatment groups were significantly more than that of the untreated one (P < 0.05). The optimal improvement in the condition of the contused rats was in the ones treated at the acute phase of injury with 300 mg/kg of VPA at 12 h post-injury, they had the highest increase in BBB score and decrease in astrogliosis and axonal loss. We conclude that treating the contused rats with 300 mg/kg of VPA at 12 h post-injury improves the functional outcome and reduces the traumatized SC gliosis.
Collapse
|
5
|
Abdanipour A, Tiraihi T, Taheri T. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury. Neural Regen Res 2014; 9:1003-13. [PMID: 25206752 PMCID: PMC4146307 DOI: 10.4103/1673-5374.133159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/28/2022] Open
Abstract
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord contusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neurotrophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These findings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| | - Taki Tiraihi
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| | - Taher Taheri
- Shefa Neuroscience Research Center at Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
6
|
Karami M, Bathaie SZ, Tiraihi T, Habibi-Rezaei M, Arabkheradmand J, Faghihzadeh S. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 21:62-67. [PMID: 24051216 DOI: 10.1016/j.phymed.2013.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/29/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Various approaches have been offered to alleviate chronic pain resulting from spinal cord injuries (SCIs). Application of herbs and natural products, with potentially lower adverse effects, to cure diseases has been recommended in both traditional and modern medicines. Here, the effect of crocin on chronic pain induced by spinal cord contusion was investigated in an animal model. Female Wistar rats were randomly divided into five groups (5 rats in each); three groups were contused at the L1 level. One group was treated with crocin (150mg/kg) two weeks after spinal cord injury; the second group, control, was treated with vehicle only; and the third group was treated with ketoprofen. Two normal groups were also considered with or without crocin treatment. The mechanical behavioral test, the locomotor recovery test and the thermal behavioral test were applied weekly to evaluate the injury and recovery of rats. Significant improvements (p<0.05) in mechanical behavioral and locomotor recovery tests were seen in the rats treated with crocin. Thermal behavioral test did not show any significant changes due to crocin treatment. Plasma concentration of calcitonin-gene related peptide (CGRP) changed from 780.2±2.3 to 1140.3±4.5pg/ml due to SCI and reached 789.1±2.7pg/ml after crocin treatment. These changes were significant at the level of p<0.05. The present study shows the beneficial effects of crocin treatment on chronic pain induced by SCI, through decreasing CGRP as an important mediator of inflammation and pain.
Collapse
Affiliation(s)
- Masoume Karami
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
7
|
Abdanipour A, Tiraihi T, Mirnajafi-Zadeh J. Improvement of the pilocarpine epilepsy model in rat using bone marrow stromal cell therapy. Neurol Res 2013; 33:625-32. [DOI: 10.1179/1743132810y.0000000018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
9
|
Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. IRANIAN BIOMEDICAL JOURNAL 2012; 16:90-100. [PMID: 22801282 DOI: 10.6091/ibj.1060.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory and repair processes. METHODS In this study, rats were randomly assigned to five experimental groups (laminectomy, untreated, and three VPA-treated groups). For SCI, severe contusion was used. In treated groups, VPA was administered intraperitoneally at doses of 100, 200 and 400 mg/kg daily three hours after injury for 7 days. To compare locomotor improvement among experimental groups, behavioral assessments were performed by the Basso, Beattie and Bresnahan (BBB) rating scale. The expression of neurotrophins was evaluated by RT-PCR and real-time PCR. RESULTS VPA administration increased regional brain-derived neurotrophic factor and glial cell-derived neurotrophic factor mRNA levels. Local inflammation and the expression of the lysosomal marker ED1 by activated macrophages/microglial cells were reduced by VPA and immunoreactivity of acetylated histone and microtubule-associated protein were increased. CONCLUSION The results showed a reduction in the development of secondary damage in rat spinal cord trauma with an improvement in the open field test (BBB scale) with rapid recovery.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Stem Cells Research Laboratory, Dept. of Medical Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran.,Dept. of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, and Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| | | | - Taki Tiraihi
- Dept. of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, and Shefa Neurosciences Research Center, Khatam Al-Anbia Hospital, Tehran, Iran
| |
Collapse
|
10
|
Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, Miyawaki A, Toyama Y, Okano H, Nakamura M. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant 2010; 20:727-39. [PMID: 21054930 DOI: 10.3727/096368910x536554] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To investigate potential cures for spinal cord injury (SCI), several researchers have transplanted neural stem/progenitor cells (NS/PCs) into the injured spinal cord by different procedures, including intralesional (IL), intrathecal (IT), and intravenous (IV) injection. However, there are no reports quantifying or comparing the number of cells successfully transplanted to the lesion site by each procedure in vivo. The purpose of the present study was to determine the optimal method of cell transplantation to the SCI site in terms of grafted cell survival and safety. For this purpose, we developed mouse NS/PCs that expressed a novel Venus-luciferase fusion protein that enabled us to detect a minimum of 1,000 grafted cells in vivo by bioluminescence imaging (BLI). After inducing contusive SCI at the T10 level in mice, NS/PCs were transplanted into the injured animals three different ways: by IL, IT, or IV injection. Six weeks after the transplantation, BLI analysis showed that in the IL group, the luminescence intensity of the grafted cells had decreased to about 10% of its initial level, and appeared at the site of injury. In the IT group, the luminescence of the grafted cells, which was distributed throughout the entire subarachnoid space immediately after transplantation, was detected at the injured site 1 week later, and by 6 weeks had gradually decreased to about 0.3% of its initial level. In the IV group, no grafted cells were detected at the site of injury, but all of these mice showed luminescence in the bilateral chest, suggesting pulmonary embolism. In addition, one third of these mice died immediately after the IV injection. In terms of grafted cell survival and safety, we conclude that the IL application of NS/PCs is the most effective and feasible method for transplanting NS/PCs into the SCI site.
Collapse
Affiliation(s)
- Yuichiro Takahashi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2010; 28:1611-82. [PMID: 20146557 DOI: 10.1089/neu.2009.1177] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell transplantation therapies have become a major focus in pre-clinical research as a promising strategy for the treatment of spinal cord injury (SCI). In this article, we systematically review the available pre-clinical literature on the most commonly used cell types in order to assess the body of evidence that may support their translation to human SCI patients. These cell types include Schwann cells, olfactory ensheathing glial cells, embryonic and adult neural stem/progenitor cells, fate-restricted neural/glial precursor cells, and bone-marrow stromal cells. Studies were included for review only if they described the transplantation of the cell substrate into an in-vivo model of traumatic SCI, induced either bluntly or sharply. Using these inclusion criteria, 162 studies were identified and reviewed in detail, emphasizing their behavioral effects (although not limiting the scope of the discussion to behavioral effects alone). Significant differences between cells of the same "type" exist based on the species and age of donor, as well as culture conditions and mode of delivery. Many of these studies used cell transplantations in combination with other strategies. The systematic review makes it very apparent that cells derived from rodent sources have been the most extensively studied, while only 19 studies reported the transplantation of human cells, nine of which utilized bone-marrow stromal cells. Similarly, the vast majority of studies have been conducted in rodent models of injury, and few studies have investigated cell transplantation in larger mammals or primates. With respect to the timing of intervention, nearly all of the studies reviewed were conducted with transplantations occurring subacutely and acutely, while chronic treatments were rare and often failed to yield functional benefits.
Collapse
Affiliation(s)
- Wolfram Tetzlaff
- University of British Columbia, ICORD, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Naghdi M, Tiraihi T, Namin SAM, Arabkheradmand J. Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 2009; 11:137-52. [PMID: 19253075 DOI: 10.1080/14653240802716582] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AIMS Cholinergic neurons are very important cells in spinal cord injuries because of the deficits in motor, autonomic and sensory neurons. In this study, bone marrow stromal cells (BMSC) were evaluated as a source of cholinergic neurons in a rat model of contusive spinal cord injury. METHODS BMSC were isolated from adult rats and transdifferentiated into cholinergic neuronal cells. The BMSC were pre-induced with beta-mercaptoethanol (BME), while the induction was done with nerve growth factor (NGF). Neurofilament (NF)-68, -160 and -200 immunostaining was used for evaluating the transdifferentiation of BMSC into a neuronal phenotype. NeuroD expression, a marker for neuroblast differentiation, and Oct-4 expression, a marker for stemness, were evaluated by reverse transcriptase (RT)-polymerase chain reaction (PCR). Choline acetyl transferase (ChAT) immunoreactivity was used for assessing the cholinergic neuronal phenotype. Anti-microtubule-associated protein-2 (MAP-2) and anti-synapsin I antibodies were used as markers for the tendency for synptogenesis. Finally, the induced cells were transplanted into the contused spinal cord and locomotion was evaluated with the Basso-Beattie-Bresnahan (BBB) test. RESULTS At the induction stage, there was a decline in the expression of NF-68 associated with a sustained increase in the expression of NF-200, NF-160, ChAT and synapsin I, whereas MAP-2 expression was variable. Transplanted cells were detected 6 weeks after their injection intraspinally and were associated with functional recovery. CONCLUSIONS The transdifferentiation of BMSC into a cholinergic phenotype is feasible for replacement therapy in spinal cord injury.
Collapse
Affiliation(s)
- Majid Naghdi
- Department of Anatomical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
13
|
Ban DX, Kong XH, Feng SQ, Ning GZ, Chen JT, Guo SF. Intraspinal cord graft of autologous activated Schwann cells efficiently promotes axonal regeneration and functional recovery after rat's spinal cord injury. Brain Res 2008; 1256:149-61. [PMID: 19103176 DOI: 10.1016/j.brainres.2008.11.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/03/2023]
Abstract
Basic research in spinal cord injury (SCI) has made great strides in recent years, and some new insights and strategies have been applied in promoting effective axonal regrowth and sprouting. However, a relatively safe and efficient transplantation technique remains undetermined. This study, therefore, was aimed to address a question of how to graft Schwann cells to achieve the best possible therapeutic effects. To clarify the issue, the rats were subjected to spinal cord injury at T10. Autologous activated Schwann cells (AASCs) were obtained by prior ligation of saphenous nerve and subsequently isolated and purified in vitro and then grafted into spinal cord-injured rats via three different routes (group I: intravenous, group II: intrathecal and group III: intraspinal cord). Neurologic function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. We also evaluated the migration of the transplanted cells at 2 weeks after transplantation. Using biotinylated dextran amine (BDA) anterograde tracing, we demonstrated that more regenerative axons of corticospinal tract (CST) surrounding the injured cavity in group III than those in the other two groups, and we also confirmed it further by quantitative analysis. The microenvironment surrounding the injured spinal cord has been improved to the greatest extent in group III, as determined by immunohistological staining. Relatively complete myelin sheaths and more neurofilaments in axons were found in groups II and III than those in group I under electron microscopy. The results showed that intraspinal cord injection of AASCs promoted recovery of hindlimb locomotor function of injured rats more efficiently than the other grafting routes. In addition, intact myelin sheaths and sufficient neurofilaments in axons were not adequate for full functional recovery after SCI, suggesting that reestablishment of normal synaptic connection is indispensable. The findings in this study strongly suggest that transplantation of AASCs directly into the spinal cord may be one of the promising candidates for potential scaffold for injured spinal cord, and such strategy of transplantation of AASCs could be hopeful to treat patients with SCI.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Fan L, DU F, Cheng BC, Peng H, Liu SQ. Migration and distribution of bone marrow stromal cells in injured spinal cord with different transplantation techniques. Chin J Traumatol 2008; 11:94-7. [PMID: 18377712 DOI: 10.1016/s1008-1275(08)60020-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To study the regularity of migration and distribution of bone marrow stromal cells (BMSCs) in injured spinal cord with intradural space transplantation. METHODS Forty Wistar rats were randomly assigned into 4 groups. The spinal cord injury model was prepared according to the modified Allen method. BMSCs were labeled by CM-Dil. And 5.0 multiply 10(6) cells were transplanted by different channels including intraventricular injection (Group A),injured spinal cord intrathecally injection (Group B), remote intrathecally injection at the L(3)-L(4) level (Group C), and intravenous injection (Group D). Spinal cord was dissected at 24 hours, 1, 2, 3 and 4 weeks after transplantation. Sections of 4 micromolar were cut on a cryostat and observed under fluorescence microscopy. RESULTS No fluorescence was observed 24 hours after transplantation in spinal cord injury parenchyma except Group B. One week later, BMSCs in Groups A and C began to migrate to the injured parenchyma; 2-4 weeks later, BMSCs penetrated into the injured parenchyma except Group D. The number of BMSCs decreased at 3-4 weeks after transplantation. The number of cells in Group B decreased faster than that of Groups A and C. CONCLUSIONS BMSCs transplanted through intraventricular injection, injured spinal cord intrathecally injection and remote intrathecal injection could migrate to the injured parenchyma of spinal cord effectively. The number of BMSCs migrated into injured spinal cord parenchyma is rare by intravenous injection.
Collapse
Affiliation(s)
- Li Fan
- Orthopedic Department, Renming Hospital of Wuhan University, Wuhan 430060, China.
| | | | | | | | | |
Collapse
|
15
|
Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 2008; 60:263-76. [PMID: 18029050 DOI: 10.1016/j.addr.2007.08.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 08/22/2007] [Indexed: 01/09/2023]
Abstract
This review presents a summary of the various types of cellular therapy used to treat spinal cord injury. The inhibitory environment and loss of axonal connections after spinal cord injury pose many obstacles to regenerating the lost tissue. Cellular therapy provides a means of restoring the cells lost to the injury and could potentially promote functional recovery after such injuries. A wide range of cell types have been investigated for such uses and the advantages and disadvantages of each cell type are discussed along with the research studying each cell type. Additionally, methods of delivering cells to the injury site are evaluated. Based on the current research, suggestions are given for future investigation of cellular therapies for spinal cord regeneration.
Collapse
|