1
|
Liu T, Gu L, Mui A, Wu Z, Albadari N, Li W, Zhou M. An MDM2 degrader shows potent cytotoxicity to MDM2-overexpressing acute lymphoblastic leukemia cells with minimal toxicity to normal cells/tissues. Cancer Lett 2024; 598:217126. [PMID: 39053726 PMCID: PMC11515855 DOI: 10.1016/j.canlet.2024.217126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The MDM2 oncogene is amplified and/or overexpressed in various human cancers and elevated expression of MDM2 protein acts as a survival factor promoting cancer progression through both p53-dependent and -independent pathways. Here, we report a novel small-molecule chemical compound (MX69-102) that we identified to induce MDM2 protein degradation, resulting in reactivation of p53, inhibition of XIAP, and potent cell growth inhibition and apoptosis in MDM2-overexpressing acute lymphoblastic leukemia (ALL) in vitro and in vivo. We have previously identified a compound (MX69) that binds to the MDM2 C-terminal RING domain and induces MDM2 protein degradation. In the present study, we performed structural modifications of MX69 and selected analog MX69-102, showing increased MDM2-targeting activity. MX69-102 exhibited significantly enhanced inhibitory and apoptotic effects on a group of MDM2-overexpressing ALL cell lines in vitro with IC50 values of about 0.2 μM, representing an approximately 38-fold increase in activity compared to MX69. MX69-102 also showed effective inhibition on xenografted human MDM2-overexpressing ALL in SCID mice. Importantly, MX69-102 had minimal or no inhibitory effect on normal human hematopoiesis in vitro and was very well tolerated in vivo in animal models. Based on the strong inhibitory and apoptotic activity against MDM2-overexpressing ALL, along with minimal or no toxicity to normal cells/tissues, MX69-102 is a candidate for further development as a novel MDM2-targeted therapeutic drug for refractory/MDM2-overexpressing ALL.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Mui
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Stolte B, Iniguez AB, Dharia NV, Robichaud AL, Conway AS, Morgan AM, Alexe G, Schauer NJ, Liu X, Bird GH, Tsherniak A, Vazquez F, Buhrlage SJ, Walensky LD, Stegmaier K. Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma. J Exp Med 2018; 215:2137-2155. [PMID: 30045945 PMCID: PMC6080915 DOI: 10.1084/jem.20171066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/16/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Stolte et al. use genome-scale CRISPR-Cas9 screening technology to identify druggable targets for TP53 wild-type Ewing sarcoma and discover reactivation of p53 through inhibition of MDM2, MDM4, Wip1, or USP7 as therapeutic strategies for the disease. Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.
Collapse
Affiliation(s)
- Björn Stolte
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amanda Balboni Iniguez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ann M Morgan
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA.,Bioinformatics Graduate Program, Boston University, Boston, MA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Gregory H Bird
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Loren D Walensky
- Department of Pediatric Oncology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA .,The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
3
|
Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol 2017; 10:133. [PMID: 28673313 PMCID: PMC5496368 DOI: 10.1186/s13045-017-0500-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
The two murine double minute (MDM) family members MDM2 and MDMX are at the center of an intense clinical assessment as molecular target for the management of cancer. Indeed, the two proteins act as regulators of P53, a well-known key controller of the cell cycle regulation and cell proliferation that, when altered, plays a direct role on cancer development and progression. Several evidence demonstrated that functional aberrations of P53 in tumors are in most cases the consequence of alterations on the MDM2 and MDMX regulatory proteins, in particular in patients with hematological malignancies where TP53 shows a relatively low frequency of mutation while MDM2 and MDMX are frequently found amplified/overexpressed. The pharmacological targeting of these two P53-regulators in order to restore or increase P53 expression and activity represents therefore a strategy for cancer therapy. From the discovery of the Nutlins in 2004, several compounds have been developed and reported with the ability of targeting the P53-MDM2/X axis by inhibiting MDM2 and/or MDMX. From natural compounds up to small molecules and stapled peptides, these MDM2/X pharmacological inhibitors have been extensively studied, revealing different biological features and different rate of efficacy when tested in in vitro and in vivo experimental tumor models. The data/evidence coming from the preclinical experimentation have allowed the identification of the most promising molecules and the setting of clinical studies for their evaluation as monotherapy or in therapeutic combination with conventional chemotherapy or with innovative therapeutic protocols in different tumor settings. Preliminary results have been recently published reporting data about safety, tolerability, potential side effects, and efficacy of such therapeutic approaches. In this light, the aim of this review is to give an updated overview about the state of the art of the clinical evaluation of MDM2/X inhibitor compounds with a special attention to hematological malignancies and to the potential for the management of pediatric cancers.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy.
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Via Fossato di Mortara 66, 44121, Ferrara, Italy
| |
Collapse
|
4
|
Xu L, Wu H, Wu X, Li Y, He D. The expression pattern of Bcl11a, Mdm2
and Pten
genes in B-cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2017; 14:e124-e128. [DOI: 10.1111/ajco.12690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ling Xu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Hong Wu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Xiuli Wu
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| | - Yangqiu Li
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou PR China
| | - Dongmei He
- Institute of Hematology, Medical College; Jinan University; Guangzhou PR China
| |
Collapse
|
5
|
Jayaraman A, Jamil K, Khan HA. Identifying new targets in leukemogenesis using computational approaches. Saudi J Biol Sci 2015; 22:610-22. [PMID: 26288567 PMCID: PMC4537869 DOI: 10.1016/j.sjbs.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/04/2015] [Accepted: 01/12/2015] [Indexed: 02/08/2023] Open
Abstract
There is a need to identify novel targets in Acute Lymphoblastic Leukemia (ALL), a hematopoietic cancer affecting children, to improve our understanding of disease biology and that can be used for developing new therapeutics. Hence, the aim of our study was to find new genes as targets using in silico studies; for this we retrieved the top 10% overexpressed genes from Oncomine public domain microarray expression database; 530 overexpressed genes were short-listed from Oncomine database. Then, using prioritization tools such as ENDEAVOUR, DIR and TOPPGene online tools, we found fifty-four genes common to the three prioritization tools which formed our candidate leukemogenic genes for this study. As per the protocol we selected thirty training genes from PubMed. The prioritized and training genes were then used to construct STRING functional association network, which was further analyzed using cytoHubba hub analysis tool to investigate new genes which could form drug targets in leukemia. Analysis of the STRING protein network built from these prioritized and training genes led to identification of two hub genes, SMAD2 and CDK9, which were not implicated in leukemogenesis earlier. Filtering out from several hundred genes in the network we also found MEN1, HDAC1 and LCK genes, which re-emphasized the important role of these genes in leukemogenesis. This is the first report on these five additional signature genes in leukemogenesis. We propose these as new targets for developing novel therapeutics and also as biomarkers in leukemogenesis, which could be important for prognosis and diagnosis.
Collapse
Affiliation(s)
- Archana Jayaraman
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Secunderabad, Telangana, India
- Center for Biotechnology, Jawaharlal Nehru Technological University (JNTUH), Kukatpally, Hyderabad, Telangana, India
| | - Kaiser Jamil
- Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Secunderabad, Telangana, India
- Corresponding author. at: Centre for Biotechnology and Bioinformatics, School of Life Sciences, Jawaharlal Nehru Institute of Advanced Studies (JNIAS), Buddha Bhawan, 6th Floor, M.G. Road, Secunderabad 500003, Telangana, India. Tel.: + 91 9676872626; fax: +91 40 27541551.
| | - Haseeb A. Khan
- Department of Biochemistry, College of Sciences, Bldg. 5, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Hsp90 inhibitor BIIB021 enhances triptolide-induced apoptosis of human T-cell acute lymphoblastic leukemia cells in vitro mainly by disrupting p53-MDM2 balance. Acta Pharmacol Sin 2013; 34:1545-53. [PMID: 24241349 DOI: 10.1038/aps.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effects of BIIB021, an inhibitor of heat shock protein 90 (Hsp90) alone or in combination with triptolide (TPL) on T-cell acute lymphoblastic leukemia (T-ALL) and the mechanisms of action. METHODS Human T-ALL cells line Molt-4 was examined. The cell viability was measured using MTT assay. Apoptotic cells were studied with Hoechst 33258 staining. Cell apoptosis and cell cycle were analyzed using flow cytometry with Annexin V/PI staining and PI staining, respectively. The levels of multiple proteins, including Akt, p65, CDK4/6, p18, Bcl-2 family proteins, MDM2, and p53, were examined with Western blotting. The level of MDM2 mRNA was determined using RT-PCR. RESULTS Treatment of Molt-4 cells with BIIB021 (50-800 nmol/L) inhibited the cell growth in a dose-dependent manner (the IC50 value was 384.6 and 301.8 nmol/L, respectively, at 48 and 72 h). BIIB021 dose-dependently induced G0/G1 phase arrest, followed by apoptosis of Molt-4 cells. Furthermore, BIIB021 increased the expression of p18, decreased the expression of CDK4/6, and activated the caspase pathway in Molt-4 cells. Moreover, BIIB021 (50-400 nmol/L) dose-dependently decreased the phospho-MDM2 and total MDM2 protein levels, but slightly increased the phospho-p53 and total p53 protein levels, whereas TPL (5-40 nmol/L) dose-dependently enhanced p53 activation without affecting MDM2 levels. Co-treatment with BIIB021 and TPL showed synergic inhibition on Molt-4 cell growth. The co-treatment disrupted p53-MDM2 balance, thus markedly enhanced p53 activation. In addition, the co-treatment increased the expression of Bak and Bim, followed by increased activation of caspase-9. CONCLUSION The combination of BIIB021 and TPL may provide a novel strategy for treating T-ALL by overcoming multiple mechanisms of apoptosis resistance.
Collapse
|
7
|
Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev 2013; 27:297-304. [PMID: 24183816 DOI: 10.1016/j.blre.2013.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Collapse
|