1
|
Cuevas D, Amigo R, Agurto A, Heredia AA, Guzmán C, Recabal-Beyer A, González-Pecchi V, Caprile T, Haigh JJ, Farkas C. The Role of Epithelial-to-Mesenchymal Transition Transcription Factors (EMT-TFs) in Acute Myeloid Leukemia Progression. Biomedicines 2024; 12:1915. [PMID: 39200378 PMCID: PMC11351244 DOI: 10.3390/biomedicines12081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies. The MLL-AF9 fusion protein is often linked with therapy-resistant AML, highlighting the risk of relapse due to standard chemotherapeutic regimes. In this sense, factors like the ZEB, SNAI, and TWIST gene families, known for their roles in epithelial-mesenchymal transition (EMT) and cancer metastasis, also regulate hematopoiesis and may serve as effective therapeutic targets in AML. These genes contribute to cell proliferation, differentiation, and extramedullary hematopoiesis, suggesting new possibilities for treatment. Advancing our understanding of the molecular mechanisms that promote AML, especially how the bone marrow microenvironment affects invasion and drug resistance, is crucial. This comprehensive insight into the molecular and environmental interactions in AML emphasizes the need for ongoing research and more effective treatments.
Collapse
Affiliation(s)
- Diego Cuevas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Roberto Amigo
- Laboratorio de Regulación Transcripcional, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Adolfo Agurto
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Adan Andreu Heredia
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Catherine Guzmán
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Antonia Recabal-Beyer
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Valentina González-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Jody J. Haigh
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Carlos Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile; (D.C.); (A.A.); (A.A.H.); (C.G.); (V.G.-P.)
| |
Collapse
|
2
|
Sutandyo N, Kosasih AS, Sari RM, Setiawan L, Rinaldi I, Maskito VJ, Prayitno YH. Cytogenetic profile and risk of transformation to acute myeloid leukemia (AML) in Indonesian patients with myelodysplastic syndrome (MDS): a pilot study. F1000Res 2024; 13:167. [PMID: 39600341 PMCID: PMC11589415 DOI: 10.12688/f1000research.143170.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 01/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background Cytogenetics is a fundamental examination in the course and management of myelodysplastic syndrome (MDS) since it is widely used as a diagnostic and prognostic indicator for the disease. Some cytogenetic profiles are associated with a higher risk of acute myeloid leukemia (AML) transformation. This is the first study to evaluate the cytogenetic profile of Indonesian patients with MDS. Methods This prospective cohort study was conducted at the Cancer Center and several other referral hospitals. Patients with primary MDS aged >18 years were included in the study. Clinical examination, peripheral blood smear, and bone marrow aspiration were performed, followed by cytogenetic examination. The results were further categorized into revised international prognostic scoring system (IPSS-R) scores, and cytogenetic profiles were descriptively presented. Patients were followed up for one year to evaluate AML transformation. Results A total of 28 MDS patients, aged 66±12 years, were included in this study. The majority of the patients were male (n=17;60.7%), aged 65 years or above (n=19;67.9%), diagnosed with MDS-MLD (n=14;50%), and had an intermediate cytogenetic group (n=4;14.3%). The IPSS-R score was high in 6 (21.4%) patients and very high risk in 3 (10.7%) patients. During one-year follow-up, AML transformation occurred in 3 (10.7%) patients, and 10 (35.7%) patients ceased. Monosomy 7 was observed in 6 (21.4%) patients but in one metaphase each. Deletion of chromosome 5 (del(5)(q31)), del (16)(q21.1), and del (16)(q11.2) were found in a male patient with MDS-EB1. Conclusions Monosomy 7 and deletion of chromosome 5 have been identified in Indonesian patients with MDS. MDS-EB has the highest risk of AML transformation.
Collapse
Affiliation(s)
- Noorwati Sutandyo
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Agus Susanto Kosasih
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Resti Mulya Sari
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Lyana Setiawan
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Ikhwan Rinaldi
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Hematology and Medical Oncology Division, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Veronika Juanita Maskito
- Department of Integrated Laboratory, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Yuniar Harris Prayitno
- Medical Research Staff, Department of Hematology and Medical Oncology, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| |
Collapse
|
3
|
Maurya N, Shanmukhaiah C, Dhangar S, Madkaikar M, Vundinti BR. Comprehensive Study of Chromosomal Copy Number Variations and Genomic Variations Predicting Overall Survival in Myelodysplastic Syndromes. Oncology 2024; 102:897-906. [PMID: 38442690 DOI: 10.1159/000536446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2023] [Accepted: 01/13/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) is a heterogeneous disease characterized by cytopenia, marrow dysplasia and has a propensity to develop into acute myeloid leukemia. The disease progression is majorly affected by genetic defects. However, about 40-50% of patients with MDS present with a normal karyotype and develop different courses of disease. Hence, there remains a room to advance the biological understanding and find molecular prognostic markers for cytogenetically normal MDS. METHODS We performed a high-resolution CGH + SNP array along with next-generation sequencing (NGS) of 77 primary diagnosed MDS patients, and also they were clinically followed up. RESULTS Our study revealed 82 clinically significant genomic lesions (losses/gains) in 49% of MDS patients. CGH + SNP array reduced the proportion of normal karyotype by 30%. SNP array in combination with NGS confirmed the biallelic loss of function of the TP53 gene (2/6), which is a clinically relevant biomarker and new genetic-based MDS entity, i.e., MDS-biTP53, as per the new WHO classification 2022. Genomic region 2p22.3 presented with frequent lesions and also with a more hazard ratio (2.7, 95% CI: 0.37-21) when analyzed by Kaplan-Meier survival analysis. CONCLUSION CGH + SNP array changed the cytogenetic and IPSS-R risk group in 18% and 13% of patients, respectively, with an improved prediction of prognosis. This study emphasizes the cytogenetic heterogeneity of MDS and highlights that abnormality with chromosome 2 may have a diagnostic and prognostic impact.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | | | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
4
|
Wu Z, Young NS. Single-cell genomics in acquired bone marrow failure syndromes. Blood 2023; 142:1193-1207. [PMID: 37478398 PMCID: PMC10644099 DOI: 10.1182/blood.2022018581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023] Open
Abstract
Mechanistic studies of immune bone marrow failure are difficult because of the scarcity of residual cells, the involvement of multiple cell types, and the inherent complexities of hematopoiesis and immunity. Single-cell genomic technologies and bioinformatics allow extensive, multidimensional analysis of a very limited number of cells. We review emerging applications of single-cell techniques, and early results related to disease pathogenesis: effector and target cell populations and relationships, cell-autonomous and nonautonomous phenotypes in clonal hematopoiesis, transcript splicing, chromosomal abnormalities, and T-cell receptor usage and clonality. Dense and complex data from single-cell techniques provide insights into pathophysiology, natural history, and therapeutic drug effects.
Collapse
Affiliation(s)
- Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Alghanim HM, Eltawel M, Alhaidari AI, Alobaid MM, Moghairi AM, Sufiani F, Ahmad N. Multiple synchronous malignancies in an infant with concomitant homozygous BRCA2 and PMS2 mutations with Fanconi anemia phenotype. Pediatr Hematol Oncol 2023; 40:587-594. [PMID: 36731423 DOI: 10.1080/08880018.2022.2154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 02/04/2023]
Abstract
Hereditary cancer predisposition accounts for more than 10% of all cancers in pediatric age group and this is increasingly recognized as an important entity because of modern sequencing techniques. We report a rare association of two concurrent cancer predisposition syndromes, BRCA2 and PMS2, in a young child who presented with concurrent malignancies including Wilms tumor, myelodysplastic syndrome and an indeterminate brain lesion who succumbed to his disease. Multiple synchronous malignancies present difficult clinical and psycho-social challenges which need to be carefully addressed in the setting of a multi-disciplinary team approach.
Collapse
Affiliation(s)
- Hamad Mohammed Alghanim
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohamed Eltawel
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pediatric Hematology & Oncology, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulmajeed Ibrahim Alhaidari
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muhannad Mohammed Alobaid
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Areej Mofareh Moghairi
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad Sufiani
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naveed Ahmad
- Department of Pediatric Hematology Oncology, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pediatric Hematology & Oncology, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Chunduri NK, Barthel K, Storchova Z. Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice? Cells 2022; 11:1530. [PMID: 35563836 PMCID: PMC9101035 DOI: 10.3390/cells11091530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022] Open
Abstract
Aneuploidy is a cellular state with an unbalanced chromosome number that deviates from the usual euploid status. During evolution, elaborate cellular mechanisms have evolved to maintain the correct chromosome content over generations. The rare errors often lead to cell death, cell cycle arrest, or impaired proliferation. At the same time, aneuploidy can provide a growth advantage under selective conditions in a stressful, frequently changing environment. This is likely why aneuploidy is commonly found in cancer cells, where it correlates with malignancy, drug resistance, and poor prognosis. To understand this "aneuploidy paradox", model systems have been established and analyzed to investigate the consequences of aneuploidy. Most of the evidence to date has been based on models with chromosomes gains, but chromosome losses and recurrent monosomies can also be found in cancer. We summarize the current models of chromosome loss and our understanding of its consequences, particularly in comparison to chromosome gains.
Collapse
Affiliation(s)
- Narendra Kumar Chunduri
- University Medical Center Groningen, European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Karen Barthel
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Zuzana Storchova
- Department of molecular genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
7
|
Sutandyo N, Rinaldi I, Mulya Sari R, Susanto Kosasih A, Setiawan L, Winston K. Rare Case of Multiple Lineage Dysplasia Myelodysplastic Syndrome Presenting with Only Anemia: A Case Report. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Myelodysplastic syndrome (MDS) is a heterogeneous group of hematopoietic stem cell disorders which is characterized by ineffective hematopoiesis and risk of progression into acute myeloid leukemia. The diagnosis and classification of MDS are determined from the findings of dysplasia in one or more cell lineage and the percentage of blast cell on bone marrow examination. However, it should be noted that an abnormality in one marrow cell lineage does not necessarily translate to the corresponding clinical phenotype. Here, we present a case of MDS with multilineage dysplasia (MLD) (erythrocyte, leukocyte, and thrombocyte) from bone marrow aspiration, but with anemia as the sole clinical manifestation (single cytopenia).
CASE REPORT: A 78-year-old male patient came to our clinic on July 10, 2020, with chief complaint of worsening fatigue which started approximately 1 year before visit. His vital signs during the visit were stable and no other abnormalities observed other than pale conjunctivae. Complete blood count showed macrocytic anemia with no abnormalities in leukocyte count and thrombocyte count, which suggested a single cytopenia. Peripheral blood smear was negative for megaloblasts and hypersegmented neutrophils. The patient’s bone marrow examination showed MDS with MLD. This result was in contrast to complete blood count examination which only showed anemia (single cytopenia).
CONCLUSION: This case showed that there could be discrepancy between clinical manifestations of the cytopenia with bone marrow dysplasia, which highlighted the importance of conducting bone marrow examination to properly classify MDS type.
Collapse
|
8
|
Hypoplastic Myelodysplastic Syndromes: Just an Overlap Syndrome? Cancers (Basel) 2021; 13:cancers13010132. [PMID: 33401595 PMCID: PMC7795441 DOI: 10.3390/cancers13010132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Hypoplastic myelodysplastic syndromes (hMDS) represent a diagnostic conundrum. They share morphologic and clinical features of both MDS (dysplasia, genetic lesions and cytopenias) and aplastic anemia (AA; i.e., hypocellularity and autoimmunity) and are not comprised in the last WHO classification. In this review we recapitulate the main clinical, pathogenic and therapeutic aspects of hypo-MDS and discuss why they deserve to be distinguished from normo/hypercellular MDS and AA. We conclude that hMDS may present in two phenotypes: one more proinflammatory and autoimmune, more similar to AA, responding to immunosuppression; and one MDS-like dominated by genetic lesions, suppression of immune surveillance, and tumor escape, more prone to leukemic evolution. Abstract Myelodysplasias with hypocellular bone marrow (hMDS) represent about 10–15% of MDS and are defined by reduced bone marrow cellularity (i.e., <25% or an inappropriately reduced cellularity for their age in young patients). Their diagnosis is still an object of debate and has not been clearly established in the recent WHO classification. Clinical and morphological overlaps with both normo/hypercellular MDS and aplastic anemia include cytopenias, the presence of marrow hypocellularity and dysplasia, and cytogenetic and molecular alterations. Activation of the immune system against the hematopoietic precursors, typical of aplastic anemia, is reckoned even in hMDS and may account for the response to immunosuppressive treatment. Finally, the hMDS outcome seems more favorable than that of normo/hypercellular MDS patients. In this review, we analyze the available literature on hMDS, focusing on clinical, immunological, and molecular features. We show that hMDS pathogenesis and clinical presentation are peculiar, albeit in-between aplastic anemia (AA) and normo/hypercellular MDS. Two different hMDS phenotypes may be encountered: one featured by inflammation and immune activation, with increased cytotoxic T cells, increased T and B regulatory cells, and better response to immunosuppression; and the other, resembling MDS, where T and B regulatory/suppressor cells prevail, leading to genetic clonal selection and an increased risk of leukemic evolution. The identification of the prevailing hMDS phenotype might assist treatment choice, inform prognosis, and suggest personalized monitoring.
Collapse
|
9
|
Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells 2020; 9:E2512. [PMID: 33233642 PMCID: PMC7699752 DOI: 10.3390/cells9112512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular pathogenesis of myelodysplastic syndrome (MDS) is complex due to the high rate of genomic heterogeneity. Significant advances have been made in the last decade which elucidated the landscape of molecular alterations (cytogenetic abnormalities, gene mutations) in MDS. Seminal experimental studies have clarified the role of diverse gene mutations in the context of disease phenotypes, but the lack of faithful murine models and/or cell lines spontaneously carrying certain gene mutations have hampered the knowledge on how and why specific pathways are associated with MDS pathogenesis. Here, we summarize the genomics of MDS and provide an overview on the deregulation of pathways and the latest molecular targeted therapeutics.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| |
Collapse
|
10
|
|
11
|
Rai S, Espinoza JL, Morita Y, Tanaka H, Matsumura I. Severe Eosinophilia in Myelodysplastic Syndrome With a Defined and Rare Cytogenetic Abnormality. Front Immunol 2019; 9:3031. [PMID: 30687305 PMCID: PMC6334338 DOI: 10.3389/fimmu.2018.03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group clonal disorders of hematopoietic stem cells (HSC) characterized by ineffective hematopoiesis that lead to variable grades of impaired blood cell production. Chromosomal aberrations are often detected in MDS patients and thus cytogenetic analysis is useful for the diagnosis of these disorders. Common recurring chromosomal defects, such as the −5/5q- and −7/7q- are relatively well characterized cytogenetic abnormalities in MDS, however, the biological significance of uncommon cytogenetic alterations is unknown. We report here, two cases of peripheral blood and bone marrow hypereosinophilia in patients with MDS harboring the unbalanced translocation der(1;7)(q10;p10), a poorly characterized cytogenetic abnormality that is found in certain myeloid malignancies, including MDS. The patients reported here presented hypereosinophilia that was refractory to steroids and cytotoxic therapy, leading to severe target tissue damage that ultimately resulted in fatal end-organ failure. Potential roles of the der(1;7)(q10;p10) aberrations in the pathogenesis of aggressive eosinophilia and disease prognosis are discussed here.
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University Hospital, Osaka-Sayama, Japan
| |
Collapse
|
12
|
|
13
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
14
|
Fenech M, Nersesyan A, Knasmueller S. A systematic review of the association between occupational exposure to formaldehyde and effects on chromosomal DNA damage measured using the cytokinesis-block micronucleus assay in lymphocytes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:46-57. [DOI: 10.1016/j.mrrev.2016.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/09/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 11/28/2022]
|
15
|
Genetics factors associated with myelodysplastic syndromes. Blood Cells Mol Dis 2015; 55:76-81. [PMID: 25976472 DOI: 10.1016/j.bcmd.2015.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
The myelodysplastic syndromes (MDS) are a clinically and cytogenetically heterogeneous group of clonal diseases. Clonal chromosomal abnormalities are observed in 30-50% of patients with MDS. The deletions are among the most common alterations, and often involve the long arms of chromosomes 5, 7, 8, 13, and 20 and the short arms of chromosomes 12 and 17. The advent of new technologies for the detection of genetic abnormalities led to the description of a new set of recurrent mutations, leading to new insights into the pathophysiology of MDS. The recent recognition that genes involved in the regulation of histone function (EZH2, ASXL1, and UTX) and DNA methylation (DNMT3A, IDH1/IDH2, and TET2) are frequently mutated in MDS, has led to the proposal that there is an important link between genetic and epigenetic alterations in this disease. In fact, regulatory factors have also been considered as miR-143/miR-145, miR-146a, miR-125a and MiR-21. Somatic mutations may influence the clinical phenotype but are not included in current prognostic scoring systems. In recent years research has brought new insights into these diseases, but few of the findings are sufficiently robust to be incorporated into the clinical routine at this time. Thus, the aim of this study was to review the role of genetic factors involved in the diagnosis and development of the different phenotypes of MDS.
Collapse
|
16
|
Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol 2015; 95:3-15. [DOI: 10.1111/ejh.12515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Pellagatti
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Jacqueline Boultwood
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| |
Collapse
|
17
|
Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2014; 34:2413-25. [PMID: 24998854 DOI: 10.1038/onc.2014.196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023]
Abstract
The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. -7/7q-, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with -7/7q-; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as -7/7q-.
Collapse
Affiliation(s)
- H Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - A Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Padhi S, Varghese RG, Phansalkar MD, Sarangi R. Isolated deletion of the long arm of chromosome 20 [del(20q12)] in myelodysplastic syndrome: a case report and literature review. Singapore Med J 2013; 54:e185-9. [PMID: 24068064 DOI: 10.11622/smedj.2013119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Isolated deletion of the long arm of chromosome 20 [del(20q12)] is a rare abnormality in patients with de novo myelodysplastic syndrome. It is characterised by refractory thrombocytopenia, minimal haematological dysplasia and a lower risk for progression to acute myeloid leukaemia. Its distinction from chronic autoimmune thrombocytopenia, although clinically and morphologically difficult, is critical. We report a case of refractory cytopenia and unilineage dysplasia in an elderly woman with isolated del(20q12), identified via fluorescence in situ hybridisation analysis of her bone marrow. In order to avoid a misdiagnosis, we suggest that cytogenetic analysis be performed on all patients suspected to have myelodysplastic syndrome with predominant thrombocytopenic presentation.
Collapse
Affiliation(s)
- Somanath Padhi
- Pondicherry Institute of Medical Sciences, Ganapathychettykulam, Puducherry 605014, India.
| | | | | | | |
Collapse
|
19
|
Otrock ZK, Tiu RV, Maciejewski JP, Sekeres MA. The need for additional genetic markers for myelodysplastic syndrome stratification: what does the future hold for prognostication? Expert Rev Hematol 2013; 6:59-68. [PMID: 23373781 DOI: 10.1586/ehm.12.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal hematopoietic disorders. Metaphase cytogenetics has been the gold standard for genetic testing in MDS, but it detects clonal cytogenetic abnormalities in only 50% of cases. New karyotyping tests include FISH, array-based comparative genomic hybridization and single-nucleotide polymorphism arrays. These techniques have increased the detected genetic abnormalities in MDS, many of which confer prognostic significance to overall and leukemia-free survival. This has eventually increased our understanding of MDS genetics. With the help of new technologies, we anticipate that the existing prognostic scoring systems will incorporate mutational data into their parameters. This review discusses the progress in MDS diagnosis through the use of array-based technologies. The authors also discuss the recently investigated genetic mutations in MDS and revisit the MDS classification and prognostic scoring systems.
Collapse
Affiliation(s)
- Zaher K Otrock
- Leukemia Program, Cleveland Clinic Taussig Cancer Institute, OH 44195, USA
| | | | | | | |
Collapse
|
20
|
Li K, Yang M, Sablok G, Fan J, Zhou F. Screening features to improve the class prediction of acute myeloid leukemia and myelodysplastic syndrome. Gene 2013; 512:348-54. [DOI: 10.1016/j.gene.2012.09.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2012] [Accepted: 09/29/2012] [Indexed: 02/06/2023]
|
21
|
Kim BR, Kim JE, Woo KS, Kim KH, Kim JM, Lee S, Shaffer LG, Han JY. A case of near-triploidy in myelodysplastic syndrome with del(5q) combined with del(1p) and del(13q). Ann Lab Med 2012; 32:294-7. [PMID: 22779072 PMCID: PMC3384812 DOI: 10.3343/alm.2012.32.4.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2011] [Revised: 01/09/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
Numerical and structural chromosomal abnormalities are common in hematological malignancies. Near-triploidy (58-80 chromosomes) is a numerical abnormality observed in 3% of adult cases of acute lymphoblastic leukemia. Near-triploidy is rare in myeloid lineage hematologic malignancies and compared to near-triploidy in lymphoid malignancies, near-triploidy in myeloid malignancies is associated with poor outcomes. Few studies on near-triploidy in myelodysplastic syndrome (MDS) have been reported, and the clinicopathologic significance of this condition is still unclear. Here, we report a novel case of MDS with near-triploidy and multiple structural chromosomal abnormalities: del(5q) combined with del(1p) and del(13q). These abnormalities were detected by cytogenetic analysis with array comparative genomic hybridization (CGH). Our results suggest that array CGH can be a useful tool for detecting chromosomal abnormalities in patients with MDS.
Collapse
Affiliation(s)
- Bo-Ram Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ellis MH, Baraf L, Shaish A, Har-Zahav A, Harats D, Ashur-Fabian O. Alteration of lipids and the transcription of lipid-related genes in myelodysplastic syndromes via a TP53-related pathway. Exp Hematol 2012; 40:540-547.e1. [DOI: 10.1016/j.exphem.2012.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2011] [Revised: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 12/31/2022]
|