1
|
Šamec D, Jurčević Šangut I, Karalija E, Šarkanj B, Zelić B, Šalić A. 3'-8″- Biflavones: A Review of Their Structural Diversity, Natural Occurrence, Role in Plants, Extraction and Identification. Molecules 2024; 29:4634. [PMID: 39407564 PMCID: PMC11478198 DOI: 10.3390/molecules29194634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described to date, containing various subtypes that can be subdivided according to the position of their combinations and the nature of the subunits. The group in which two monomers are linked by a 3'-8″-C atom includes the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and several other compounds. 3'-8″-biflavones recently attracted much attention as potential molecules with biological activity such as antiviral and antimicrobial activity and as effective molecules for the treatment of neurodegenerative and metabolic diseases and in cancer therapies. With the growing interest in them as pharmacologically active molecules, there is also increasing interest in finding new natural sources of 3'-8″-biflavones and optimizing methods for their extraction and identification. Herein, we have summarized the available data on the structural diversity, natural occurrence, role in plants, extraction, and identification of 3'-8″-biflavones.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| | - Iva Jurčević Šangut
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.J.Š.); (B.Š.)
| | - Bruno Zelić
- University of Zagreb Faculty of Chemical Engineering and Technology, Department of Reaction Engineering and Catalysis, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Department of Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia
| | - Anita Šalić
- University of Zagreb Faculty of Chemical Engineering and Technology, Department of Thermodynamics, Mechanical Engineering and Energy, Marulićev trg 19, HR-10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Tepa AGN, Ambassa P, Ayong LS, Biapa Nya PC, Pieme CA. The Antiplasmodial Potential of Medicinal Plants Used in the Cameroonian Pharmacopoeia: An Updated Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4661753. [PMID: 36254175 PMCID: PMC9569203 DOI: 10.1155/2022/4661753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/05/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Malaria is a real public health problem. It is the leading cause of morbidity and mortality in the world. Research in herbal medicine has so far shown that the use of plants against malaria is not to be neglected. This review aims to highlight the antiplasmodial potential of Cameroonian plants. In order to achieve this objective, we conducted a bibliographic search in April 2022 using the PubMed search engine. This research included both the published and unpublished studies. A narrative approach was used to describe the antiplasmodial potential of the various species of plants investigated. Quantitative data were analyzed using R studio 4.1.1 software and random effects model was used to estimate the effect size. The research of the antiplasmodial activity of Cameroonian plants dates back to 2000. This area of research has since provided extensive data to indicate the antiplasmodial potential of several plants, most of which originate from the central region. Despite the heterogeneity observed between the different plant families studied in Cameroon for their in vitro antiplasmodial effect, there is strong evidence that 17 active compounds from these plants would be ideal candidates for the synthesis of new antimalarial drugs. The Dacryodes edulis species could be considered as the best natural alternative in the treatment of uncomplicated malaria according to its properties. It is clear that the traditional Cameroonian pharmacopoeia has many species that contain compounds with antiplasmodial activity. More studies need to be conducted to explore the multitude of unexplored plants that are used in traditional medicine. These studies should take into account the nature of the cell model used for cytotoxicity assessment.
Collapse
Affiliation(s)
- Arnaud Gabin N. Tepa
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, P.O. Box 1364, University of Yaoundé 1, Yaounde, Cameroon
| | - Panthaleon Ambassa
- Department of Organic Chemistry, Faculty of Sciences of the University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Lawrence S. Ayong
- Public Health and Epidemiology Unit, Centre Pasteur Du Cameroun, P. O. Box 1274, Yaoundé, Cameroon
| | | | - Constant Anatole Pieme
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, P.O. Box 1364, University of Yaoundé 1, Yaounde, Cameroon
| |
Collapse
|
3
|
Herlina T, Aloanis AA, Kurnia D, Harneti D, Maharani R, Supratman U. Prenylated Isoflavanones from the Stem Bark of Erythrina poeppigiana (Leguminosae) and its Antimalarial Properties. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During the course of our continuous search for novel antimalarial compounds derived from the Indonesian Erythrina plants, the methanol extract of the stem bark of Erythrina poeppigiana demonstrated significant antimalarial activity against Plasmodium falciparum parasites, in vitro. Bioassay-guided fractionation of the ethyl acetate extract resulted in the isolation of three known platyisoflavanone (1), erypogein D (2), and sophoraisoflavanone A (3). Compounds 1–3 showed strong antimalarial activity against 3D7 strain of P. falciparum with IC50 values of 0.52, 0.36, and 3.65μM, respectively. This result indicates that stem bark of E. poeppigiana is a promising source of antimalarial agents, and merits further investigation.
Collapse
Affiliation(s)
- Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| | - Anderson Arnold Aloanis
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, West Java, Indonesia
| |
Collapse
|
4
|
Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017; 22:E299. [PMID: 28212342 PMCID: PMC6155574 DOI: 10.3390/molecules22020299] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
Amentoflavone (C30H18O10) is a well-known biflavonoid occurring in many natural plants. This polyphenolic compound has been discovered to have some important bioactivities, including anti-inflammation, anti-oxidation, anti-diabetes, and anti-senescence effects on many important reactions in the cardiovascular and central nervous system, etc. Over 120 plants have been found to contain this bioactive component, such as Selaginellaceae, Cupressaceae, Euphorbiaceae, Podocarpaceae, and Calophyllaceae plant families. This review paper aims to profile amentoflavone on its plant sources, natural derivatives, pharmacology, and pharmacokinetics, and to highlight some existing issues and perspectives in the future.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Azebaze AGB, Teinkela JEM, Nguemfo EL, Valentin A, Dongmo AB, Vardamides JC. Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia. Afr Health Sci 2015; 15:835-40. [PMID: 26957972 DOI: 10.4314/ahs.v15i3.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium falciparum, one of the causative agents of malaria, has high adaptability through mutation and is resistant to many types of anti-malarial drugs. This study presents an in vitro assessment of the antiplasmodial activity of some phenolic compounds isolated from plants of the genus Allanblackia. METHODS Tests were performed on well plates filled with a fixed parasitized erythrocytes volume. Compounds to be tested were then added in wells. After incubation, tritiated hypoxanthine is added and the plates were returned to the incubator. After thawing, the nucleic acids are collected. Inhibitory Concentration 50 (IC50) was determined by linear interpolation. RESULTS From Allanblackia floribunda, have been isolated and characterized 1,7-dihydroxyxanthone 1, macluraxanthone 4, morelloflavone 9, Volkensiflavone 10 and morelloflavone 7-O-glucoside 11; from Allanblackia monticola, α-mangosine 2, rubraxanthone 3, allaxanthone C 5, norcowanine 6, tovophiline A 7, allaxanthone B 8 and from Allanblackia gabonensis, 1,7-dihydroxyxanthone 1. Six of them were evaluated for their antimalarial properties. The most active compound, macluraxanthone, presented a very interesting activity, with an IC50 of 0.36 and 0.27 µg/mL with the F32 and FcM29 strains respectively. CONCLUSION This work confirms that species of Allanblackia genus are medicinally important plants containing many biologically active compounds that can be used effectively as antiplasmodial.
Collapse
Affiliation(s)
| | - Jean Emmanuel Mbosso Teinkela
- Department of Chemistry, Faculty of Science, University of Douala, P.O. Box. 24157, Douala, Cameroon; Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box. 2701 Douala, Cameroon
| | - Edwige Laure Nguemfo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box. 2701 Douala, Cameroon
| | - Alexis Valentin
- Pharmacochimie des Substances Naturelles et Pharmacophores Redox, UMR 152 IRD-UPS, Université Paul Sabatier, Faculté des Sciences Pharmaceutiques, 35, Chemin des Maraîchers 31062 Toulouse Cedex 4, France
| | - Alain Bertrand Dongmo
- Department of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O. Box. 24157, Douala, Cameroon
| | | |
Collapse
|
6
|
Sagrera G, Bertucci A, Vazquez A, Seoane G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg Med Chem 2011; 19:3060-73. [DOI: 10.1016/j.bmc.2011.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/02/2011] [Accepted: 04/06/2011] [Indexed: 11/28/2022]
|
7
|
Dhooghe L, Maregesi S, Mincheva I, Ferreira D, Marais JPJ, Lemière F, Matheeussen A, Cos P, Maes L, Vlietinck A, Apers S, Pieters L. Antiplasmodial activity of (I-3,II-3)-biflavonoids and other constituents from Ormocarpum kirkii. PHYTOCHEMISTRY 2010; 71:785-791. [PMID: 20189612 DOI: 10.1016/j.phytochem.2010.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/27/2010] [Accepted: 02/05/2010] [Indexed: 05/28/2023]
Abstract
Preliminary screening of a series of medicinal plants, traditionally used in Tanzania, showed an IC(50) of 15.6-31.2 microg/ml for the crude extract of the root of Ormocarpum kirkii S. Moore (Papilionaceae) against Plasmodium falciparum. A bioguided isolation was performed in order to isolate the active constituents. Twelve constituents were obtained and identified using NMR and MS data, and optical rotation measurements. The compounds comprised seven (I-3,II-3)-biflavonoids, three (I-3,II-3)-bi-4-phenyldihydrocoumarins, an isoflavanone and a C-glucosylated flavone. Six compounds, liquiritigeninyl-(I-3,II-3)-naringenin, apigeninyl-(I-3,II-3)-naringenin, 7-O-beta-D-glucopyranosylchamaejasmin, (3R,4S,3''R,4''S)-5,5''-di-O-methyldiphysin, 7-O-beta-D-glucopyranosyldiphysin, and 4''-hydroxydiphysolone, were isolated in addition to six known components. The compounds were evaluated for antimicrobial activity in a broad screening panel, including P. falciparum. Seven of these showed antiplasmodial activity; isochamaejasmin being the most active with an IC(50) of 7.3+/-3.8 microM, but the selectivity was rather limited. Thus, these constituents may contribute, at least in part, to the antimalarial use of O. kirkii in traditional medicine.
Collapse
Affiliation(s)
- Liene Dhooghe
- Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bero J, Frédérich M, Quetin-Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.11.0001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
This review covers the compounds with antiplasmodial activity isolated from plants published from 2005 to the end of 2008, organized according to their phytochemical classes. Details are given for substances with IC50 values ≤ 11 μM.
Key findings
Malaria is a major parasitic disease in many tropical and subtropical regions and is responsible for more than 1 million deaths each year in Africa. The rapid spread of resistance encourages the search for new active compounds. Nature and particularly plants used in traditional medicine are a potential source of new antimalarial drugs as they contain molecules with a great variety of structures and pharmacological activities.
Summary
A large number of antimalarial compounds with a wide variety of structures have been isolated from plants and can play a role in the development of new antimalarial drugs. Ethnopharmacological approaches appear to be a promising way to find plant metabolites that could be used as templates for designing new derivatives with improved properties.
Collapse
Affiliation(s)
- Joanne Bero
- Université catholique de Louvain, Louvain Drug Research Institute, Analytical Chemistry, Drug Analysis and Pharmacognosy Unit, Brussels, Belgium
| | - Michel Frédérich
- University of Liège, Natural and Synthetic Drugs Research Center, Laboratory of Pharmacognosy, Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Analytical Chemistry, Drug Analysis and Pharmacognosy Unit, Brussels, Belgium
| |
Collapse
|
9
|
Menasria F, Azebaze AGB, Billard C, Faussat AM, Nkengfack AE, Meyer M, Kolb JP. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk Res 2008; 32:1914-26. [PMID: 18656257 DOI: 10.1016/j.leukres.2008.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 05/03/2008] [Accepted: 05/16/2008] [Indexed: 01/06/2023]
Abstract
A series of 10 heterocyclic compounds purified from Allanblackia were tested on two B cell lines, ESKOL and EHEB, and on cells from B-CLL patients. Several molecules inhibited the proliferation of both cell lines and promoted apoptosis of B-CLL cells through different mechanisms, some of them elicited a dissipation of the mitochondrial transmembrane potential, other triggered caspase-3 activation and cleavage of the inducible nitric oxide synthase. Blood mononuclear cells and B-lymphocytes from healthy donors appeared less sensitive than B-CLL cells. These results indicate that these molecules may be of interest in the development of new therapies for B-CLL.
Collapse
Affiliation(s)
- F Menasria
- UMRS 872 INSERM/Université Pierre et Marie Curie/Université Paris Descartes, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | |
Collapse
|