1
|
Rongala DS, Patil SM, Kunda NK. Oral inhalation of dacomitinib nanocarriers as a therapeutic strategy for non-small cell lung cancer. Nanomedicine (Lond) 2024; 19:1601-1613. [PMID: 39073842 PMCID: PMC11389738 DOI: 10.1080/17435889.2024.2370225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Background: Development of an inhalable nanoformulation of dacomitinib (DMB) encapsulated in poly-(lactic-co-glycolic acid) nanoparticles (NPs) to improve solubility, facilitate direct lung delivery and overcome the systemic adverse effects.Methods: DMB-loaded poly-(lactic-co-glycolic acid) NPs were prepared using solvent evaporation and characterized for particle size, polydispersity index and zeta-potential. The NPs were evaluated for in vitro drug release, aerosolization performance and in vitro efficacy studies.Results: The NPs showed excellent particle characteristics and displayed a cumulative release of ∼40% in 5 days. The NPs demonstrated a mass median aerodynamic diameter of ∼3 μm and fine particle fraction of ∼80%. Further, in vitro cell culture studies showed improved cytotoxic potential of DMB-loaded NPs compared with free drug.Conclusion: The study underscores the potential of DMB-loaded NPs as a viable approach for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Druva Sarika Rongala
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Jamaica, NY 11439, USA
| |
Collapse
|
2
|
Haider T, Soni V. “Response surface methodology and artificial neural network-based modeling and optimization of phosphatidylserine targeted nanocarriers for effective treatment of cancer: In vitro and in silico studies”. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Heredia NS, Vizuete K, Flores-Calero M, Pazmiño V. K, Pilaquinga F, Kumar B, Debut A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022; 17:e0264825. [PMID: 35271644 PMCID: PMC8912140 DOI: 10.1371/journal.pone.0264825] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Poly(lactic-co-glycolic acid) is one of the most used polymers for drug delivery systems (DDSs). It shows excellent biocompatibility, biodegradability, and allows spatio-temporal control of the release of a drug by altering its chemistry. In spite of this, few formulations have reached the market. To characterize and optimize the drug release process, mathematical models offer a good alternative as they allow interpreting and predicting experimental findings, saving time and money. However, there is no general model that describes all types of drug release of polymeric DDSs. This study aims to perform a statistical comparison of several mathematical models commonly used in order to find which of them best describes the drug release profile from PLGA particles synthesized by nanoprecipitation method. For this purpose, 40 datasets extracted from scientific articles published since 2016 were collected. Each set was fitted by the models: order zero to fifth order polynomials, Korsmeyer-Peppas, Weibull and Hyperbolic Tangent Function. Some data sets had few observations that do not allow to apply statistic test, thus bootstrap resampling technique was performed. Statistic evidence showed that Hyperbolic Tangent Function model is the one that best fit most of the data.
Collapse
Affiliation(s)
- Nathaly S. Heredia
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- * E-mail:
| | - Marco Flores-Calero
- Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Katherine Pazmiño V.
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Fernanda Pilaquinga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Chaibasa, Jharkhand, India
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
4
|
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of Olmesartan Medoxomil-Loaded Nanosponges for Hypertension and Lung Cancer Treatments. Polymers (Basel) 2021; 13:2272. [PMID: 34301030 PMCID: PMC8309359 DOI: 10.3390/polym13142272] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Olmesartan medoxomil (OLM) is one of the prominent antihypertensive drug that suffers from low aqueous solubility and dissolution rate leading to its low bioavailability. To improve the oral bioavailability of OLM, a delivery system based on ethylcellulose (EC, a biobased polymer) nanosponges (NSs) was developed and evaluated for cytotoxicity against the A549 lung cell lines and antihypertensive potential in a rat model. Four OLM-loaded NSs (ONS1-ONS4) were prepared and fully evaluated in terms of physicochemical properties. Among these formulations, ONS4 was regarded as the optimized formulation with particle size (487 nm), PDI (0.386), zeta potential (ζP = -18.1 mV), entrapment efficiency (EE = 91.2%) and drug loading (DL = 0.88%). In addition, a nanosized porous morphology was detected for this optimized system with NS surface area of about 63.512 m2/g, pore volume and pore radius Dv(r) of 0.149 cc/g and 15.274 Å, respectively, measured by nitrogen adsorption/desorption analysis. The observed morphology plus sustained release rate of OLM caused that the optimized formulation showed higher cytotoxicity against A549 lung cell lines in comparison to the pure OLM. Finally, this system (ONS4) reduced the systolic blood pressure (SBP) significantly (p < 0.01) as compared to control and pure OLM drug in spontaneously hypertensive rats. Overall, this study provides a scientific basis for future studies on the encapsulation efficiency of NSs as promising drug carriers for overcoming pharmacokinetic limitations.
Collapse
Affiliation(s)
- Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Amer S. Alali
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (B.K.A.); (A.A.); (A.S.A.); (M.M.A.)
| | - M. Ali Aboudzadeh
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, 64000 Pau, France
| |
Collapse
|
5
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: Development, optimization and in vitro studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Jadhav P, Gokarna V, Deshpande V, Vavia P. Bioavailability Enhancement of Olmesartan Medoxomil Using Hot-Melt Extrusion: In-Silico, In-Vitro, and In-Vivo Evaluation. AAPS PharmSciTech 2020; 21:254. [PMID: 32888102 DOI: 10.1208/s12249-020-01780-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Olmesartan medoxomil (OLM) an antihypertensive molecule with poor solubility and poor bioavailability (26% when taken orally) was selected as a model drug. Herein, rationale development of amorphous solid dispersion with hot-melt extrusion of poorly bioavailable OLM was carried out with the aid of quality by design (QbD), in-silico, in-vitro, and in-vivo evaluations. Polymer selection commenced with the selection of thermoplastic water-soluble polymers with the compatible processing temperature window as per the thermal behavior of OLM. Molecular dynamics (MD) simulations as well assisted in the selection of a carrier. Promising dissolution enhancement was observed with the help of Kollidon VA-64 (VA-64) as a carrier. Optimization of the formulation was executed using the QbD approach with design of experiment as a statistical optimization tool. Interactions between VA-64 and OLM on the atomic level were studied with the help of atomistic MD simulations. Characterization of the optimized extrudates were carried out with scanning electron microscopy, atomic force microscopy, differential scanning calorimetry, thermogravimetric analysis, Fourier transforms infrared spectroscopy, powder X-ray diffraction, in-vitro dissolution study, and in-vivo pharmacokinetic studies. Molecular-level mixing of OLM with VA-64 resulted into glass solution formation which rapidly dissolves (28 times in-vitro dissolution enhancement) in GI tract fluids and instantly gets absorbed into blood circulation. In-vivo pharmacokinetic studies performed in Sprague-Dawley rats reflected superior bioavailability (201.60%) with a significant increase in the Cmax with short Tmax through amorphization of OLM. The in-silico results were in agreement with the observed results of in-vitro dissolution studies and in-vivo pharmacokinetic study.
Collapse
|
7
|
Anwer MK, Mohammad M, Iqbal M, Ansari MN, Ezzeldin E, Fatima F, Alshahrani SM, Aldawsari MF, Alalaiwe A, Alzahrani AA, Aldayel AM. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J Thromb Thrombolysis 2020; 49:404-412. [DOI: 10.1007/s11239-019-02022-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Bialik M, Kuras M, Sobczak M, Oledzka E. Biodegradable synthetic polyesters in the technology of controlled dosage forms of antihypertensive drugs - the overview. Expert Opin Drug Deliv 2019; 16:953-967. [PMID: 31369295 DOI: 10.1080/17425247.2019.1651716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Arterial hypertension is a disease of civilization that requires long-term treatment. Recently, growing interest in natural and synthetic polymers as drug delivery vehicles in controlled release dosage forms for improving the efficacy of treatment has been observed. Areas covered: This review introduces biodegradable synthetic polyesters as macromolecular carriers of antihypertensive drugs. Although various, synthetic and natural polymer-drug conjugates and/or polymeric carriers of anticancer drugs are currently under preclinical and clinical studies, there is no such data for antihypertensive drugs. Therefore, it seems appropriate to use such materials for the treatment of hypertension. Expert opinion: There are currently only a few studies describing the use of synthetic polyesters in the arterial hypertension therapy. In order to the fact that there is a high demand for new, effective antihypertensive dosage forms, further studies for such drug carriers are certainly expected. Synthetic polyester carriers could improve the drug bioavailability and its pharmacokinetic properties by altering the pharmaceutical dosage form. This property is particularly useful for drugs with proven pharmacological action, but with limited application due to their inappropriate pharmacological properties. The development of new polymeric materials and technologies affords the opportunity to produce novel synthetic polyester DDSs.
Collapse
Affiliation(s)
- Maria Bialik
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division , Warsaw , Poland
| | - Marzena Kuras
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division , Warsaw , Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division , Warsaw , Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Faculty of Pharmacy with the Laboratory Medicine Division , Warsaw , Poland
| |
Collapse
|
9
|
Alshetaili AS, Ansari MJ, Anwer MK, Ganaie MA, Iqbal M, Alshahrani SM, Alalaiwe AS, Alsulays BB, Alshehri S, Sultan AS. Enhanced Oral Bioavailability of Ibrutinib Encapsulated Poly (Lactic-co- Glycolic Acid) Nanoparticles: Pharmacokinetic Evaluation in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412915666190314124932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The poor oral bioavailability of newly discovered chemical entities and marketed
formulations are usually related to poor aqueous solubility or poor permeability, leading to drug
failure in the development phases or therapeutic failure in a clinical setting. However, advancement in
drug formulations and delivery technologies have enabled scientists to improve the bioavailability of
formulations by enhancing solubility or permeability.
Objective:
This study reports the enhancement of the oral bioavailability of ibrutinib (IBR), a poorly
soluble anticancer drug in Wistar albino rats.
Methods:
IBR loaded nanoparticles were formulated through the nanoprecipitation method by utilizing
poly lactide-co-glycolide (PLGA) as a safe, biodegradable and biocompatible polymer, and poloxamer
or pluronic 127 as a stabilizer. Animals were administered with a dose of 10 mg/kg of IBR suspension
or an equivalent amount of IBR loaded nanoparticles. Plasma samples were extracted and analyzed by
state of the art UPLC-MS/MS technique. Pharmacokinetic (PK) parameters and bioavailability were
calculated by non-compartmental analysis.
Results:
There was an approximately 4.2-fold enhancement in the oral bioavailability of IBR-loaded
nanoparticles, as compared to the pure IBR suspension. The maximum plasma concentration (Cmax;
574.31 ± 56.20 Vs 146.34 ± 5.37 ng/mL) and exposure (AUC; 2291.65 ± 263.83 vs 544.75 ± 48.33 ng*
h/mL) of IBR loaded nanoparticles were significantly higher than those exhibited through pure IBR
suspension.
Conclusion:
The outcomes of the present study suggested the potential of PLGA nanoparticles in the
enhancement of bioavailability and the therapeutic efficacy of IBR.
Collapse
Affiliation(s)
- Abdullah S. Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Mohammad J. Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Md. K. Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Majid A. Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Saudi Arabia
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Ahmad S. Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Bader B. Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Saleh Sultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Dhillon P, Mirza MA, Anwer MK, Alshetaili AS, Alshahrani SM, Iqbal Z. Development and optimization of erythromycin-loaded lipid-based gel by Taguchi design: In vitro characterization and antimicrobial evaluation. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000217395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Anwer MK, Al-Shdefat R, Ezzeldin E, Alshahrani SM, Alshetaili AS, Iqbal M. Preparation, Evaluation and Bioavailability Studies of Eudragit Coated PLGA Nanoparticles for Sustained Release of Eluxadoline for the Treatment of Irritable Bowel Syndrome. Front Pharmacol 2017; 8:844. [PMID: 29209215 PMCID: PMC5702012 DOI: 10.3389/fphar.2017.00844] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
Eluxadoline is a newly approved orally administered drug used for the treatment of Irritable Bowel Syndrome with Diarrhea. It is reported as a poorly water-soluble drug due to which its dissolution rate and oral bioavailability are very poor. In this work, various plain PLGA nanoparticles (NPs) (F1–F4) were prepared and optimized based on particle size, PDI, zeta potential and percent drug entrapment efficiency (EE). The developed plain NPs (F1–F4) showed average particle size ranging from 260.19 to 279.76 nm with smooth surface and EE of 17.83–56.29%. The optimized plain NPs (F3) had particle size of 273.76 ± 7.25 nm with a low PDI value 0.327, zeta potential - 30.63 ± 2.47 mV and % EE of 56.29 ± 2.56%. The optimized F3 NPs was further submitted for enteric coating using Eudragit S100 polymer and evaluated in terms of particles characterization, in vitro release and pharmacokinetic studies in rats. The bioavailability of plain and coated nanaoparticles were enhanced by 6.8- and 18.5-fold, respectively, compared to normal suspension. These results revealed that the developed coated NPs could be used for its oral delivery for an effective treatment of Irritable Bowel Syndrome with Diarrhea.
Collapse
Affiliation(s)
- Md K Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ramadan Al-Shdefat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah S Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Bioavailability Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf B Biointerfaces 2017; 154:10-20. [DOI: 10.1016/j.colsurfb.2017.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/27/2023]
|
13
|
Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F. Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol 2016; 92:213-219. [PMID: 27381585 DOI: 10.1016/j.ijbiomac.2016.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|