1
|
Effect of the Enrichment in c-Kit Stem Cell Potential of Foetal Human Amniotic Fluid Cells: Characterization from Single Cell Analysis to the Secretome Content. Biomedicines 2023; 11:biomedicines11020430. [PMID: 36830966 PMCID: PMC9953071 DOI: 10.3390/biomedicines11020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Human amniotic fluid cells (hAFSCs) are a fascinating foetal cell-type that have important stem cell characteristics; however, they are a heterogeneous population that ranges from totally differentiated or progenitor cells to highly multipotent stem cells. There is no single approach to isolating the stem cell component, but the selection of a subpopulation of hAFSCs expressing c-Kit is widely employed, while a deep characterization of the two populations is still lacking. Here we performed single-cell and bulk RNAseq analysis to compare the gene expression profiles of adherent amniotic fluid cells and their subpopulation c-Kit+. Information deriving from this high throughput technology on the transcriptome was then confirmed for specific targets with protein expression experiments and functional analysis. In particular, transcriptome profiling identified changes in cellular distribution among the different clusters that correlated with significant differential expression in pathways related to stemness, proliferation, and cell cycle checkpoints. These differences were validated by RT-PCR, immunofluorescence, WB, and cell cycle assays. Interestingly, the two populations produced secretomes with different immune-modulating and pro-regenerative potentials. Indeed, the presence of TGFβ, HGF, IDO was higher in EVs deriving from c-Kit+ cells, unlike IL-6. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting c-Kit positive fractions with higher potential in regenerative medicine applications.
Collapse
|
2
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
3
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
4
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
5
|
Amiri F, Kiani AA, Bahadori M, Roudkenar MH. Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression. Mol Biol Rep 2021; 49:931-941. [PMID: 34741711 DOI: 10.1007/s11033-021-06912-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hematopoietic stem cell (HSC) transplantation is considered a possible treatment option capable of curing various diseases. The aim of this study was the co-culturing of mesenchymal stem cell (MSC) spheres with HSCs under hypoxic condition to enhance the proliferation, self-renewal, stemness, and homing capacities of HSCs. METHODS AND RESULTS HSCs were expanded after being subjected to different conditions including cytokines without feeder (Cyto), co-culturing with adherent MSCs (MSC), co-culturing with adherent MSCs + hypoxia (MSC + Hyp), co-culturing with MSCs spheres (Sph-MSC), co-culturing with MSCs spheres + hypoxia (Sph-MSC + Hyp), co-culturing with MSC spheres + cytokines (Sph-MSC + Cyto). After 10 days, total nucleated cell (TNC) and CD34+/CD38- cell counts, colony-forming unit assay (CFU), long-term culture initiating cell (LTC-IC), the expression of endothelial protein C receptor (EPCR), nucleostemin (NS), nuclear factor I/X (Nfix) CXCR4, and VLA-4 were evaluated. The TNC, CD34+/CD38- cell count, CFU, and LTC-IC were higher in the Sph-MSC + Hyp and Sph-MSC + Cyto groups as compared with those of the MSC + Hyp group (P < 0.001). The expanded HSCs co-cultured with MSC spheres in combination with hypoxia expressed more EPCR, CXCR4, VLA-4, NS, and Nfix mRNA. The protein expression was also more up-regulated in the Sph-MSC + Cyto and Sph-MSC + Hyp groups. CONCLUSION Co-culturing HSCs with MSC spheres under hypoxic condition not only leads to higher cellular yield but also increases the expression of self-renewal and homing genes. Therefore, we suggest this approach as a simple and non-expensive strategy that might improve the transplantation efficiency of HSCs.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Asghar Kiani
- Department of Hematology and Blood Transfusion, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehryar Habibi Roudkenar
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. .,Burn and Regenerative Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
McNerney MP, Doiron KE, Ng TL, Chang TZ, Silver PA. Theranostic cells: emerging clinical applications of synthetic biology. Nat Rev Genet 2021; 22:730-746. [PMID: 34234299 PMCID: PMC8261392 DOI: 10.1038/s41576-021-00383-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.
Collapse
Affiliation(s)
- Monica P McNerney
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kailyn E Doiron
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Timothy Z Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
7
|
Abdolmohammadi K, Mahmoudi T, Nojehdehi S, Tayebi L, Hashemi SM, Noorbakhsh F, Abdollahi A, Soleimani M, Nikbin B, Nicknam MH. Effect of Hypoxia Preconditioned Adipose-Derived Mesenchymal Stem Cell Conditioned Medium on Cerulein-Induced Acute Pancreatitis in Mice. Adv Pharm Bull 2020; 10:297-306. [PMID: 32373500 PMCID: PMC7191232 DOI: 10.34172/apb.2020.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Acute pancreatitis (AP) is an inflammatory disorder distinguished by tissue injury and inflammation of the pancreas. Using paracrine potential of mesenchymal stem cells (MSCs) provides a useful clinical approach in treating inflammatory diseases. We investigated the therapeutic effects of adipose-derived MSC conditioned medium (CM) and hypoxia preconditioned adipose-derived MSC conditioned medium (HCM) in cerulein-induced AP in mice. Methods: AP was induced in C57BL/6 mice by intraperitoneal injection of cerulein (75 μg/ kg/h × 7 times). One hour following the last injection of cerulein, mice were treated with intraperitoneal injection of CM and HCM (500 µL/mice/30 min × 3 times). Twelve hours following the treatment, serum levels of amylase and lipase were measured. In addition, pancreas pathological changes, immunohistochemical examinations for evaluation of IL-6 expression and pancreatic myeloperoxidase (MPO) enzyme activity were analyzed. Results: The in vitro results of the morphological, differentiation and immunophenotyping analyses confirmed that hypoxia preconditioned MSCs (HP-MSCs) conserve MSCs characteristics after preconditioning. However, HP-MSCs significantly expressed high mRNA level of hypoxia inducible factor 1-α and higher level of total protein. The in vivo findings of the current study showed that CM and HCM significantly reduced the amylase & lipase activity, the severity of pancreas tissue injury and the expression of IL-6 and MPO enzyme activity compared with the AP group. However, no significant difference between CM and HCM groups was demonstrated. Conclusion: Use of CM and HCM can attenuate cerulein-induced AP and decrease inflammation in the pancreas tissue in AP mice.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Mahmoudi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Seyed Mahmoud Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behrouz Nikbin
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kale VP. Application of "Primed" Mesenchymal Stromal Cells in Hematopoietic Stem Cell Transplantation: Current Status and Future Prospects. Stem Cells Dev 2019; 28:1473-1479. [PMID: 31559908 DOI: 10.1089/scd.2019.0149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative potential of mesenchymal stem/stromal cells (MSCs) has led to their application in various cellular therapies. Since in vivo these cells are present in very low numbers, they need expansion in culture to get clinically relevant numbers; however, such long-term ex vivo manipulation leads to loss of their regenerative capacity. Although use of naïve MSCs is still the most common approach used in various therapies, several strategies, both genetic and pharmacological, are being tried out to boost the regenerative capacity of in vitro expanded MSCs. Such manipulations are very commonly reported for regeneration of various tissues like bone, cartilage, kidney, pancreas, and others. Likewise, several efforts have been made to investigate priming of MSCs to enhance their immunoregulatory activity, but such efforts have not been made to the same extent for enhancing the efficacy of hematopoietic stem cell transplantation (HSCT). Development of such approaches for HSCT would not only be useful for enhancing the transplantation efficacy of cord blood cells, which are fewer in numbers, and aged HSCs, which could be functionally compromised, but also for genetically modified HSCs, which are likely to be both, fewer in number and functionally compromised. This review specifically deals with application of "primed" MSCs in the scenario of HSCT.
Collapse
Affiliation(s)
- Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International University, Pune, India
| |
Collapse
|
9
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
10
|
Dou L, Yan Q, Liang P, Zhou P, Zhang Y, Ji P. iTRAQ-Based Proteomic Analysis Exploring the Influence of Hypoxia on the Proteome of Dental Pulp Stem Cells under 3D Culture. Proteomics 2018; 18. [PMID: 29327447 DOI: 10.1002/pmic.201700215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Hypoxic preconditioning is commonly applied to enhance mesenchymal stem cells (MSCs) therapeutic effect before transplantation. Elucidating the effect of hypoxic preconditioning would be beneficial for improved application. However, the influence of hypoxia on dental tissue derived MSCs cultured in 3D was unknown. Thus, the present study is to investigate gene expression and proteome of dental pulp stem cells (DPSCs) after hypoxic preconditioning. DPSCs were isolated, cultured in a 3D system under the normoxic and hypoxic conditions. The gene expression was examined with reverse transcription polymerase chain reaction, and the proteome was analyzed using iTRAQ-based mass spectrometry. The expressions of HIF-1α, VEGFA, KDR at mRNA level was upregulated while BMP-2 was downregulated. Two thousand one hundred and fifteen proteins were identified and 57 proteins exhibited significant differences after hypoxic preconditioning (30 up-regulated, 27 down-regulated). Bioinformatic analysis revealed the majority of up-regulated proteins are involved in cellular process, angiogenesis, protein binding and transport, regulation of response to stimulus, metabolic processes, and immune response. Increased IL-6 and decreased TGF-1β protein expression under hypoxic condition were verified by ELISA. Hypoxic preconditioning partly affected the gene and protein expression in DPSCs under 3D culture and may enhance the efficacy of MSCs transplantation.
Collapse
Affiliation(s)
- Lei Dou
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Qifang Yan
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Panpan Liang
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Pengfei Zhou
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Yan Zhang
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Ping Ji
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| |
Collapse
|
11
|
Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2 α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model. Stem Cells Int 2017; 2017:3794817. [PMID: 29238372 PMCID: PMC5697133 DOI: 10.1155/2017/3794817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α) in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P < 0.05). rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P < 0.05). RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P < 0.05). Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.
Collapse
|
12
|
Pei M. Environmental preconditioning rejuvenates adult stem cells' proliferation and chondrogenic potential. Biomaterials 2016; 117:10-23. [PMID: 27923196 DOI: 10.1016/j.biomaterials.2016.11.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
Adult stem cells are a promising cell source for cartilage regeneration. Unfortunately, due to donor age and ex vivo expansion, stem cell senescence becomes a huge hurdle for these cells to be used clinically. Increasing evidence indicates that environmental preconditioning is a powerful approach in promoting stem cells' ability to resist a harsh environment post-engraftment, such as hypoxia and inflammation. However, few reports organize and evaluate the literature regarding the rejuvenation effect of environmental preconditioning on stem cell proliferation and chondrogenic differentiation capacity, which are important variables for stem cell based tissue regeneration. This report aims to identify several critical environmental factors such as oxygen concentration, growth factors, and extracellular matrix and to discuss their preconditioning influence on stem cells' rejuvenation including proliferation and chondrogenic potential as well as underlying molecular mechanisms. We believe that environmental preconditioning based rejuvenation is a simpler and safer strategy to program pre-engraftment stem cells for better survival and enhanced proliferation and differentiation capacity without the undesired effects of some treatments, such as genetic manipulation.
Collapse
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Exercise Physiology, West Virginia University, Morgantown, WV, USA; Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
13
|
Rouault-Pierre K, Hamilton A, Bonnet D. Effect of hypoxia-inducible factors in normal and leukemic stem cell regulation and their potential therapeutic impact. Expert Opin Biol Ther 2016; 16:463-76. [PMID: 26679619 DOI: 10.1517/14712598.2016.1133582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Hypoxia inducible factors (HIF-1α and HIF-2α) are the main mediators of hypoxic responses that operate in both normal and pathological conditions. Recent evidence indicates that HIF-1α and HIF-2α could have overlapping, unique and even sometimes opposing activities in both normal physiology and disease. Despite an increase in our understanding of the different pathways regulated by HIF-1α and HIF-2α, the role played by each factor in HSC maintenance and leukemogenesis is still controversial. AREAS COVERED This review summarizes our current understanding of HIF-1α and HIF-2α activities and discusses the implications and challenges of using HIF inhibitors therapeutically in blood malignancies. EXPERT OPINION As HIF inhibitors are currently under clinical evaluation in different cancers, including hematological malignancies, a more thorough understanding of the unique roles performed by HIF-1α and HIF-2α in human neoplasia is warranted.
Collapse
Affiliation(s)
- Kevin Rouault-Pierre
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Ashley Hamilton
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| | - Dominique Bonnet
- a Haematopoietic Stem Cell Laboratory , The Francis Crick Institute , London , UK
| |
Collapse
|
14
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
15
|
Moirangthem RD, Singh S, Adsul A, Jalnapurkar S, Limaye L, Kale VP. Hypoxic niche-mediated regeneration of hematopoiesis in the engraftment window is dominantly affected by oxygen tension in the milieu. Stem Cells Dev 2015; 24:2423-36. [PMID: 26107807 PMCID: PMC4599134 DOI: 10.1089/scd.2015.0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The bone marrow (BM) microenvironment or the hematopoietic stem cell (HSC) niche is normally hypoxic, which maintains HSC quiescence. Paradoxically, transplanted HSCs rapidly proliferate in this niche. Pretransplant myelosuppression results in a substantial rise in oxygen levels in the marrow microenvironment due to reduced cellularity and consequent low oxygen consumption. Therefore, it may be construed that the rapid proliferation of the engrafted HSCs in the BM niche is facilitated by the transiently elevated oxygen tension in this milieu during the “engraftment window.” To determine whether oxygen tension dominantly affects the regeneration of hematopoiesis in the BM niche, we created an “oxygen-independent hypoxic niche” by treating BM-derived mesenchymal stromal cells (BMSCs) with a hypoxia-mimetic compound, cobalt chloride (CoCl2) and cocultured them with BM-derived HSC-enriched cells under normoxic conditions (HSCs; CoCl2-cocultures). Cocultures with untreated BMSCs incubated under normoxia (control- cocultures) or hypoxia (1% O2; hypoxic-cocultures) were used as comparators. Biochemical analyses showed that though, both CoCl2 and hypoxia evoked comparable signals in the BMSCs, the regeneration of hematopoiesis in their respective cocultures was radically different. The CoCl2-BMSCs supported robust hematopoiesis, while the hypoxic-BMSCs exerted strong inhibition. The hematopoiesis-supportive ability of CoCl2-BMSCs was abrogated if the CoCl2-cocultures were incubated under hypoxia, demonstrating that the prevalent oxygen tension in the milieu dominantly affects the outcome of the HSC-BM niche interactions. Our data suggest that pharmacologically delaying the reestablishment of hypoxia in the BM may boost post-transplant regeneration of hematopoiesis.
Collapse
Affiliation(s)
| | - Shweta Singh
- Stem Cell Lab, National Centre for Cell Science , Pune, India
| | - Ashwini Adsul
- Stem Cell Lab, National Centre for Cell Science , Pune, India
| | | | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science , Pune, India
| | | |
Collapse
|
16
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|