1
|
Chotimol P, Lansdowne W, Machin D, Binas K, Angelini GD, Gibbison B. Hypobaric type oxygenators - physics and physiology. Perfusion 2024:2676591241232824. [PMID: 38323543 DOI: 10.1177/02676591241232824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Brain injury is still a serious complication after cardiac surgery. Gaseous microemboli (GME) are known to contribute to both short and longer-term brain injury after cardiac surgery. Hypobaric and novel dual-chamber oxygenators use the physical behaviors and properties of gases to reduce GME. The aim of this review was to present the basic physics of the gases, the mechanism in which the hypobaric and dual-chamber oxygenators reduce GME, their technical performance, the preclinical studies, and future directions. The gas laws are reviewed as an aid to understanding the mechanisms of action of oxygenators. Hypobaric-type oxygenators employ a high oxygen, no nitrogen environment creating a steep concentration gradient of nitrogen out of the blood and into the oxygenator, reducing the risk of GMEs forming. Adequately powered clinical studies have never been carried out with a hypobaric or dual-chamber oxygenator. These are required before such technology can be recommended for widespread clinical use.
Collapse
Affiliation(s)
- Phatiwat Chotimol
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - William Lansdowne
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - David Machin
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kressle Binas
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Gianni D Angelini
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Ben Gibbison
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Anaesthesia,Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| |
Collapse
|
2
|
Hyperoxia During Cardiopulmonary Bypass Is Associated With Mortality in Infants Undergoing Cardiac Surgery. Pediatr Crit Care Med 2021; 22:445-453. [PMID: 33443979 DOI: 10.1097/pcc.0000000000002661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients undergoing cardiac surgery using cardiopulmonary bypass have variable degrees of blood oxygen tension during surgery. Hyperoxia has been associated with adverse outcomes in critical illness. Data are not available regarding the association of hyperoxia and outcomes in infants undergoing cardiopulmonary bypass. We hypothesize that among infants undergoing cardiac surgery, hyperoxia during cardiopulmonary bypass is associated with greater odds of morbidity and mortality. DESIGN Retrospective study. SETTING Single center at an academic tertiary children's hospital. PATIENTS All infants (< 1 yr) undergoing cardiopulmonary bypass between January 1, 2015, and December 31, 2017, excluding two patients who were initiated on extracorporeal membrane oxygenation in the operating room. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS The study included 469 infants with a median age of 97 days (interquartile range, 14-179 d), weight 4.9 kg (interquartile range, 3.4-6.4 kg), and cardiopulmonary bypass time 128 minutes (interquartile range, 91-185 min). A Pao2 of 313 mm Hg (hyperoxia) on cardiopulmonary bypass had highest sensitivity with specificity greater than 50% for association with operative mortality. Approximately, half of the population (237/469) had hyperoxia on cardiopulmonary bypass. Infants with hyperoxia were more likely to have acute kidney injury, prolonged postoperative length of stay, and mortality. They were younger, weighed less, had longer cardiopulmonary bypass times, and had higher Society of Thoracic Surgeons and the European Association for Cardio-Thoracic Surgery mortality scores. There was no difference in sex, race, preoperative creatinine, single ventricle physiology, or presence of genetic syndrome. On multivariable analysis, hyperoxia was associated with greater odds of mortality (odds ratio, 4.3; 95% CI, 1.4-13.2) but failed to identify an association with acute kidney injury or prolonged postoperative length of stay. Hyperoxia was associated with greater odds of mortality in subgroup analysis of neonatal patients. CONCLUSIONS Hyperoxia occurred in a substantial portion of infants undergoing cardiopulmonary bypass for cardiac surgery. Hyperoxia during cardiopulmonary bypass was an independent risk factor for mortality and may be a modifiable risk factor. Furthermore, hyperoxia during cardiopulmonary bypass was associated with four-fold greater odds of mortality within 30 days of surgery. Hyperoxia failed to identify an association with development of acute kidney injury or prolonged postoperative length of stay when controlling for covariables. Validation of our data among other populations is necessary to better understand and elucidate potential mechanisms underlying the association between excess oxygen delivery during cardiopulmonary bypass and outcome.
Collapse
|
3
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
4
|
Abou-Arab O, Huette P, Guilbart M, Dupont H, Guinot PG. Hyperoxia during cardiopulmonary bypass does not increase respiratory or neurological complications: a post hoc analysis of the CARDIOX study. Br J Anaesth 2020; 125:e400-e401. [PMID: 32703547 DOI: 10.1016/j.bja.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Osama Abou-Arab
- Anesthesia and Critical Care Department, Amiens Hospital University, Amiens, France
| | - Pierre Huette
- Anesthesia and Critical Care Department, Amiens Hospital University, Amiens, France.
| | - Mathieu Guilbart
- Anesthesia and Critical Care Department, Amiens Hospital University, Amiens, France
| | - Hervé Dupont
- Anesthesia and Critical Care Department, Amiens Hospital University, Amiens, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Critical Care Medicine, Dijon University Hospital, Dijon, France
| |
Collapse
|
5
|
The impact of hyperoxia on outcomes after cardiac surgery: a systematic review and narrative synthesis. Can J Anaesth 2018; 65:923-935. [DOI: 10.1007/s12630-018-1143-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
|
6
|
Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits. Redox Biol 2017; 13:235-243. [PMID: 28595161 PMCID: PMC5460745 DOI: 10.1016/j.redox.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.
Collapse
|
7
|
Gao ZX, Rao J, Li YH. Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation. Neural Regen Res 2017; 12:329-336. [PMID: 28400818 PMCID: PMC5361520 DOI: 10.4103/1673-5374.200816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems.
Collapse
Affiliation(s)
- Zhi-Xin Gao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jin Rao
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
8
|
Abstract
In recent years, hyperbaric oxygen (HBO) has been used in the treatment of a lot of diseases such as decompression sickness, arterial gas embolism, carbon dioxide poisoning, soft tissue infection, refractory osteomyelitis, and problematic wound, but little is known about its application in liver transplantation. Although several studies have been conducted to investigate the protective effects of HBO on liver transplantation and liver preservation, there are still some controversies on this issue, especially its immunomodulatory effect. In this short review, we briefly summarize the findings supporting the application of HBO during liver transplantation (including donors and recipients).
Collapse
Affiliation(s)
- Hu Lv
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Xue-Jun Sun
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Yu QH, Zhang PX, Liu Y, Liu W, Yin N. Hyperbaric oxygen preconditioning protects the lung against acute pancreatitis induced injury via attenuating inflammation and oxidative stress in a nitric oxide dependent manner. Biochem Biophys Res Commun 2016; 478:93-100. [PMID: 27453338 DOI: 10.1016/j.bbrc.2016.07.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022]
Abstract
This study aimed to investigate the protective effects of hyperbaric oxygen preconditioning (HBO-PC) on acute pancreatitis AP associated acute lung injury (ALI) and the potential mechanisms. Rats were randomly divided into sham group, AP group, HBO-PC + AP group and HBO-PC + L-NAME group. Rats in HBO-PC + AP group received HBO-PC once daily for 3 days, and AP was introduced 24 h after last HBO-PC. In HBO-PC + L-NAME group, L-NAME (40 mg/kg) was intraperitoneally injected before each HBO-PC. At 24 h after AP, the blood lipase and amylase activities were measured; the lung and pancreas were harvested for pathological examination; the bronchoalveolar lavage fluid was collected for the detection of lactate dehydrogenase (LDH) and proteins; inflammatory factors, superoxide dismutase (SOD) activity and malonaldehyde content were measured in the lung and blood; the Nrf2, SOD-1 and haem oxygenase-1 (HO-1) protein expression was measured in the lung. The lung nitric oxide (NO) and NO synthase activity increased significantly after HBO-PC. HBO-PC was able to reduce blood lipase and amylase activities, improve lung and pancreatic pathology, decrease LDH and proteins in BALF, inhibit the production of inflammatory factors, reduce malonaldehyde content and increase SOD activity in the lung and blood as well as increase protein expression of Nrf2, SOD-1 and HO-1 in the lung. However, L-NAME before HBO-PC significantly attenuated protective effects of HBO-PC. HBO-PC is able to protect the lung against AP induced injury by attenuating inflammation and oxidative stress in the lung via a NO dependent manner.
Collapse
Affiliation(s)
- Qi-Hong Yu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, PR China
| | - Pei-Xi Zhang
- Department of Cardiothoracic Surgery, The First Hospital of Jining City, No 6, Jiankang Road, Jining City, Shandong, 272011, PR China
| | - Ying Liu
- Department of Pathology, Yantaishan Hospital, No 91, Jiefang Road, Zhigang District, Yantai City, Shandong, 264001, PR China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, The Second Military Medical University, Shanghai, PR China.
| | - Na Yin
- Department of Anesthesiology & Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Gamdzyk M, Małek M, Bratek E, Koks A, Kaminski K, Ziembowicz A, Salinska E. Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Res 2016; 1648:257-265. [PMID: 27431936 DOI: 10.1016/j.brainres.2016.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Ischemic preconditioning with sublethal stress triggers defensive mechanisms against ischemic brain damage; however, such manipulations are potentially dangerous and, therefore, safe stimuli have been sought. Hyperoxia preconditioning by administration of hyperbaric (HBO) or normobaric oxygen (NBO) may have neuroprotective potential. The aim of this study was to determine whether preconditioning with HBO and air (HBA) applied at 2.5 absolute pressure (ATA) or NBO preconditioning induces ischemic tolerance in the brain of gerbils subjected to 3min transient cerebral ischemia. Neuronal cell survival, changes in brain temperature, the generation of factors involved in neurodegeneration and basic behavior in nest building were all tested. Hyperoxic preconditioning prevented ischemia-induced neuronal cell loss, reduced the number of TUNEL positive cells in the CA1 region of the hippocampus and improved the nest building process compared to untreated ischemic animals. Preconditioning also suppressed the production of reactive oxygen species and increased Bax expression normally observed after an ischemic episode. Only HBO preconditioning inhibited ischemia-evoked increases in brain temperature. Our results show that hyperoxic preconditioning results in induction of ischemic tolerance and prevents ischemia-induced neuronal damage in the gerbil brain. Pressurized air preconditioning was as effective as HBO or NBO preconditioning in providing neuroprotection. The observed neuroprotection probably results from mild oxidative stress evoked by increased brain tissue oxidation and activation of antioxidant and antiapoptotic defenses.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Małek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Koks
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Kaminski
- Department of Obstetrics and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Clarke RH, Moosa S, Anzivino M, Wang Y, Floyd DH, Purow BW, Lee KS. Sustained radiosensitization of hypoxic glioma cells after oxygen pretreatment in an animal model of glioblastoma and in vitro models of tumor hypoxia. PLoS One 2014; 9:e111199. [PMID: 25350400 PMCID: PMC4211739 DOI: 10.1371/journal.pone.0111199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM.
Collapse
Affiliation(s)
- Ryon H. Clarke
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Shayan Moosa
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Matthew Anzivino
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Yi Wang
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Desiree Hunt Floyd
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Benjamin W. Purow
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Division of Neuro-Oncology, Departments of Neurology, Microbiology, and Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Kevin S. Lee
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- School of Medicine, University of Virginia Health System, Charlottesville, VA, United States of America
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
12
|
Duan S, Shao G, Yu L, Ren C. Angiogenesis contributes to the neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Int J Neurosci 2014; 125:625-34. [PMID: 25171223 DOI: 10.3109/00207454.2014.956101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. Previous studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) can induce neuroprotection against focal cerebral ischemia. However, the underlying mechanisms are still not fully understood, and the optimal regimen for preconditioning must be confirmed. In the present study, we designed eight preconditioning regimens and compared their neuroprotective effects. Hyperbaric oxygen preconditioning every other day for there sessions exhibited the best neuroprotective effect; the infarct volume was reduced by almost 50% at 48 h after middle cerebral artery occlusion. We also found that HBO-PC significantly increased the microvessel density and the CD31-positive cells in the penumbra at 72 h after stroke. These results indicate that angiogenesis is involved in the neuroprotection induced by HBO-PC. Moreover, we explored the roles of HIF-1α and angiogenic factors in the angiogenesis process induced by HBO-PC. The results from western blotting demonstrated that protein expression of Ang-2 in the HBO-PC group was significantly increased. In conclusion, HBO-PC reduced brain injury and improved neurological function after focal cerebral ischemia, as partly mediated by the increased microvessel density in the penumbra, and this effect may result from the upregulation of Ang-2.
Collapse
Affiliation(s)
- Shanshan Duan
- 1Department of Neurology, Shanghai No. 5 Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X. Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 2014; 115:246-69. [PMID: 24407111 PMCID: PMC3969942 DOI: 10.1016/j.pneurobio.2013.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
Abstract
Stroke is deemed a worldwide leading cause of neurological disability and death, however, there is currently no promising pharmacotherapy for acute ischemic stroke aside from intravenous or intra-arterial thrombolysis. Yet because of the narrow therapeutic time window involved, thrombolytic application is very restricted in clinical settings. Accumulating data suggest that non-pharmaceutical therapies for stroke might provide new opportunities for stroke treatment. Here we review recent research progress in the mechanisms and clinical implications of non-pharmaceutical therapies, mainly including neuroprotective approaches such as hypothermia, ischemic/hypoxic conditioning, acupuncture, medical gases and transcranial laser therapy. In addition, we briefly summarize mechanical endovascular recanalization devices and recovery devices for the treatment of the chronic phase of stroke and discuss the relative merits of these devices.
Collapse
Affiliation(s)
- Fan Chen
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Zhifeng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Yuming Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China
| | - Taylor Hinchliffe
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridian, Shanghai 201203, China
| | - Ying Xia
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, Beijing 100053, China.
| |
Collapse
|