1
|
Shi J, Liu Y, Jiao S, Wu T, Wang A, Wang W, Xie L, Liu Y, Wang H. Synthesis, structure, spectra, cytotoxicity and photo induced NO release of four isomeric nitrosylruthenium complexes. Nitric Oxide 2024; 152:58-68. [PMID: 39313019 DOI: 10.1016/j.niox.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Four isomeric nitrosyl ruthenium complexes [RuCl(2mqn)(Val)(NO)] (1-4) were prepared (2mqn, 2-methyl-8-hydroxyquinoline; Val, l-valine) and characterized by 1H NMR, 13C NMR, absorption spectrum, electrospray ionization mass spectrometry, and X-ray crystal diffraction. Time-resolved FT-IR and fluorescence spectroscopy were used to monitor photo-induced NO release in solution, while NO released in living cells was imaged using a selective fluorescent probe. The isomeric complexes showed different levels of cytotoxicity against HeLa cells, and slightly photo-enhanced anti-proliferative activity was observed. The isomeric complexes 1-4 inhibited the growth of HeLa cells by inducing apoptosis and promoted cell cycle arrest in the S phase. Furthermore, they showed relatively lower cytotoxicity against the human liver cell line HL-7702. The different spatial configurations of the complexes is close related with the selective binding of the isomeric complexes with serum albumin, which provide insight into the potential applications of the nitrosyl ruthenium complexes.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China; Fenyang College of Shanxi Medical University, Fenyang, 032200, China
| | - Yuhua Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Shuxiang Jiao
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Tao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Leilei Xie
- Experimental Management Center, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhong Liu
- Techinical Institute of Physics & Chemistry, CAS, Beijing, 100190, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
2
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
3
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Lu P, Chen J, Zhang C, Saur D, Baer CE, Lifshitz LM, Fogarty KE, ZhuGe R. Oscillating calcium signals in smooth muscle cells underlie the persistent basal tone of internal anal sphincter. J Cell Physiol 2021; 236:5937-5952. [PMID: 33452672 PMCID: PMC8132622 DOI: 10.1002/jcp.30279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 02/05/2023]
Abstract
A persistent basal tone in the internal anal sphincter (IAS) is essential for keeping the anal canal closed and fecal continence; its inhibition via the rectoanal inhibitory reflex (RAIR) is required for successful defecation. However, cellular signals underlying the IAS basal tone remain enigmatic. Here we report the origin and molecular mechanisms of calcium signals that control the IAS basal tone, using a combination approach including a novel IAS slice preparation that retains cell arrangement and architecture as in vivo, 2-photon imaging, and cell-specific gene-modified mice. We found that IAS smooth muscle cells generate two forms of contractions (i.e., phasic and sustained contraction) and Ca2+ signals (i.e., synchronized Ca2+ oscillations [SCaOs] and asynchronized Ca2+ oscillations [ACaOs]) that last for hours. RyRs, TMEM16A, L-type Ca2+ channels, and gap junctions are required for SCaOs, which account for phasic contraction and 75% of sustained contraction. Nevertheless, only RyRs are required for ACaOs, which contribute 25% of sustained contraction. Nitric oxide, the primary neurotransmitter mediating the RAIR, blocks both types of Ca2+ signals, leading to IAS's full relaxation. Our results show that the oscillating nature of Ca2+ signals generates and maintains the basal tone without causing cytotoxicity to IAS. Our study provides insight into fecal continence and normal defecation.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chenghai Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
- Sanderson Center for Optical Experimentation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
In vitro vascular toxicity assessment of NitDOX, a novel NO-releasing doxorubicin. Eur J Pharmacol 2020; 880:173164. [PMID: 32437742 DOI: 10.1016/j.ejphar.2020.173164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
The conjugation of doxorubicin (DOX) with nitric oxide (NO)-releasing groups gave rise to novel anthracyclines, such as nitrooxy-DOX (NitDOX), capable to overcome multidrug resistance. The widely described anthracycline cardiovascular toxicity, however, might limit their clinical use. This study aimed to investigate NitDOX-induced effects, as potential hazard, on vascular smooth muscle A7r5 and endothelial EA.hy926 cell viability, on the mechanical activity of freshly and cultured rat aorta rings, as well as on Cav1.2 channels of A7r5 cells. DOX was used as a reference compound. Although an increase in intracellular radicals and a reduction in mitochondrial potential occurred upon treatment with both drugs, A7r5 and EA.hy926 cells proved to be more sensitive to DOX than to NitDOX. Both compounds promoted comparable effects in A7r5 cells, whereas NitDOX was less active than DOX in inducing DNA damage and in eliciting apoptotic-mediated cell death revealed as an increase in sub-diploid-, DAPI- and annexin V-positive- EA.hy926 cell percentage. Moreover, in EA.hy926 cells, NitDOX doubled basal NO content, while preincubation with the NO-scavenger PTIO increased NitDOX-induced cytotoxicity. DOX exhibited a negligible contracturing effect in endothelium-intact rings, while NitDOX induced a significant ODQ-sensible, vasodilation in endothelium-denuded rings. In arteries cultured with both drugs for 7 days, NitDOX prevented either phenylephrine- or KCl-induced contraction at a concentration 10-fold higher than that of DOX. These results demonstrate that NitDOX displays a more favourable vascular toxicity profile than DOX. Taking into account its greater efficacy against drug-resistant cells, NitDOX is worth of further investigations in preclinical and clinical settings.
Collapse
|
6
|
Yu P, Zhao Y, Yang F, Pan H, Wang J, Zhao J, Wang W, Wang H, Wang J. Differentiating Two Nitrosylruthenium Isomeric Complexes by Steady-State and Ultrafast Infrared Spectroscopies. J Phys Chem B 2016; 120:11502-11509. [PMID: 27755866 DOI: 10.1021/acs.jpcb.6b08060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The [Ru(II)-NO+] group affects the structure and chemical reactivity of nitrosylruthenium(II) complexes. A characteristic infrared absorption band due to the nitrosyl (NO) stretching motion is shown in the frequency region 1800-1900 cm-1. In this work, linear infrared (IR) and nonlinear IR methods, including pump-probe and two-dimensional (2D) IR, were utilized to study the structures and dynamics of two isomeric nitrosylruthenium complexes [Ru(OAc)(2mqn)2NO] (H2mqn = 2-methyl-8-quinolinol) in cis and trans isomeric configurations in a weak polar solvent (CDCl3). Using the NO stretching mode as a vibrational probe, information about local structural dynamics of the Ru complex as well as solvent fluctuation dynamics was obtained. In particular, a "structured" solvent environment is believed to form in the vicinity of the NO group in the case of the cis isomer with the aid of a neighboring OAc ligand, which is the reason for more efficient vibrational relaxation but more inhomogeneously distributed solvent and thus associated slower spectral diffusion. Our results also suggest a more anharmonic potential surface for the NO stretching mode in the less stable trans isomer.
Collapse
Affiliation(s)
- Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, the Chinese Academy of Sciences , Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, the Chinese Academy of Sciences , Beijing, 100190, P. R. China.,Institute of Molecular Science, Shanxi University , Taiyuan, 030006, P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, the Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Huifen Pan
- Institute of Molecular Science, Shanxi University , Taiyuan, 030006, P. R. China
| | - Jianru Wang
- Institute of Molecular Science, Shanxi University , Taiyuan, 030006, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, the Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Wenming Wang
- Institute of Molecular Science, Shanxi University , Taiyuan, 030006, P. R. China
| | - Hongfei Wang
- Institute of Molecular Science, Shanxi University , Taiyuan, 030006, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, the Chinese Academy of Sciences , Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
7
|
Zhao Y, Yang F, Wang J, Yu P, Pan H, Wang H, Wang J. Structural dynamics of nitrosylruthenium isomeric complexes studied with steady-state and transient pump-probe infrared spectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:62-67. [PMID: 27209490 DOI: 10.1016/j.saa.2016.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
The characteristic nitrosyl stretching (NO) in the region of 1800-1900cm(-1) was used to study the geometric and ligand effect on two nitrosylruthenium complexes, namely [Ru(OAc)(2QN)2NO] (QN=2-chloro-8-quinolinol (H2cqn) or QN=2-methyl-8-quinolinol (H2mqn)). The NO stretching frequency (νNO) was found in the following order: νcis-1 (2cqn)>νcis-2 (2cqn)>νcis-1 (2mqn)>νtrans (2mqn). The results exhibited a spectral sensitivity of the NO mode to both charge distribution and ligand arrangement, which was supported by ab initio computations and natural bond orbital (NBO) analyses. Further, the vibrational population of the vibrationally excited NO stretching mode was found to relax on the order of 7-10ps, showing less than 30% variation from one isomer to another, which were explained on the basis of NO local structures and solute-solvent interactions in these isomeric nitrosylruthenium complexes.
Collapse
Affiliation(s)
- Yan Zhao
- College of Physics & Electronics Engineering, Shanxi University, Taiyuan 030006, China; Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Yang
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianru Wang
- Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huifen Pan
- Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfei Wang
- Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|