1
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
2
|
Burgelman M, Dujardin P, Vandendriessche C, Vandenbroucke RE. Free complement and complement containing extracellular vesicles as potential biomarkers for neuroinflammatory and neurodegenerative disorders. Front Immunol 2023; 13:1055050. [PMID: 36741417 PMCID: PMC9896008 DOI: 10.3389/fimmu.2022.1055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
The complement system is implicated in a broad range of neuroinflammatory disorders such as Alzheimer's disease (AD) and multiple sclerosis (MS). Consequently, measuring complement levels in biofluids could serve as a potential biomarker for these diseases. Indeed, complement levels are shown to be altered in patients compared to controls, and some studies reported a correlation between the level of free complement in biofluids and disease progression, severity or the response to therapeutics. Overall, they are not (yet) suitable as a diagnostic tool due to heterogeneity of reported results. Moreover, measurement of free complement proteins has the disadvantage that information on their origin is lost, which might be of value in a multi-parameter approach for disease prediction and stratification. In light of this, extracellular vesicles (EVs) could provide a platform to improve the diagnostic power of complement proteins. EVs are nanosized double membrane particles that are secreted by essentially every cell type and resemble the (status of the) cell of origin. Interestingly, EVs can contain complement proteins, while the cellular origin can still be determined by the presence of EV surface markers. In this review, we summarize the current knowledge and future opportunities on the use of free and EV-associated complement proteins as biomarkers for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium,*Correspondence: Roosmarijn E. Vandenbroucke,
| |
Collapse
|
3
|
Liu H, Wang Z, Li H, Li M, Han B, Qi Y, Wang H, Gao J. Label-free Quantitative Proteomic Analysis of Cerebrospinal Fluid and Serum in Patients With Relapse-Remitting Multiple Sclerosis. Front Genet 2022; 13:892491. [PMID: 35571066 PMCID: PMC9092947 DOI: 10.3389/fgene.2022.892491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The lack of effective serum and cerebrospinal fluid (CSF) biomarkers remains a barrier to early diagnosis and treatment of multiple sclerosis (MS). The study is to identify the diagnostic biomarkers of serum and CSF in patients who suffered MS. Methods: At first, we performed differential analysis of CSF and serum proteomics on control and relapse-remitting multiple sclerosis (RRMS) patients. Secondly, CSF and serum’s differential proteins were compared, in order to identify the significative proteins. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed on the differential proteins in serum and CSF respectively to clarify their common biological functions and pathways. Results: At the first step, in CSF, 73 proteins were significantly differentially expressed in the RRMS set compared with the controls. In serum, 22 proteins were differentially expressed. Secondly, we found MMP2 C8G and CFH were the same high expression trend in CSF and serum. Finally, we found the differential proteins in serum and CSF are mostly participated in biological processes: immuno-inflammatory response, neuronal development, cell adhesion and signaling. Conclusion: MMP2, C8G and CFH may participate in the pathogenesis of RRMS, which are the potential diagnostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haijie Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziwen Wang
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| | - He Li
- Department of Automation, College of Information Science and Engineering, Tianjin Tianshi College, Tianjin, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juan Gao
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| |
Collapse
|
4
|
Senousy MA, Shaker OG, Sayed NH, Fathy N, Kortam MA. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci 2020; 11:1651-1660. [PMID: 32348112 DOI: 10.1021/acschemneuro.0c00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is influenced by the interaction of genetic and epigenetic mechanisms. The long noncoding RNA GAS5 acts as a competing endogenous RNA for microRNA-137 and is involved in demyelination. We investigated the association of GAS5 and miR-137 expression and their polymorphisms with MS susceptibility. One hundred and eight MS patients and 104 healthy controls were included. Expression analysis and genotyping of GAS5-rs2067079 and miR-137-rs1625579 single nucleotide polymorphisms were performed by qPCR. Serum GAS5 was upregulated, while serum miR-137 was downregulated in MS compared with the controls. Serum miR-137 was an excellent discriminator of MS patients from the controls (AUC = 0.97) and a negative independent predictor of MS in multivariate logistic analysis. Serum GAS5 expression was positively correlated with the expanded disability status scale scores in the relapsing-remitting MS patients. The rs2067079TT minor homozygote genotype was associated with an increased MS risk, while the rs1625579G minor allele was protective. rs1625579 showed an age-specific effect, while the rs2067079 affected the MS risk in gender- and age-specific manners. In MS patients, rs2067079TT was associated with a higher serum GAS5 than other genotypes, while serum miR-137 did not differ between rs1625579 genotypes. Our results suggest serum GAS5 and miR-137 as MS biomarkers, with miR-137 as a negative predictor of MS risk and GAS5 as a marker of MS severity. We propose rs2067079 and rs1625579 as novel genetic markers of MS susceptibility, and at least, rs2067079 possibly impacts the crosstalk between GAS5 and miR-137.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Gharibi S, Moghimi B, Haghmorad D, Mahmoudi MB, Shahvazian E, Yadegari M, Yazd EF, Tahoori MT. Altered expression patterns of complement factor H and miR‐146a genes in acute‐chronic phases in experimental autoimmune encephalomyelitis mouse. J Cell Physiol 2019; 234:19842-19851. [DOI: 10.1002/jcp.28583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Saba Gharibi
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Bahram Moghimi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Dariush Haghmorad
- Department of Pathology and Laboratory Medicine, School of Medicine Semnan University of Medical Sciences Semnan Iran
- Department of Immunology, School of Medicine Semnan University of Medical Sciences and Health Services Semnan Iran
| | - Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Ensieh Shahvazian
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Maryam Yadegari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences and Health Services Faculty of Medicine Yazd Iran
| | - Ehsan Farashahi Yazd
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
- Genetic Engineering and Genome Editing Laboratory, Stem Cell Biology Research Center Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| |
Collapse
|
6
|
Abstract
UNLABELLED ABSTRACTBackground:Complement factor H (CFH) plays a key role in regulating the cascade of the alternative pathway of the complement system. Dysregulation of CFH may be involved in the pathophysiology of various inflammation-mediated diseases including neuropsychiatric illnesses. This study aimed to investigate this relationship by examining determining CFH levels in elderly individuals with and without depression. METHODS A total of 152 elderly individuals (major depressive disorder (MDD) group, n = 76; comparison sample, n = 76) were selected from the Ansan Geriatric study. The plasma level of CFH was measured. MDD was diagnosed with the Mini-International Neuropsychiatric Interview as per DSM-IV criteria. The severity of depression was evaluated with the geriatric depression scale (GDS). Mean CFH levels were compared using the Mann-Whitney U test. After adjusting for possible confounding factors including age, sex, marital status, education, alcohol use, hemoglobin levels, and the Korean version of the Mini-Mental State Examination (MMSE-KC), a multiple regression analysis was conducted. The GDS score and plasma level of CFH were analyzed using Spearman's correlation. RESULTS Plasma CFH level was significantly higher in individuals with MDD than in the comparison sample (289.51 ± 21.16 vs. 339.67 ± 66.23, p < 0.001). In a regression model adjusted for possible confounders, CFH was significantly associated with geriatric depression (p < 0.001). CFH levels were not significantly related to GDS scores in the depressed group. CONCLUSION This study revealed an association between high plasma levels of CFH and geriatric depression, thereby suggesting the alternative pathway of the complement system contributing to the development of geriatric depression.
Collapse
|