1
|
Keintzel T, Raffelsberger T, Niederwanger L, Gundacker G, Rasse T. Systematic Literature Review and Early Benefit of Cochlear Implantation in Two Pediatric Auditory Neuropathy Cases. J Pers Med 2023; 13:jpm13050848. [PMID: 37241018 DOI: 10.3390/jpm13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Approximately 1 in 10 children with hearing loss is affected by auditory neuropathy spectrum disorder (ANSD). People who have ANSD usually have great difficulty understanding speech or communicating. However, it is possible for these patients to have audiograms that may indicate profound hearing loss up to normal hearing. This disorder is prognosed with positive, intact or present otoacoustic emissions (OAE) and/or cochlear microphonics (CM) as well as abnormal or absent auditory brainstem responses (ABR). Treatment methods include conventional hearing aids as well as cochlear implants. Cochlear implants (CI) usually promise better speech understanding for ANSD patients. We performed a systematic literature review aiming to show what improvements can effectively be achieved with cochlear implants in children with ANSD and compare this with our experience with two cases of ANSD implanted at our clinic. The retrospective review of two young CI patients diagnosed with ANSD during infancy demonstrated improvements over time in speech development communicated by their parents.
Collapse
Affiliation(s)
- Thomas Keintzel
- Department of Otorhinolaryngology, Klinikum Wels-Grieskirchen, 4600 Wels, Austria
| | - Tobias Raffelsberger
- Department of Otorhinolaryngology, Klinikum Wels-Grieskirchen, 4600 Wels, Austria
| | - Lisa Niederwanger
- Department of Otorhinolaryngology, Klinikum Wels-Grieskirchen, 4600 Wels, Austria
| | - Gina Gundacker
- Department Health and Rehabilitation Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Thomas Rasse
- Department of Otorhinolaryngology, Klinikum Wels-Grieskirchen, 4600 Wels, Austria
| |
Collapse
|
2
|
Santarelli R, Scimemi P, La Morgia C, Cama E, del Castillo I, Carelli V. Electrocochleography in Auditory Neuropathy Related to Mutations in the OTOF or OPA1 Gene. Audiol Res 2021; 11:639-652. [PMID: 34940017 PMCID: PMC8698970 DOI: 10.3390/audiolres11040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory Neuropathy (AN) is characterized by disruption of temporal coding of acoustic signals in auditory nerve fibers resulting in alterations of auditory perceptions. Mutations in several genes have been associated to the most forms of AN. Underlying mechanisms include both pre-synaptic and post-synaptic damage involving inner hair cell (IHC) depolarization, neurotransmitter release, spike initiation in auditory nerve terminals, loss of auditory fibers and impaired conduction. In contrast, outer hair cell (OHC) activities (otoacoustic emissions [OAEs] and cochlear microphonic [CM]) are normal. Disordered synchrony of auditory nerve activity has been suggested as the basis of both the alterations of auditory brainstem responses (ABRs) and reduction of speech perception. We will review how electrocochleography (ECochG) recordings provide detailed information to help objectively define the sites of auditory neural dysfunction and their effect on receptor summating potential (SP) and neural compound action potential (CAP), the latter reflecting disorders of ribbon synapses and auditory nerve fibers.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
- Correspondence:
| | - Pietro Scimemi
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (C.L.M.); (V.C.)
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| | - Elona Cama
- Department of Neurosciences, University of Padova, Via Belzoni 160, 35121 Padova, Italy; (P.S.); (E.C.)
- Audiology Service, Santi Giovanni e Paolo Hospital, Campo Santi Giovanni e Paolo, Castello 6777, 30122 Venezia, Italy
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy; (C.L.M.); (V.C.)
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
3
|
Nisenbaum E, Prentiss S, Yan D, Nourbakhsh A, Smeal M, Holcomb M, Cejas I, Telischi F, Liu XZ. Screening Strategies for Deafness Genes and Functional Outcomes in Cochlear Implant Patients. Otol Neurotol 2021; 42:180-187. [PMID: 33885265 PMCID: PMC9237809 DOI: 10.1097/mao.0000000000002969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To review the current state of knowledge about the influence of specific genetic mutations that cause sensorineural hearing loss (SNHL) on cochlear implant (CI) functional outcomes, and how this knowledge may be integrated into clinical practice. A multistep and sequential population-based genetic algorithm suitable for the identification of congenital SNHL mutations before CI placement is also examined. DATA SOURCES, STUDY SELECTION A review was performed of the English literature from 2000 to 2019 using PubMed regarding the influence of specific mutations on CI outcomes and the use of next-generation sequencing for genetic screening of CI patients. CONCLUSION CI is an effective habilitation option for patients with severe-profound congenital SNHL. However, it is well known that CI outcomes show substantial inter-patient variation. Recent advances in genetic studies have improved our understanding of genotype-phenotype relationships for many of the mutations underlying congenital SNHL, and have explored how these relationships may account for some of the variance seen in CI performance outcomes. A sequential genetic screening strategy utilizing next-generation sequencing-based population-specific gene panels may allow for more efficient mutation identification before CI placement. Understanding the relationships between specific mutations and CI outcomes along with integrating routine comprehensive genetic testing into pre-CI evaluations will allow for more effective patient counseling and open the door for the development of mutation-specific treatment strategies.
Collapse
Affiliation(s)
- Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Prentiss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Molly Smeal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Meredith Holcomb
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivette Cejas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
- Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
4
|
Chaudhry D, Chaudhry A, Muzaffar J, Monksfield P, Bance M. Cochlear Implantation Outcomes in Post Synaptic Auditory Neuropathies: A Systematic Review and Narrative Synthesis. J Int Adv Otol 2020; 16:411-431. [PMID: 33136025 DOI: 10.5152/iao.2020.9035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To establish outcomes following cochlear implantation (CI) in patients with postsynaptic auditory neuropathy (AN). Systematic review and narrative synthesis. Databases searched: MEDLINE, PubMed, EMBASE, Web of Science, Cochrane Collection and ClinicalTrials.gov. No limits placed on language or year of publication. Review conducted in accordance with the PRISMA statement. Searches identified 98 studies in total, of which 14 met the inclusion criteria reporting outcomes in 25 patients with at least 28 CIs. Of these, 4 studies focused on Charcot-Marie-Tooth disease (CMT), 3 on Brown-Vialetto-Van-Laere syndrome (BVVL), 2 on Friedreich Ataxia (FRDA), 2 on Syndromic dominant optic atrophy (DOA+), 2 on Cerebellar ataxia - areflexia - pes cavus - optic atrophy - sensorineural hearing loss (CAPOS) syndrome, and 1 on Deafness-dystonia-optic neuronopathy (DDON) syndrome. All studies were Oxford Centre for Evidence Based Medicine (OCEBM) grade IV. Overall trend was towards good post-CI outcomes with 22 of the total 25 patients displaying modest to significant benefit. Hearing outcomes following CI in postsynaptic ANs are variable but generally good with patients showing improvements in hearing thresholds and speech perception. In the future, development of a clearer stratification system into pre, post, and central AN would have clinical and academic benefits. Further research is required to understand AN pathophysiology and develop better diagnostic tools for more accurate identification of lesion sites. Multicenter longitudinal studies with standardized comprehensive outcome measures including health-related quality of life data will be key in establishing a better understanding of short and long-term post-CI outcomes.
Collapse
Affiliation(s)
- Daoud Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Abdullah Chaudhry
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Jameel Muzaffar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Peter Monksfield
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Bigmingham, UK
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Guillen‐Ahlers H, Erbe CB, Chevalier FD, Montoya MJ, Zimmerman KD, Langefeld CD, Olivier M, Runge CL. TMTC2 variant associated with sensorineural hearing loss and auditory neuropathy spectrum disorder in a family dyad. Mol Genet Genomic Med 2018; 6:653-659. [PMID: 29671961 PMCID: PMC6081214 DOI: 10.1002/mgg3.397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/02/2018] [Accepted: 03/09/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is a common form of hearing loss that can be inherited or triggered by environmental insults; auditory neuropathy spectrum disorder (ANSD) is a SNHL subtype with unique diagnostic criteria. The genetic factors associated with these impairments are vast and diverse, but causal genetic factors are rarely characterized. METHODS A family dyad, both cochlear implant recipients, presented with a hearing history of bilateral, progressive SNHL, and ANSD. Whole-exome sequencing was performed to identify coding sequence variants shared by both family members, and screened against genes relevant to hearing loss and variants known to be associated with SNHL and ANSD. RESULTS Both family members are successful cochlear implant users, demonstrating effective auditory nerve stimulation with their devices. Genetic analyses revealed a mutation (rs35725509) in the TMTC2 gene, which has been reported previously as a likely genetic cause of SNHL in another family of Northern European descent. CONCLUSION This study represents the first confirmation of the rs35725509 variant in an independent family as a likely cause for the complex hearing loss phenotype (SNHL and ANSD) observed in this family dyad.
Collapse
Affiliation(s)
- Hector Guillen‐Ahlers
- Department of GeneticsTexas Biomedical Research InstituteSan AntonioTXUSA
- Present address:
Department of Internal MedicineSection of Molecular MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Christy B. Erbe
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWIUSA
| | | | - Maria J. Montoya
- Department of GeneticsTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Kip D. Zimmerman
- Department of Biostatistical SciencesWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Carl D. Langefeld
- Department of Biostatistical SciencesWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Michael Olivier
- Department of GeneticsTexas Biomedical Research InstituteSan AntonioTXUSA
- Present address:
Department of Internal MedicineSection of Molecular MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Christina L. Runge
- Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
6
|
Giraudet F, Charles P, Mom T, Boespflug-Tanguy O, Dürr A, Deltenre P, Avan P. Rapid exhaustion of auditory neural conduction in a prototypical mitochondrial disease, Friedreich ataxia. Clin Neurophysiol 2018; 129:1121-1129. [PMID: 29625343 DOI: 10.1016/j.clinph.2018.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In patients with Friedreich ataxia (FRDA), mitochondrial failure leads to impaired cellular energetics. Since many FRDA patients have impaired hearing in noise, we investigated the objective consequences on standard auditory brainstem-evoked responses (ABRs). METHODS In 37 FRDA patients, among whom 34 with abnormal standard ABRs, hearing sensitivity, speech-in-noise intelligibility and otoacoustic emissions were controlled. ABR recordings were split into four consecutive segments of the total time frame used for data collection, thus allowing the dynamics of ABR averaging to be observed. RESULTS Most ears showed features of an auditory neuropathy spectrum disorder with flattened ABRs and impaired speech-in-noise intelligibility contrasting with near-normal hearing sensitivity and normal preneural responses. Yet split-ABRs revealed short-lived wave patterns in 26 out of 68 ears with flattened standard ABRs (38%). While averaging went on, the pattern of waves shifted so that interwave latencies increased by 35% on average. CONCLUSIONS In FRDA, the assumption of stationarity used for extracting standard ABRs is invalid. The preservation of early split-ABRs indicates no short-term dyssynchrony of action potentials. A large decrease in conduction velocity along auditory neurons occurs within seconds, attributed to fast energetic failure. SIGNIFICANCE This model of metabolic sensory neuropathy warns against exposure of metabolically-impaired patients to sustained auditory stimulation.
Collapse
Affiliation(s)
- Fabrice Giraudet
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - Perrine Charles
- APHP Department of Genetics, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Thierry Mom
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Assistance Publique des Hopitaux de Paris (APHP), Reference Center for Rare Diseases "Leukodystrophies," Child Neurology and Metabolic Disorders Department, Robert Debré University Hospital, Paris, France; Inserm, Paris Diderot University, UMR 1141, DHU PROTECT, Sorbonne Paris-Cite, Robert Debré University Hospital, Paris, France
| | - Alexandra Dürr
- APHP Department of Genetics, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; ICM, Institut du Cerveau et de la Moelle, INSERM U1127, CNRS UMR7225, Sorbonne Universités - UPMC Université Paris VI UMR-S1127, Paris, France
| | - Paul Deltenre
- CHU Brugmann, Université Libre de Bruxelles, Belgium
| | - Paul Avan
- Laboratory of Neurosensory Biophysics, UMR INSERM 1107, University Clermont Auvergne, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Menezes MP, O'Brien K, Hill M, Webster R, Antony J, Ouvrier R, Birman C, Gardner-Berry K. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency. Dev Med Child Neurol 2016; 58:848-54. [PMID: 26918385 DOI: 10.1111/dmcn.13084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
AIM Mutations in the genes encoding the riboflavin transporters RFVT2 and RFVT3 have been identified in Brown-Vialetto-Van Laere syndrome, a neurodegenerative disorder characterized by hearing loss and pontobulbar palsy. Treatment with riboflavin has been shown to benefit individuals with the phenotype of RFVT2 deficiency. Understanding the characteristics of hearing loss in riboflavin transporter deficiency would enable early diagnosis and therapy. METHOD We performed hearing assessments in seven children (from four families) with RFVT2 deficiency and reviewed results from previous assessments. Assessments were repeated after 12 months and 24 months of riboflavin therapy and after cochlear implantation in one individual. RESULTS Hearing loss in these individuals was due to auditory neuropathy spectrum disorder (ANSD). Hearing loss was identified between 3 years and 8 years of age and progressed rapidly. Hearing aids were not beneficial. Riboflavin therapy resulted in improvement of hearing thresholds during the first year of treatment in those with recent-onset hearing loss. Cochlear implantation resulted in a significant improvement in speech perception in one individual. INTERPRETATION Riboflavin transporter deficiency should be considered in all children presenting with an auditory neuropathy. Speech perception in children with ANSD due to RFVT2 deficiency may be significantly improved by cochlear implantation.
Collapse
Affiliation(s)
- Manoj P Menezes
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Katherine O'Brien
- Department of Audiology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Mandy Hill
- Sydney Cochlear Implant Centre, Sydney, NSW, Australia
| | - Richard Webster
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Jayne Antony
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Robert Ouvrier
- Institute for Neuroscience and Muscle Research and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Catherine Birman
- Department of ENT and Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | |
Collapse
|
8
|
Santarelli R, del Castillo I, Cama E, Scimemi P, Starr A. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations. Hear Res 2015; 330:200-12. [PMID: 26188103 DOI: 10.1016/j.heares.2015.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/21/2015] [Accepted: 07/12/2015] [Indexed: 11/26/2022]
Abstract
Mutations in the OTOF gene encoding otoferlin result in a disrupted function of the ribbon synapses with impairment of the multivesicular glutamate release. Most affected subjects present with congenital hearing loss and abnormal auditory brainstem potentials associated with preserved cochlear hair cell activities (otoacoustic emissions, cochlear microphonics [CMs]). Transtympanic electrocochleography (ECochG) has recently been proposed for defining the details of potentials arising in both the cochlea and auditory nerve in this disorder, and with a view to shedding light on the pathophysiological mechanisms underlying auditory dysfunction. We review the audiological and electrophysiological findings in children with congenital profound deafness carrying two mutant alleles of the OTOF gene. We show that cochlear microphonic (CM) amplitude and summating potential (SP) amplitude and latency are normal, consistently with a preserved outer and inner hair cell function. In the majority of OTOF children, the SP component is followed by a markedly prolonged low-amplitude negative potential replacing the compound action potential (CAP) recorded in normally-hearing children. This potential is identified at intensities as low as 90 dB below the behavioral threshold. In some ears, a synchronized CAP is superimposed on the prolonged responses at high intensity. Stimulation at high rates reduces the amplitude and duration of the prolonged potentials, consistently with their neural generation. In some children, however, the ECochG response only consists of the SP, with no prolonged potential. Cochlear implants restore hearing sensitivity, speech perception and neural CAP by electrically stimulating the auditory nerve fibers. These findings indicate that an impaired multivesicular glutamate release in OTOF-related disorders leads to abnormal auditory nerve fiber activation and a consequent impairment of spike generation. The magnitude of these effects seems to vary, ranging from no auditory nerve fiber activation to an abnormal generation of EPSPs that occasionally trigger a synchronized electrical activity, resulting in high-threshold CAPs.
Collapse
Affiliation(s)
- Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy.
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28034 Madrid, Spain
| | - Elona Cama
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Pietro Scimemi
- Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; Audiology and Phoniatrics Service, Treviso Regional Hospital, Piazza Ospedale 1, 31100 Treviso, Italy
| | - Arnold Starr
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Ertürk A, Lafkas D, Chalouni C. Imaging cleared intact biological systems at a cellular level by 3DISCO. J Vis Exp 2014. [PMID: 25046566 PMCID: PMC4212806 DOI: 10.3791/51382] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tissue clearing and subsequent imaging of transparent organs is a powerful method to analyze fluorescently labeled cells and molecules in 3D, in intact organs. Unlike traditional histological methods, where the tissue of interest is sectioned for fluorescent imaging, 3D imaging of cleared tissue allows examination of labeled cells and molecules in the entire specimen. To this end, optically opaque tissues should be rendered transparent by matching the refractory indices throughout the tissue. Subsequently, the tissue can be imaged at once using laser-scanning microscopes to obtain a complete high-resolution 3D image of the specimen. A growing list of tissue clearing protocols including 3DISCO, CLARITY, Sca/e, ClearT2, and SeeDB provide new ways for researchers to image their tissue of interest as a whole. Among them, 3DISCO is a highly reproducible and straightforward method, which can clear different types of tissues and can be utilized with various microscopy techniques. This protocol describes this straightforward procedure and presents its various applications. It also discusses the limitations and possible difficulties and how to overcome them.
Collapse
|