1
|
Pitout JDD, Peirano G, Matsumura Y, DeVinney R, Chen L. Escherichia coli sequence type 410 with carbapenemases: a paradigm shift within E. coli toward multidrug resistance. Antimicrob Agents Chemother 2024; 68:e0133923. [PMID: 38193668 PMCID: PMC10869336 DOI: 10.1128/aac.01339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Escherichia coli sequence type ST410 is an emerging carbapenemase-producing multidrug-resistant (MDR) high-risk One-Health clone with the potential to significantly increase carbapenem resistance among E. coli. ST410 belongs to two clades (ST410-A and ST410-B) and three subclades (ST410-B1, ST410-B2, and ST410-B3). After a fimH switch between clades ST410-A and ST410-B1, ST410-B2 and ST410-B3 subclades showed a stepwise progression toward developing MDR. (i) ST410-B2 initially acquired fluoroquinolone resistance (via homologous recombination) in the 1980s. (ii) ST410-B2 then obtained CMY-2, CTX-M-15, and OXA-181 genes on different plasmid platforms during the 1990s. (iii) This was followed by the chromosomal integration of blaCMY-2, fstl YRIN insertion, and ompC/ompF mutations during the 2000s to create the ST410-B3 subclade. (iv) An IncF plasmid "replacement" scenario happened when ST410-B2 transformed into ST410-B3: F36:31:A4:B1 plasmids were replaced by F1:A1:B49 plasmids (both containing blaCTX-M-15) followed by blaNDM-5 incorporation during the 2010s. User-friendly cost-effective methods for the rapid identification of ST410 isolates and clades are needed because limited data are available about the frequencies and global distribution of ST410 clades. Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently required to investigate the success of ST410 (including the ability to acquire successive MDR determinants). Such information will aid with management and prevention strategies to curb the spread of carbapenem-resistant E. coli. The medical community can ill afford to ignore the spread of a global E. coli clone with the potential to end the carbapenem era.
Collapse
Affiliation(s)
- Johann D. D. Pitout
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gisele Peirano
- Cummings School of Medicine, Calcary, Alberta, Canada
- University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Yasufumi Matsumura
- Kyoto University Graduate School of Medicine, Pretoria, Gauteng, South Africa
| | | | - Liang Chen
- Meridian Health Center for Discovery and Innovation, Kyoto, Japan
- Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
2
|
Bezabih YM, Bezabih A, Dion M, Batard E, Teka S, Obole A, Dessalegn N, Enyew A, Roujeinikova A, Alamneh E, Mirkazemi C, Peterson GM, Bezabhe WM. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac048. [PMID: 35668909 PMCID: PMC9160884 DOI: 10.1093/jacamr/dlac048] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives The widespread intestinal carriage of ESBL-producing Escherichia coli (ESBL E. coli) among both patients and healthy individuals is alarming. However, the global prevalence and trend of this MDR bacterium in healthcare settings remains undetermined. To address this knowledge gap, we performed a comparative meta-analysis of the prevalence in community and healthcare settings. Methods Our systematic review included 133 articles published between 1 January 2000 and 22 April 2021 and indexed in PubMed, EMBASE or Google Scholar. A random-effects meta-analysis was performed to obtain the global pooled prevalence (community and healthcare settings). Subgroup meta-analyses were performed by grouping studies using the WHO regions and 5 year intervals of the study period. Results We found that 21.1% (95% CI, 19.1%–23.2%) of inpatients in healthcare settings and 17.6% (95% CI, 15.3%–19.8%) of healthy individuals worldwide carried ESBL E. coli in their intestine. The global carriage rate in healthcare settings increased 3-fold from 7% (95% CI, 3.7%–10.3%) in 2001–05 to 25.7% (95% CI, 19.5%–32.0%) in 2016–20, whereas in community settings it increased 10-fold from 2.6% (95% CI, 1.2%–4.0%) to 26.4% (95% CI, 17.0%–35.9%) over the same period. Conclusions The global and regional human intestinal ESBL E. coli carriage is increasing in both community and healthcare settings. Carriage rates were generally higher in healthcare than in community settings. Key relevant health organizations should perform surveillance and implement preventive measures to address the spread of ESBL E. coli in both settings.
Collapse
Affiliation(s)
- Yihienew M. Bezabih
- Arsi University College of Health Sciences, University Road, Asella, ET 0193, Ethiopia
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
- Corresponding author. E-mail: ; @myihienew
| | | | - Michel Dion
- University of Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances Laboratory, Nantes, France
| | - Eric Batard
- University of Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances Laboratory, Nantes, France
- CHU Nantes, Emergency Department, Nantes, France
| | - Samson Teka
- Marshall University School of Medicine, Huntington, WV, USA
| | - Abiy Obole
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
| | - Noah Dessalegn
- Department of Internal Medicine, WellStar Atlanta Medical Center, Atlanta, GA, USA
| | | | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Endalkachew Alamneh
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Corinne Mirkazemi
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
3
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Carvalho I, Cunha R, Martins C, Martínez-Álvarez S, Safia Chenouf N, Pimenta P, Pereira AR, Ramos S, Sadi M, Martins Â, Façanha J, Rabbi F, Capita R, Alonso-Calleja C, de Lurdes Nunes Enes Dapkevicius M, Igrejas G, Torres C, Poeta P. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10081013. [PMID: 34439063 PMCID: PMC8388948 DOI: 10.3390/antibiotics10081013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to analyse the prevalence and genetic characteristics of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant (CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing, and specific-ST131) were performed by PCR (and sequencing when required). CTXRE. coli isolates were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and 15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick (13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among 45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32, ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Rita Cunha
- Hospital Veterinário Cascais da Onevet, 2775-352 Parede, Lisbon, Portugal;
| | - Carla Martins
- Clínica Veterinária do Vouga, 3740-253 Sever do Vouga, Portugal;
| | - Sandra Martínez-Álvarez
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Nadia Safia Chenouf
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Djelfa 17000, Algeria
| | - Paulo Pimenta
- Hospital Veterinário de Trás-os-Montes, 5000-056 Vila Real, Portugal;
| | - Ana Raquel Pereira
- Centro Veterinário de Macedo de Cavaleiros, 5340-202 Bragança, Portugal;
| | - Sónia Ramos
- VetRedondo, Consultório Veterinário de Monte Redondo Unipessoal Lda, Monte Redondo, 2425-618 Leiria, Portugal;
| | - Madjid Sadi
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Biotechnology Related to Animals Reproduction, Université Saad Dahlab de Blida, Blida 09000, Algeria
| | - Ângela Martins
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Jorge Façanha
- Centro Veterinário Jorge Façanha, 5140-060 Carrazeda de Ansiães, Portugal;
| | - Fazle Rabbi
- Australian Computer Society, Docklands, Melbourne, VIC 3008, Australia;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Maria de Lurdes Nunes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Correspondence: ; Tel.: +351-25935-0466; Fax: +351-25935-0629
| |
Collapse
|
5
|
Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15. The dissemination has been associated with clonal spread and different types of mobile genetic elements. The objective of this review was to describe the genetic environments of the blaCTX-M-15 gene detected from Enterobacteriaceae in published literature from Africa. A literature search for relevant articles was performed through PubMed, AJOL, and Google Scholar electronic databases; 43 articles from 17 African countries were included in the review based on the eligibility criteria. Insertion sequences were reported as part of the genetic environment of blaCTX-M-15 gene in 32 studies, integrons in 13 studies, and plasmids in 23 studies. In this review, five insertion sequences including ISEcp1, IS26, orf447, IS903, and IS3 have been detected which are associated with the genetic environment of blaCTX-M-15 in Africa. Seven different genetic patterns were seen in the blaCTX-M-15 genetic environment. Insertion sequence ISEcp1 was commonly located upstream of the end of the blaCTX-M-15 gene, while the insertion sequence orf477 was located downstream. In some studies, ISEcp1 was truncated upstream of blaCTX-M-15 by insertion sequences IS26 and IS3. The class 1 integron (Intl1) was most commonly reported to be associated with blaCTX-M-15 (13 studies), with Intl1/dfrA17–aadA5 being the most common gene cassette array. IncFIA-FIB-FII multi-replicons and IncHI2 replicon types were the most common plasmid replicon types that horizontally transferred the blaCTX-M-15 gene. Aminoglycoside-modifying enzymes, and plasmid-mediated quinolone resistance genes were commonly collocated with the blaCTX-M-15 gene on plasmids. This review revealed the predominant role of ISEcp1, Intl1 and IncF plasmids in the mobilization and continental dissemination of the blaCTX-M-15 gene in Africa.
Collapse
|
6
|
Ouchar Mahamat O, Kempf M, Lounnas M, Tidjani A, Hide M, Benavides JA, Carrière C, Bañuls AL, Jean-Pierre H, Ouedraogo AS, Dumont Y, Godreuil S. Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in humans, animals and the environment in West and Central Africa. Int J Antimicrob Agents 2020; 57:106203. [PMID: 33075511 DOI: 10.1016/j.ijantimicag.2020.106203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/17/2022]
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are widespread. Here we used the 'One Health' approach to determine knowledge gaps on ESBL-E and CPE in West and Central Africa. We searched all articles on ESBL-E and CPE in these African regions published in PubMed, African Journals Online and Google Scholar from 2000 onwards. Among the 1201 articles retrieved, we selected 165 studies (West Africa, 118; Central Africa, 47) with data from 22 of the 26 West and Central Africa countries. Regarding the settings, 136 articles focused only on humans (carriage and/or infection), 6 articles on humans and animals, 13 on animals, 1 on humans and the environment, 8 on the environment and 1 on humans, animals and environments. ESBL-E prevalence ranged from 11-72% in humans and 7-79% in aquatic environments (wastewater). In animals, ESBL-E prevalence hugely varied: 0% in cattle, 11-36% in chickens, 20% in rats, 21-71% in pigs and 32-75% in dogs. The blaCTX-M-15 gene was the predominant ESBL-encoding gene and was associated with plasmids of incompatibility groups F, H, K, Y, N, I1 and R. CPE were studied only in humans. Class B metallo-β-lactamases (NDM) and class D oxacillinases (OXA-48 and OXA-181) were the most common carbapenemases. Our results show major knowledge gaps, particularly on ESBL and CPE in animals and the environment, that might limit antimicrobial resistance management in these regions. The results also emphasise the urgent need to improve active surveillance programmes in each country and to support antimicrobial stewardship.
Collapse
Affiliation(s)
- Oumar Ouchar Mahamat
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Service de laboratoire, Hôpital de la Mère et de l'Enfant, N'Djaména, Chad.
| | - Marie Kempf
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France, and Laboratoire de Bactériologie-Hygiène, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France
| | - Manon Lounnas
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mallorie Hide
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| |
Collapse
|
7
|
Ouchar Mahamat O, Tidjani A, Lounnas M, Hide M, Benavides J, Somasse C, Ouedraogo AS, Sanou S, Carrière C, Bañuls AL, Jean-Pierre H, Dumont Y, Godreuil S. Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital and community settings in Chad. Antimicrob Resist Infect Control 2019; 8:169. [PMID: 31695911 PMCID: PMC6824111 DOI: 10.1186/s13756-019-0626-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) remains poorly documented in Africa. The objective of this study was to determine the prevalence of ESBL-PE fecal carriage in Chad. Methods In total, 200 fresh stool samples were collected from 100 healthy community volunteers and 100 hospitalized patients from January to March 2017. After screening using ESBL-selective agar plates and species identification by MALDI-TOF mass spectrometry, antibiotic susceptibility was tested using the disk diffusion method, and ESBL production confirmed with the double-disc synergy test. The different ESBL genes in potential ESBL-producing isolates were detected by PCR and double stranded DNA sequencing. Escherichia coli phylogenetic groups were determined using a PCR-based method. Results ESBL-PE fecal carriage prevalence was 44.5% (51% among hospitalized patients vs 38% among healthy volunteers; p < 0.05). ESBL-producing isolates were mostly Escherichia coli (64/89) and Klebsiella pneumoniae (16/89). PCR and sequencing showed that 98.8% (87/89) of ESBL-PE harbored blaCTX-M genes: blaCTX-M-15 in 94.25% (82/87) and blaCTX-M-14 in 5.75% (5/87). Phylogroup determination by quadruplex PCR indicated that ESBL-producing E. coli isolates belonged to group A (n = 17; 27%), C (n = 17; 27%), B2 (n = 9; 14%), B1 (n = 8; 13%), D (n = 8; 13%), E (n = 1; 1.6%), and F (n = 1; 1.6%). The ST131 clone was identified in 100% (9/9) of E. coli B2 strains. Conclusions The high fecal carriage rate of ESBL-PE associated with CTX-M-15 in hospital and community settings of Chad highlights the risk for resistance transmission between non-pathogenic and pathogenic bacteria.
Collapse
Affiliation(s)
- Oumar Ouchar Mahamat
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad
| | | | - Manon Lounnas
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Mallorie Hide
- 2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Julio Benavides
- 57 Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Calèbe Somasse
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Abdoul-Salam Ouedraogo
- Service de bactériologie-virologie, Département des laboratoires, Centre Hospitalier Universitaire Souro Sanou, Bobo Dioulasso, Burkina Faso
| | - Soufiane Sanou
- Service de bactériologie-virologie, Département des laboratoires, Centre Hospitalier Universitaire Souro Sanou, Bobo Dioulasso, Burkina Faso
| | - Christian Carrière
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- 2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,7Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| | - Hélène Jean-Pierre
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Yann Dumont
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,7Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| |
Collapse
|
8
|
Yassine I, Rafei R, Osman M, Mallat H, Dabboussi F, Hamze M. Plasmid-mediated quinolone resistance: Mechanisms, detection, and epidemiology in the Arab countries. INFECTION GENETICS AND EVOLUTION 2019; 76:104020. [PMID: 31493557 DOI: 10.1016/j.meegid.2019.104020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Quinolones are an important antimicrobial class used widely in the treatment of enterobacterial infections. Although there are multiple mechanisms of quinolone resistance, attention should be paid to plasmid-mediated genes due to their ability to facilitate the spread of quinolone resistance, the selection of mutants with a higher-level of quinolone resistance, and the promotion of treatment failure. Since their discovery in 1998, plasmid-mediated quinolone resistance (PMQR) mechanisms have been reported more frequently worldwide especially with the extensive use of quinolones in humans and animals. Nevertheless, data from the Arab countries are rare and often scattered. Understanding the prevalence and distribution of PMQR is essential to stop the irrational use of quinolone in these countries. This manuscript describes the quinolone resistance mechanisms and particularly PMQR among Enterobacteriaceae as well as their methods of detection. Then the available data on the epidemiology of PMQR in clinical and environmental isolates from the Arab countries are extensively reviewed along with the other associated resistance genes. These data shows a wide dissemination of PMQR genes among Enterobacteriaceae isolates from humans, animals, and environments in these countries with increasing rates over the years and a common association with other antibiotic resistance genes as blaCTX-M-15. The incontrovertible emergence of PMQR in the Arab countries highlights the pressing need for effective stewardship efforts to prevent the selection of a higher rate of quinolone resistance and to preserve these crucial antibiotics.
Collapse
Affiliation(s)
- Iman Yassine
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
9
|
Wang J, Ma ZB, Zeng ZL, Yang XW, Huang Y, Liu JH. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool Res 2019; 38:55-80. [PMID: 28409502 PMCID: PMC5396029 DOI: 10.24272/j.issn.2095-8137.2017.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance is an urgent global health challenge in human and veterinary medicine. Wild animals are not directly exposed to clinically relevant antibiotics; however, antibacterial resistance in wild animals has been increasingly reported worldwide in parallel to the situation in human and veterinary medicine. This underlies the complexity of bacterial resistance in wild animals and the possible interspecies transmission between humans, domestic animals, the environment, and wildlife. This review summarizes the current data on expanded-spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase, and colistin resistance genes in Enterobacteriaceae isolates of wildlife origin. The aim of this review is to better understand the important role of wild animals as reservoirs and vectors in the global dissemination of crucial clinical antibacterial resistance. In this regard, continued surveillance is urgently needed worldwide.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xue-Wen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Ben Yahia H, Ben Sallem R, Tayh G, Klibi N, Ben Amor I, Gharsa H, Boudabbous A, Ben Slama K. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia. BMC Microbiol 2018; 18:26. [PMID: 29609544 PMCID: PMC5879578 DOI: 10.1186/s12866-018-1163-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spreading of antibiotic resistant bacteria is becoming nowadays an alarming threat to human and animal health. There is increasing evidence showing that wild birds could significantly contribute to the transmission and spreading of drug-resistant bacteria. However, data for antimicrobial resistance in wild birds remain scarce, especially throughout Africa. The aims of this investigation were to analyze the prevalence of ESBL-producing E. coli in faecal samples of wild birds in Tunisia and to characterize the recovered isolates. RESULTS One hundred and eleven samples were inoculated on MacConkey agar plates supplemented with cefotaxime (2 μg/ml). ESBL-producing E. coli isolates were detected in 12 of 111 faecal samples (10.81%) and one isolate per sample was further characterized. β-lactamase detected genes were as follows: blaCTX-M-15 (8 isolates), blaCTX-M-15 + blaTEM-1b (4 isolates). The ISEcp1 and orf477 sequences were found respectively in the regions upstream and downstream of all blaCTX-M-15 genes. Seven different plasmid profiles were observed among the isolates. IncF (FII, FIA, FIB) and IncW replicons were identified in 11 CTX-M-15 producing isolates, and mostly, other replicons were also identified: IncHI2, IncA/C, IncP, IncI1 and IncX. All ESBL-producing E. coli isolates were integron positive and possessed "empty" integron structures with no inserted region of DNA. The following detected virulence genes were: (number of isolates in parentheses): fimA (ten); papC (seven); aer (five); eae (one); and papGIII, hly, cnf, and bfp (none). Molecular typing using pulsed-field gel electrophoresis and multilocus sequence typing showed a low genetic heterogeneity among the 12 ESBL-producing strains with five unrelated PFGE types and five different sequence types (STs) respectively. CTX-M-15-producing isolates were ascribed to phylogroup A (eleven isolates) and B2 (one isolate). CONCLUSION To our knowledge, this study provides the first insight into the contribution of wild birds to the dynamics of ESBL-producing E. coli in Tunisia.
Collapse
Affiliation(s)
- Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Rym Ben Sallem
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Ghassan Tayh
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Naouel Klibi
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Insaf Ben Amor
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Abdellatif Boudabbous
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| |
Collapse
|
11
|
Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E, Guerra B, Schmoger S, Imirzalioglu C, Chakraborty T, Hammerl JA, Käsbohrer A. CTX-M-15-Producing E. coli Isolates from Food Products in Germany Are Mainly Associated with an IncF-Type Plasmid and Belong to Two Predominant Clonal E. coli Lineages. Front Microbiol 2017; 8:2318. [PMID: 29209306 PMCID: PMC5702323 DOI: 10.3389/fmicb.2017.02318] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/09/2017] [Indexed: 01/06/2023] Open
Abstract
Extended-spectrum beta-lactamases (ESBL) mediating resistance to 3rd generation cephalosporins are a major public health issue. As food may be a vehicle in the spread of ESLB-producing bacteria, a study on the occurrence of cephalosporin-resistantu Escherichia coli in food was initiated. A total of 404 ESBL-producing isolates were obtained from animal-derived food samples (e.g., poultry products, pork, beef and raw milk) between 2011 and 2013. As CTX-M-15 is the most abundant enzyme in ESBL-producing E. coli causing human infections, this study focusses on E. coli isolates from food samples harboring the blaCTX-M-15 gene. The blaCTX-M-15 gene was detected in 5.2% (n = 21) of all isolates. Molecular analyses revealed a phylogenetic group A ST167 clone that was repeatedly isolated from raw milk and beef samples over a period of 6 months. The analyses indicate that spread of CTX-M-15-producing E. coli in German food samples were associated with a multireplicon IncF (FIA FIB FII) plasmid and additional antimicrobial resistance genes such as aac(6)-Ib-cr, blaOXA-1, catB3, different tet-variants as well as a class 1 integron with an aadA5/dfrA17 gene cassette. In addition, four phylogenetic group A ST410 isolates were detected. Three of them carried a chromosomal copy of the blaCTX-M-15 gene and a single isolate with the gene on a 90 kb IncF plasmid. The blaCTX-M-15 gene was always associated with the ISEcp1 element. In conclusion, CTX-M-15-producing E. coli were detected in German food samples. Among isolates of different matrices, two prominent clonal lineages, namely A-ST167 and A-ST410, were identified. These lineages may be important for the foodborne dissemination of CTX-M-15-producing E. coli in Germany. Interestingly, these clonal lineages were reported to be widely distributed and especially prevalent in isolates from humans and livestock. Transmission of CTX-M-15-harboring isolates from food-producing animals to food appears probable, as isolates obtained from livestock and food samples within the same time period exhibit comparable characteristics as compared to isolates detected from human. However, the routes and direction of transmission need further investigation.
Collapse
Affiliation(s)
- Alexandra Irrgang
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Linda Falgenhauer
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| | - Jennie Fischer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hiren Ghosh
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| | - Elisabet Guiral
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Guerra
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,European Food Safety Authority, Parma, Italy
| | - Silvia Schmoger
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus Liebig University, Giessen, Germany
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
12
|
Nascimento T, Cantamessa R, Melo L, Fernandes MR, Fraga E, Dropa M, Sato MIZ, Cerdeira L, Lincopan N. International high-risk clones of Klebsiella pneumoniae KPC-2/CC258 and Escherichia coli CTX-M-15/CC10 in urban lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:910-915. [PMID: 28458208 DOI: 10.1016/j.scitotenv.2017.03.207] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
The emergence of high-risk clones of multidrug-resistant (MDR) bacteria in aquatic environments has generated an important public health problem, creating an urgent need to strengthen surveillance. This study reports the occurrence of clinically significant MDR Enterobacteriaceae and non-fermentative bacteria carrying carbapenemases (KPC-2), extended-spectrum β-lactamases (CTX-M) and plasmid-mediated quinolone resistance (PMQR) genes in urban lakes and reservoirs, in Southeastern Brazil. In this regard, the detection of hospital-associated lineages of KPC-2-producing Klebsiella pneumoniae belonging to the international clonal complex CC258 (ST11) and CTX-M-15-producing Escherichia coli belonging to the international CC10 (ST617), in an urban lake, is reported for the first time. Whole genome sequencing (WGS) analysis of KPC-2-producing K. pneumoniae ST11 revealed that blaKPC-2 gene was carried by an IncN plasmid on a Tn4401b element. This study support that aquatic environments with public access can act as reservoirs of clinically important MDR bacteria, constituting a potential risk to human and animal health. On the other hand, the detection of high-risk clones highlights the extra-hospital spread of clinically significant bacteria into urban aquatic environments.
Collapse
Affiliation(s)
- Tatiane Nascimento
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Cantamessa
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luana Melo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Edmir Fraga
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Milena Dropa
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Maria I Z Sato
- Environmental Company of São Paulo State (CETESB), São Paulo, Brazil
| | - Louise Cerdeira
- Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Tayh G, Ben Sallem R, Ben Yahia H, Gharsa H, Klibi N, Boudabous A, Ben Slama K. First Report of Extended-Spectrum β-Lactamases Among Clinical Isolates ofKlebsiella pneumoniaein Gaza Strip, Palestine. Microb Drug Resist 2017; 23:169-176. [DOI: 10.1089/mdr.2016.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ghassan Tayh
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
| | - Rym Ben Sallem
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
| | - Haythem Gharsa
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
| | - Naouel Klibi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
| | - Abdellatif Boudabous
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis-El Manar, Tunis, Tunisie
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
| |
Collapse
|
14
|
Madoshi BP, Kudirkiene E, Mtambo MMA, Muhairwa AP, Lupindu AM, Olsen JE. Characterisation of Commensal Escherichia coli Isolated from Apparently Healthy Cattle and Their Attendants in Tanzania. PLoS One 2016; 11:e0168160. [PMID: 27977751 PMCID: PMC5158034 DOI: 10.1371/journal.pone.0168160] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022] Open
Abstract
While pathogenic types of Escherichia coli are well characterized, relatively little is known about the commensal E. coli flora. In the current study, antimicrobial resistance in commensal E. coli and distribution of ERIC-PCR genotypes among isolates of such bacteria from cattle and cattle attendants on cattle farms in Tanzania were investigated. Seventeen E. coli genomes representing different ERIC-PCR types of commensal E. coli were sequenced in order to determine their possible importance as a reservoir for both antimicrobial resistance genes and virulence factors. Both human and cattle isolates were highly resistant to tetracycline (40.8% and 33.1%), sulphamethazole-trimethoprim (49.0% and 8.8%) and ampicillin (44.9% and 21.3%). However, higher proportion of resistant E. coli and higher frequency of resistance to more than two antimicrobials was found in isolates from cattle attendants than isolates from cattle. Sixteen out of 66 ERIC-PCR genotypes were shared between the two hosts, and among these ones, seven types contained isolates from cattle and cattle attendants from the same farm, suggesting transfer of strains between hosts. Genome-wide analysis showed that the majority of the sequenced cattle isolates were assigned to phylogroups B1, while human isolates represented phylogroups A, C, D and E. In general, in silico resistome and virulence factor identification did not reveal differences between hosts or phylogroups, except for lpfA and iss found to be cattle and B1 phylogroup specific. The most frequent plasmids replicon genes found in strains from both hosts were of IncF type, which are commonly associated with carriage of antimicrobial and virulence genes. Commensal E. coli from cattle and attendants were found to share same genotypes and to carry antimicrobial resistance and virulence genes associated with both intra and extraintestinal E. coli pathotypes.
Collapse
Affiliation(s)
- Balichene P. Madoshi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
- Livestock Training Agency – Mpwapwa Campus, Mpwapwa, Dodoma
| | - Egle Kudirkiene
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Madundo M. A. Mtambo
- Tanzania Industrial Research Developments Organisation, TIRDO Complex, Dar es Salaam, Tanzania
| | - Amandus P. Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Athumani M. Lupindu
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
15
|
Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, Johnson JR, Kennedy K, Trott DJ, Turnidge JD, Gordon DM. Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. MICROBIOLOGY-SGM 2016; 162:1904-1912. [PMID: 27666313 DOI: 10.1099/mic.0.000367] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unlike Escherichia coli strains belonging to phylogroup B2, the clinical significance of strains belonging to phylogroup F is not well understood. Here we report on a collection of phylogroup F strains recovered in Australia from faeces and extra-intestinal sites from humans, companion animals and native animals, as well as from poultry meat and water samples. The distribution of sequence types was clearly non-random with respect to isolate source. The antimicrobial resistance and virulence trait profiles also varied with the sequence type of the isolate. Phylogroup F strains tended to lack the virulence traits typically associated with phylogroup B2 strains responsible for extra-intestinal infection in humans. Resistance to fluoroquinolones and/or expanded-spectrum cephalosporins was common within ST648, ST354 and ST3711. Although ST354 and ST3711 are part of the same clonal complex, the ST3711 isolates were only recovered from native birds being cared for in a single wildlife rehabilitation centre, whereas the ST354 isolates were from faeces and extra-intestinal sites of dogs and humans, as well as from poultry meat. Although ST354 isolates from chicken meat in Western Australia were distinct from all other ST354 isolates, those from poultry meat samples collected in eastern Australia shared many similarities with other ST354 isolates from humans and companion animals.
Collapse
Affiliation(s)
- Belinda Vangchhia
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, 116 Daley Road, Acton, Australian Capital Territory 2601, Australia
| | - Sam Abraham
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Jan M Bell
- Microbiology and Infectious Disease, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Peter Collignon
- Infectious Disease and Microbiology, Canberra Hospital, Woden, Australian Capital Territory 2606, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory 0200, Australia.,ACT Pathology, Canberra, Australian Capital Territory, Australia
| | - Justine S Gibson
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| | - Paul R Ingram
- Department of Microbiology, PathWest, Fiona Stanley Hospital, Perth, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - James R Johnson
- VA Medical Center and Department of Medicine, University of Minnesota, Infectious Diseases (111F), 1 Veterans Drive, Minneapolis, MN 55417, USA
| | - Karina Kennedy
- Infectious Disease and Microbiology, Canberra Hospital, Woden, Australian Capital Territory 2606, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Darren J Trott
- School of Animal and Veterinary Science, University of Adelaide, Roseworthy, South Australia 5371, Australia
| | - John D Turnidge
- Australian Commission on Safety and Quality in Health Care, New South Wales, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - David M Gordon
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, 116 Daley Road, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
16
|
Molecular Diversity and Plasmid Analysis of KPC-Producing Escherichia coli. Antimicrob Agents Chemother 2016; 60:4073-81. [PMID: 27114279 DOI: 10.1128/aac.00452-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The emergence and spread of Klebsiella pneumoniae carbapenemase (KPC) among Enterobacteriaceae presents a major public health threat to the world. Although not as common as in K. pneumoniae, KPC is also found in Escherichia coli strains. Here, we genetically characterized 9 carbapenem-resistant E. coli strains isolated from six hospitals in the United States and completely sequenced their blaKPC-harboring plasmids. The nine strains were isolated from different geographical locations and belonged to 8 different E. coli sequence types. Seven blaKPC-harboring plasmids belonged to four different known incompatibility groups (IncN, -FIA, -FIIK2, and -FIIK1) and ranged in size from ∼16 kb to ∼241 kb. In this analysis, we also identified two plasmids that have novel replicons: (i) pBK28610, which is similar to p34978-3 with an insertion of Tn4401b, and (ii) pBK31611, which does not have an apparent homologue in the GenBank database. Moreover, we report the emergence of a pKP048-like plasmid, pBK34397, in E. coli in the United States. Meanwhile, we also found examples of interspecies spread of blaKPC plasmids, as pBK34592 is identical to pBK30683, isolated from K. pneumoniae In addition, we discovered examples of acquisition (pBK32602 acquired an ∼46-kb fragment including a novel replication gene, along with Tn4401b and other resistance genes) and/or loss (pKpQIL-Ec has a 14.5-kb deletion compared to pKpQIL-10 and pBK33689) of DNA, demonstrating the plasticity of these plasmids and their rapid evolution in the clinic. Overall, our study shows that the spread of blaKPC-producing E. coli is largely due to horizontal transfer of blaKPC-harboring plasmids and related mobile elements into diverse genetic backgrounds.
Collapse
|
17
|
Seni J, Falgenhauer L, Simeo N, Mirambo MM, Imirzalioglu C, Matee M, Rweyemamu M, Chakraborty T, Mshana SE. Multiple ESBL-Producing Escherichia coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front Microbiol 2016; 7:142. [PMID: 26904015 PMCID: PMC4749707 DOI: 10.3389/fmicb.2016.00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 12/27/2022] Open
Abstract
The increased presence of extended-spectrum beta-lactamase (ESBL)-producing bacteria in humans, animals, and their surrounding environments is of global concern. Currently there is limited information on ESBL presence in rural farming communities worldwide. We performed a cross-sectional study in Mwanza, Tanzania, involving 600 companion and domestic farm animals between August/September 2014. Rectal swab/cloaca specimens were processed to identify ESBL-producing Enterobacteriaceae. We detected 130 (21.7%) animals carrying ESBL-producing bacteria, the highest carriage being among dogs and pigs [39.2% (51/130) and 33.1% (43/130), respectively]. The majority of isolates were Escherichia coli [93.3% (125/134)] and exotic breed type [OR (95%CI) = 2.372 (1.460–3.854), p-value < 0.001] was found to be a predictor of ESBL carriage among animals. Whole-genome sequences of 25 ESBL-producing E. coli were analyzed for phylogenetic relationships using multi-locus sequence typing (MLST) and core genome comparisons. Fourteen different sequence types were detected of which ST617 (7/25), ST2852 (3/25), ST1303 (3/25) were the most abundant. All isolates harbored the blaCTX-M-15 allele, 22/25 carried strA and strB, 12/25 aac(6′)-lb-cr, and 11/25 qnrS1. Antibiotic resistance was associated with IncF, IncY, as well as non-typable plasmids. Eleven isolates carried pPGRT46-related plasmids, previously reported from isolates in Nigeria. Five isolates had plasmids exhibiting 85–99% homology to pCA28, previously detected in isolates from the US. Our findings indicate a pan-species distribution of ESBL-producing E. coli clonal groups in farming communities and provide evidence for plasmids harboring antibiotic resistances of regional and international impact.
Collapse
Affiliation(s)
- Jeremiah Seni
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Nabina Simeo
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Mariam M Mirambo
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Mecky Matee
- Department of Microbiology/Immunology, Muhimbili University of Health and Allied Sciences Dar es Salaam, Tanzania
| | - Mark Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture Morogoro, Tanzania
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| |
Collapse
|
18
|
Schaufler K, Semmler T, Wieler LH, Wöhrmann M, Baddam R, Ahmed N, Müller K, Kola A, Fruth A, Ewers C, Guenther S. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410--another successful pandemic clone? FEMS Microbiol Ecol 2015; 92:fiv155. [PMID: 26656065 DOI: 10.1093/femsec/fiv155] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Clinically relevant extended-spectrum beta-lactamase (ESBL)-producing multi-resistant Escherichia coli have been on the rise for years. Initially restricted to mostly a clinical context, recent findings prove their prevalence in extraclinical settings independent of the original occurrence of antimicrobial resistance in the environment. To get further insights into the complex ecology of potentially clinically relevant ESBL-producing E. coli, 24 isolates from wild birds in Berlin, Germany, and 40 ESBL-producing human clinical E. coli isolates were comparatively analyzed. Isolates of ST410 occurred in both sample groups (six). In addition, three ESBL-producing E. coli isolates of ST410 from environmental dog feces and one clinical dog isolate were included. All 10 isolates were clonally analyzed showing almost identical macrorestriction patterns. They were chosen for whole-genome sequencing revealing that the whole-genome content of these 10 E. coli isolates showed a very high genetic similarity, differing by low numbers of single nucleotide polymorphisms only. This study gives initial evidence for a recent interspecies transmission of a new successful clone of ST410 E. coli between wildlife, humans, companion animals and the environment. The results underline the zoonotic potential of clinically relevant multi-resistant bacteria found in the environment as well as the mandatory nature of the 'One Health' approach.
Collapse
Affiliation(s)
- Katharina Schaufler
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, 14163 Berlin, Germany
| | - Torsten Semmler
- NG 1 - Microbial Genomics, Robert Koch Institute, 13302 Berlin, Germany
| | | | - Michael Wöhrmann
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ramani Baddam
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, 14163 Berlin, Germany Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, 500046 Hyderabad, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, 500046 Hyderabad, India
| | - Kerstin Müller
- Clinic of Small Animals, Veterinary Faculty, Freie Universität Berlin, 14163 Berlin, Germany
| | - Axel Kola
- Institute of Hygiene and Environmental Medicine, Charité Universitätsklinikum, 12203 Berlin, Germany
| | - Angelika Fruth
- Department for Infectious Diseases, Division of Bacterial Infections and National Reference, Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Veterinary Faculty, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Sebastian Guenther
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|