1
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
2
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
3
|
The Cholinesterase Inhibitory Properties of Stephaniae Tetrandrae Radix. Molecules 2020; 25:molecules25245914. [PMID: 33327436 PMCID: PMC7764916 DOI: 10.3390/molecules25245914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
Stephaniae tetrandrae radix (STR) is a commonly used traditional Chinese medicine in alleviating edema by inducing diuresis. In the clinic, STR extracts or its components are widely used in the treatment of edema, dysuria, and rheumatism for the regulation of water metabolism. Furthermore, STR has been used in treating emotional problems for years by combining with other Chinese herbs. However, the material basis and mechanism of STR on the nervous system have not been revealed. Here, the main components of STR extracts with different extracting solvents were identified, including three major alkaloids, i.e., cyclanoline, fangchinoline, and tetrandrine. The cholinesterase inhibitory activity of STR extracts and its alkaloids was determined using the Ellman assay. Both cyclanoline and fangchinoline showed acetylcholinesterase (AChE) inhibitory activity, demonstrating noncompetitive enzyme inhibition. In contrast, tetrandrine did not show enzymatic inhibition. The synergism of STR alkaloids with huperzine A or donepezil was calculated by the median-effect principle. The drug combination of fangchinoline–huperzine A or donepezil synergistically inhibited AChE, having a combination index (CI) < 1 at Fa = 0.5. Furthermore, the molecular docking results showed that fangchinoline bound with AChE residues in the peripheral anionic site, and cyclanoline bound with AChE residues in the peripheral anionic site, anionic site, and catalytic site. In parallel, cyclanoline bound with butyrylcholinesterase (BChE) residues in the anionic site, catalytic site, and aromatic site. The results support that fangchinoline and cyclanoline, alkaloids derived from STR, could account for the anti-AChE function of STR. Thus, STR extract or its alkaloids may potentially be developed as a therapeutic strategy for Alzheimer’s patients.
Collapse
|
4
|
Kong XP, Liu EY, Chen ZC, Xu ML, Yu AX, Wu QY, Xia YJ, Duan R, Dong TT, Tsim KW. Synergistic Inhibition of Acetylcholinesterase by Alkaloids Derived from Stephaniae Tetrandrae Radix, Coptidis Rhizoma and Phellodendri Chinensis Cortex. Molecules 2019; 24:molecules24244567. [PMID: 31847089 PMCID: PMC6943709 DOI: 10.3390/molecules24244567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Alkaloids having acetylcholinesterase (AChE) inhibitory activity are commonly found in traditional Chinese medicine (TCM); for example, berberine from Coptis chinensis, galantamine from Lycoris radiata, and huperzine A from Huperzia serrata. In practice of TCM, Stephaniae Tetrandrae Radix (STR) is often combined with Coptidis Rhizoma (CR) or Phellodendri Chinensis Cortex (PCC) as paired herbs during clinical application. Fangchinoline from STR and coptisine and/or berberine from CR and/or PCC are active alkaloids in inhibiting AChE. The traditional usage of paired herbs suggests the synergistic effect of fangchinoline–coptisine or fangchinoline–berberine pairing in AChE inhibition. HPLC was applied to identify the main components in herbal extracts of STR, CR, and PCC, and the AChE inhibition of their main components was determined by Ellman assay. The synergism of herb combination and active component combination was calculated by median-effect principle. Molecular docking was applied to investigate the underlying binding mechanisms of the active components with the AChE protein. It was found that fangchinoline showed AChE inhibitory potency; furthermore, fangchinoline–coptisine/berberine pairs (at ratios of 1:5, 1:2, 1:1, and 2:1) synergistically inhibited AChE; the combination index (CI) at different ratios was less than one when Fa = 0.5, suggesting synergistic inhibition of AChE. Furthermore, the molecular docking simulation supported this enzymatic inhibition. Therefore, fangchinoline–coptisine/berberine pairs, or their parental herbal mixtures, may potentially be developed as a possible therapeutic strategy for Alzheimer’s patients.
Collapse
Affiliation(s)
- Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong 030619, China
| | - Etta Y.L. Liu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhi-Cong Chen
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Anna X.D. Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T.X. Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| | - Karl W.K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| |
Collapse
|
5
|
Krishna KV, Wadhwa G, Alexander A, Kanojia N, Saha RN, Kukreti R, Singhvi G, Dubey SK. Design and Biological Evaluation of Lipoprotein-Based Donepezil Nanocarrier for Enhanced Brain Uptake through Oral Delivery. ACS Chem Neurosci 2019; 10:4124-4135. [PMID: 31418556 DOI: 10.1021/acschemneuro.9b00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory and cognitive impairment. Donepezil is an acetylcholinesterase inhibitor used for the symptomatic treatment of AD. However, high dose of donepezil is prescribed to achieve effective concentration in the brain, which leads to significant side effects, gastrointestinal alterations, and hepatotoxicity. In the present study, ApoE3 conjugated polymeric nanoparticles derived from diblock copolymer methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) have been used to boost the delivery of donepezil to the brain. mPEG-PCL is an amphiphilic diblock polymer with a tendency to avoid nanoparticle uptake by phagocytic cells in the liver and can significantly reduce the gastric mucosal irritations. Moreover, ApoE3-based nanocarriers showed a promising ability to enhance brain uptake, binding to amyloid beta with high affinity and accelerating its clearance. Donepezil-loaded polymeric nanoparticles were performed by using a nanoprecipitation method and further surface modified with polysorbate 80 and ApoE3 to increase the brain bioavailability and reduce the dose. Optimization of various process parameters were performed using quality by design approach. ApoE3 polymeric nanoparticles were found to be stable in simulated gastric fluids and exhibited a sustained drug release pattern. Cellular uptake studies confirmed better neuronal uptake of the developed formulation, which is further corroborated with pharmacokinetic and biodistribution studies. Orally administered ApoE3 polymeric nanoparticles resulted in significantly higher brain donepezil levels after 24 h (84.97 ± 11.54 ng/mg tissue) as compared to the pure drug (not detected), suggesting a significant role of surface coating. Together, these findings are promising and offer preclinical evidence for better brain availability of donepezil by oral administration.
Collapse
Affiliation(s)
- Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Geetika Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Dubai Campus, New Delhi 110025, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai 345055, United Arab Emirates
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Dubai Campus, New Delhi 110025, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
6
|
Ma L, Wen C, Chen C, Shen S, Yang J. Hepatotoxicity Associated with Donepezil in an Individual Taking Citalopram. J Am Geriatr Soc 2018; 64:1144-5. [PMID: 27225372 DOI: 10.1111/jgs.14128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liping Ma
- Department of Pharmacy, Peking University Shougang Hospital, Beijing, China
| | - Cheng Wen
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Can Chen
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sijing Shen
- Department of Pharmacy, Peking University Shougang Hospital, Beijing, China
| | - Junnan Yang
- Department of Geriatrics, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
7
|
Chew AP, Lim WS, Tan KT. Donepezil-induced hepatotoxicity in an elderly adult taking fluoxetine. J Am Geriatr Soc 2014; 62:2009-11. [PMID: 25333550 DOI: 10.1111/jgs.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Aik Phon Chew
- Department of Geriatric Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | | | | |
Collapse
|
8
|
Abstract
Therapeutic strategies in Alzheimer’s disease (AD) must take into account the characteristics of elderly people, who often have somatic comorbidities. Moreover, demented patients are more frequently frailer than older people. They have a higher number of admissions to hospital, a greater prevalence of complications and an increased risk of death. Therapeutic decisions for these patients have to be approached cautiously: aging, a more elevated comorbidity/polytherapy index and frailty contribute to enhance the risk of pharmacological adverse events and drug interactions. The aim of the present study was to focus on risk–benefit profile of pharmacological therapy for AD in relation to somatic comorbidities that often affect these patients. A Medline search (from 2001 to 2012) was performed using as key words dementia, Alzheimer’s disease, drug treatment, somatic comorbidities, side effects/adverse events and elderly. Cholinesterase inhibitors (ChEIs) and memantine represent the main pharmacological strategies effective in reducing the progression of cognitive decline and functional loss in AD. Many conditions very common in the elderly may restrict the use of ChEIs and/or treatment efficacy in AD patients. Memantine has a good efficacy and tolerability profile with better safety in pulmonary, cardiovascular and central nervous system comorbidities compared to ChEIs. Drug interactions with memantine are also more favorable since they concern mostly drugs not commonly used in the elderly. Only a careful evaluation of the associated somatic diseases, taking into account different drugs safety indexes and tolerability, can lead to personalized treatment management, in order to maximize drug efficacy and optimize quality of life.
Collapse
|
9
|
Sedky K, Nazir R, Joshi A, Kaur G, Lippmann S. Which psychotropic medications induce hepatotoxicity? Gen Hosp Psychiatry 2012; 34:53-61. [PMID: 22133982 DOI: 10.1016/j.genhosppsych.2011.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Safe prescribing practices to minimize pharmaceutically induced liver damage or worsening of preexisting conditions require knowledge about medicines with hepatotoxic potential. This paper reviews psychotropic medications and their effects on the liver. METHODS A MEDLINE search was performed utilizing the phrase "drug-induced liver injury" with various categories of psychiatric drugs. Only articles written in English were utilized. RESULTS Hepatotoxicity can be acute or chronic in nature. Medication discontinuation is necessary in acute forms, while close monitoring is required in milder forms of medication-induced chronic liver damage. Nefazodone, pemoline and/or tacrine are the highest offenders. Carbamazepine and valproate products (e.g., divalproex) can lead to this adverse event and should be avoided in patients with liver disease, persons with alcohol misuse or those consuming high doses of acetaminophen. CONCLUSION Knowing the risk levels associated with various medicines is important; prescribing multiple drugs with hepatotoxic effects should be avoided. One should educate patients about early warning signs of liver injury. Always provide clinical and laboratory monitoring before and during the use of hepatotoxic drugs. Clinical features and laboratory results govern medication prescribing with ongoing risk-to-benefit ratio assessment during pharmacotherapy.
Collapse
Affiliation(s)
- Karim Sedky
- Department of Psychiatry, Drexel University, Philadelphia, PA 19124, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The treatment of moderate to severe Alzheimer's disease is reviewed with regard to mechanisms of action, pharmacokinetics, metabolism, safety/tolerability, and efficacy in reducing cognitive, behavioral/psychiatric, functional and global symptoms. The cholinesterase inhibitors donepezil, rivastigmine and galantamine and the N-methyl-d-aspartate receptor channel blocker memantine are moderately beneficial. Small improvements over a few months are followed by slowed mental decline. Concerning cognitive, functional and global functions, these drugs are similarly effective. Cholinesterase inhibitors also reduce apathy, memantine counteracts agitation and aggression. Serious adverse effects are rare with all four drugs. Cholinesterase inhibitors bear a risk for patients with cardiac diseases. Adverse emetic events are typical for oral formulations of these drugs, but less for rivastigmine transdermal patches. Other routes of administration and use of a galantamine prodrug are currently investigated. The superiority of combination therapies over monotherapies requires further support. Promising investigational drugs include the copper/zinc ionophore PBT2 and multifunctional hybrid molecules.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, D-37073 Göttingen, Germany
| |
Collapse
|
11
|
Leman L, Kitson SL, Brown RT, Cairns J, Watters W, McMordie A, Murrell VL, Marfurt J. Synthesis of isotopically labelled [14C]ZT-1 (Debio-9902), [d3]ZT-1 and (−)-[d3]huperzine A, a new generation of acetylcholinesterase inhibitors. J Labelled Comp Radiopharm 2011. [DOI: 10.1002/jlcr.1918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Loïc Leman
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Sean L Kitson
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Rodney T Brown
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Jana Cairns
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - William Watters
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Austin McMordie
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Victor L Murrell
- Isotope Chemistry Laboratories, Almac; Almac House, 20 Seagoe Industrial Estate; Craigavon; BT63 5QD; UK
| | - Judith Marfurt
- Debiopharm S.A.; Forum Après-demain; Chemin Messidor 5-7; CP 5911-1002; Lausanne; Switzerland
| |
Collapse
|
12
|
Yilmaz Y. Cytokeratins in hepatitis. Clin Chim Acta 2011; 412:2031-6. [PMID: 21925155 DOI: 10.1016/j.cca.2011.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 02/06/2023]
Abstract
Experimental and clinical evidence suggests that cytokeratins (CK), among other physiological functions, are expressed in hepatocytes and can be released in the bloodstream after acute or chronic inflammatory liver injury. Interest in CK in viral and nonviral hepatitis has been rapidly increasing during the last years, especially as they have been proposed as circulating biomarkers of hepatocyte necrosis and apoptosis. In the present review, we sought to summarize and discuss the alterations in circulating CK levels in different form viral and nonviral hepatitis, as well as their potential relation with liver histology. Understanding the mechanisms of hepatitis impact on CK and vice versa is a promising area of research that will positively enhance our understanding of the complexity of acute and chronic inflammatory liver injury.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, Marmara University, School of Medicine, Pendik, 34899 Istanbul, Turkey.
| |
Collapse
|