1
|
Panferov VG, Zherdev AV, Dzantiev BB. Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review. BIOSENSORS 2023; 13:866. [PMID: 37754100 PMCID: PMC10526817 DOI: 10.3390/bios13090866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips-fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA's rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA's sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions.
Collapse
Affiliation(s)
- Vasily G. Panferov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.G.P.); (A.V.Z.)
| |
Collapse
|
2
|
Väänänen V, Christensen MM, Suhonen H, Jernvall J. Gene expression detection in developing mouse tissue using in situ hybridization and µCT imaging. Proc Natl Acad Sci U S A 2023; 120:e2301876120. [PMID: 37279266 PMCID: PMC10268296 DOI: 10.1073/pnas.2301876120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Collapse
Affiliation(s)
- Vilma Väänänen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
3
|
Thangavelu RM, Kadirvel N, Balasubramaniam P, Viswanathan R. Ultrasensitive nano-gold labelled, duplex lateral flow immunochromatographic assay for early detection of sugarcane mosaic viruses. Sci Rep 2022; 12:4144. [PMID: 35264671 PMCID: PMC8907228 DOI: 10.1038/s41598-022-07950-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Sugarcane is one of the important food and bioenergy crops, cultivated all over the world except European continent. Like many other crops, sugarcane production and quality are hampered by various plant pathogens, among them viruses that infect systemically and cause severe impact to cane growth. The viruses are efficiently managed by their elimination through tissue culture combined with molecular diagnostics, which could detect virus titre often low at 10-12 g mL-1. To harmonize the virus diagnostics by molecular methods, we established a nanocatalysis-based high sensitive lateral flow immunochromatographic assay (LFIA) simultaneously to detect two major sugarcane viruses associated with mosaic disease in sugarcane. LFIA is known for poor sensitivity and stability with its signalling conjugates. However, we synthesized positively charged Cysteamine-gold nanoparticles and used them to prepare highly stable to sensitive immunoconjugates and as a colourimetric detection label. Further nanogold signal enhancement was performed on LFIA to obtain a high detection sensitivity, which is higher than the conventional immunoassays. The linear detection range of the nano-LIFA was 10-6 to 10-9 g mL-1, and with the signal enhancement, the LOD reached up to 10-12 g ml-1. This research paper provides relative merits and advancement on nano-LFIA for specific detection of sugarcane viruses in sugarcane for the first time.
Collapse
Affiliation(s)
| | - Nithya Kadirvel
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India
| | | | - Rasappa Viswanathan
- Plant Pathology Section, Division of Crop Protection, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, India.
| |
Collapse
|
4
|
Danscher G, Montagnese C. Autometallographic Localization of Synaptic Vesicular Zinc and Lysosomal Gold, Silver and Mercury. J Histotechnol 2013. [DOI: 10.1179/his.1994.17.1.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J Immunol Methods 2011; 375:264-70. [PMID: 22100215 DOI: 10.1016/j.jim.2011.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/22/2022]
Abstract
There is an increasing demand for convenient and accurate point-of-care tools that can detect and diagnose different stages of a disease in remote or impoverished settings. In recent years, lateral flow immunoassays (LFIA) have been indicated as a suitable medical diagnostic tool for these environments because they require little or no sample preparation, provide rapid and reliable results with no electronic components and thus can be manufactured at low costs and operated by unskilled personnel. However, even though they have been successfully applied to acute and chronic disease detection, LFIA based on gold nanoparticles, the standard marker, show serious limitations when high sensitivity is needed, such as early stage disease detection. Moreover, based on the lack of comparative information for label performance, significant optimization of the systems that are currently in use might be possible. To this end, in the presented work, we compare the detection limit between the four most used labels: colloidal-gold, silver enhanced gold, blue latex bead and carbon black nanoparticles. Preliminary results were obtained by using the biotin-streptavidin coupling as a model system and showed that carbon black had a remarkably low detection limit of 0.01 μg/mL in comparison to 0.1 μg/mL, 1 μg/mL and 1mg/mL for silver-coated gold nanoparticles, gold nanoparticles and polystyrene beads, respectively. Therefore, as a proof of concept, carbon black was used in a detection system for Dengue fever. This was achieved by immobilizing monoclonal antibodies for the nonstructural glycoprotein (NS1) of the Dengue virus to carbon black. We found that the colorimetric detection limit of 57 ng/mL for carbon black was ten times lower than the 575 ng/mL observed for standard gold nanoparticles; which makes it sensitive enough to diagnose a patient on the first days of infection. We therefore conclude that, careful screening of detection labels should be performed as a necessary step during LFIA development in order to enhance the detection limit in a final test system.
Collapse
|
6
|
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - S. Sumalekshmy
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
7
|
Analytical prospect of compact disk technology in immunosensing. Anal Bioanal Chem 2008; 391:2837-44. [DOI: 10.1007/s00216-008-2224-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
|
8
|
Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur/zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. ACTA ACUST UNITED AC 2006; 41:57-139. [PMID: 16949439 DOI: 10.1016/j.proghi.2006.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
9
|
Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A. Measuring Biomolecular Binding Events with a Compact Disc Player Device. Angew Chem Int Ed Engl 2006; 45:270-3. [PMID: 16372307 DOI: 10.1002/anie.200501243] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A. Measuring Biomolecular Binding Events with a Compact Disc Player Device. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200501243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Meywald T, Scherthan H, Nagl W. Increased specificity of colloidal silver staining by means of chemical attenuation. Hereditas 2004; 124:63-70. [PMID: 8690615 DOI: 10.1111/j.1601-5223.1996.00063.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A modification of the silver staining procedure of Howell and Black (1980) is reported which makes use of teleostean gelatin as protective colloid and renders a high signal-to-noise ratio. We demonstrate that this ratio can be further increased by subsequent attenuation with a chemical reducer consisting of a mixture of potassium ferricyanide (III) and sodium thiosulphate. It is shown that slight changes of the concentration of the reactive compounds of the chemical reducer make the protocol applicable to human, plant (Aliium cepa, Rhinanthus minor) as well as meiotic insect (Acheta domesticus) chromosome preparations. Due to its broad applicability, the method could find utilization in studies on chromatin and chromosome functions in many species.
Collapse
Affiliation(s)
- T Meywald
- Dept. of Cell Biology, The University, Kaiserslautern, Germany
| | | | | |
Collapse
|
12
|
Schnetz B, Margot P. Technical note: latent fingermarks, colloidal gold and multimetal deposition (MMD). Optimisation of the method. Forensic Sci Int 2001; 118:21-8. [PMID: 11343851 DOI: 10.1016/s0379-0738(00)00361-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Operational details and optimisation of the colloidal gold or multimetal deposition technique (MMD) for the detection of latent fingermarks on non porous and porous surfaces demonstrate the power of the method. Control of particulate size, pH, reagent, handling are shown to be essential. A difficult case example illustrates the potential of MMD.
Collapse
Affiliation(s)
- B Schnetz
- Police cantonale du Jura, Identité Judiciaire, Delémont, Switzerland
| | | |
Collapse
|
13
|
Leitinger G, Pabst MA, Kral K. Gold toning preserves integrity of silver enhanced immunogold particles during osmium tetroxide treatment for demonstration of a biogenic amine. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:30-8. [PMID: 10719263 DOI: 10.1016/s1385-299x(99)00049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe a protocol that enhances immunolabelling of nervous tissue for ultrastructural study. Insect tissue is fixed, sectioned, and labelled with a polyclonal antiserum against serotonin and a secondary antibody conjugated with 1 nm colloidal gold. The gold particles are silver-enhanced to ease detection and then protected by gold toning. Finally, the tissue is post fixed in glutaraldehyde fixative followed by osmium tetroxide and further processed for electron microscopy. We demonstrated on insect nervous tissue that gold toning protects marker particles from the influence of osmium tetroxide. Use of buffered solutions throughout the protocol led to well preserved ultrastructural details, and marker particle size was not reduced with a short gold toning time. We also suggest use of this protocol for vertebrate or other invertebrate tissue.
Collapse
Affiliation(s)
- G Leitinger
- Institut für Histologie und Embryologie, Karl-Franzens-Universität, Graz, Austria.
| | | | | |
Collapse
|
14
|
Abstract
With the experience accumulated from more than a century of silver applications in biology and medicine, physical development has become a powerful bioanalytical tool for marker amplification in blotting procedures, in situ hybridization, immunocytochemistry, histochemistry, and cytochemistry. Early, empirical techniques of silver impregnation followed by development in a reducing solution (chemical developer), or a solution which contained both silver reducers and silver salts (physical developer) were often capricious and suffered from unwanted silver precipitation caused by light and self-nucleation. To accommodate the modern demand for accurate physical development, various strategies have been devised to counter these problems. One approach has been to introduce organic colloids into the developer to keep the silver ions and reducer molecules apart, whilst excluding light by using a dark-room or by covering the solution. Albumen, gelatin, and complex polysaccharides have all been tested, but gum arabic is preferred. In addition, further control can be achieved by slowing down the rate of development with low pH and by changing from silver nitrate to silver lactate, which dissociates more slowly. Effective colloid protection in a physical developer is also provided by the inclusion of tungsten salts which can delay light-catalysed silver reduction and keep the developer clear for many minutes. The same result has been achieved by complexing the silver salt in the physical developer with very large organic molecules, restricting ionization. 'Light insensitive' commercial designer products have resulted. Probably no single formulation can satisfy all conditions of use, but with increased understanding of the mechanisms of physical developers a more flexible, user-friendly approach is anticipated.
Collapse
Affiliation(s)
- G R Newman
- Department of Pathology, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | |
Collapse
|
15
|
Abstract
In conventional immunoelectron microscopy (IEM), very small colloidal gold particles (0.8-3 nm), or the gold compound Nanogold (1.4 nm) are silver-enhanced for easy detection. However, silver enhancement has drawbacks. First, the silver layer is dissolved during fixation with osmium tetroxide, even if the concentration and incubation time are strongly reduced during pre-embedding labeling experiments in transmission electron microscopic (TEM) and scanning electron microscopic (SEM) studies. Second, after exposure to the electron beam the silver layer may migrate on the section or the whole particles may disappear. Sometimes silver migration can be observed even without irradiation. This effect strongly hampers reinvestigation of previously inspected areas, after some time of storage. In both cases, gold chloride treatment after silver enhancement is sufficient to completely protect the silver-enhanced 1 nm gold markers. Gold chloride treatment is part of the so-called "gold toning" procedure, which is a method used to substitute and/or cover the silver by a layer of gold. It can be applied in TEM and SEM experiments. As a serious drawback, gold chloride treatment slightly reduces the size of both unenhanced and silver-enhanced gold particles and can lead to disintegrated silver/gold particles. Therefore, this technique is useful for pre-embedding IEM, on-(resin)section, and ultrathin cryosection labeling experiments. However, it appears to be unsuitable for double-labeling studies using different gold sizes, for quantitation experiments, and in SEM.
Collapse
Affiliation(s)
- K Pohl
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | | |
Collapse
|
16
|
Abstract
The introduction of ultrasmall (approximately 1-3 nm) colloidal gold markers in immunoelectron microscopy (IEM) in 1989 has considerably improved the sensitivity of this marker system. Ultrasmall gold markers have opened the field of pre-embedding labeling studies to gold markers without the need of harsh permeabilizing steps. They are recommended for the detection of scarce antigens in ultrathin cryosections which may otherwise escape immunodetection. However, reports concerning the preparation of ultrasmall gold colloids, their conjugation to proteins, and their use in high-resolution studies (without an additional enlargement step) are very limited. Also, the available enlargement techniques necessary for the use of this marker in conventional electron microscopy require detailed discussion to clarify the large number of contradictory observations. The present review summarizes and discusses the findings accumulated within the last 10 years on the application of ultrasmall gold markers in IEM with regard to their merits, limitations, detection sensitivity, and suitability for different labeling techniques. It should provide practical hints for the use of ultrasmall gold colloids and discusses problems arising with enlargement techniques such as silver enhancement and gold toning procedures.
Collapse
Affiliation(s)
- W Baschong
- Maurice E. Mueller Institute for Structural Biology at the Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
17
|
Danscher G, Andreasen A. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine. J Neurosci Methods 1997; 77:175-81. [PMID: 9489895 DOI: 10.1016/s0165-0270(97)00121-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.
Collapse
Affiliation(s)
- G Danscher
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | |
Collapse
|
18
|
Laube G, Röper J, Pitt JC, Sewing S, Kistner U, Garner CC, Pongs O, Veh RW. Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:51-61. [PMID: 8915580 DOI: 10.1016/s0169-328x(96)00120-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Pinceau is a paintbrush-like network of cerebellar basket cell axon branchlets embracing the initial segment of the Purkinje cell axon. Its electrical activity contributes to the control of the cerebellar cortical output through the Purkinje cell axon by generating an inhibitory field effect. In addition to the structural features of the Pinceau, its repertoire of voltage-gated ion channels is likely to be an important aspect of this function. Therefore, we investigated the fine structural distribution of voltage-activated potassium (Kv1.1, Kv1.2, Kv3.4) and sodium channel proteins in the Pinceau. The ultrastructural localization of potassium channel subunits was compared to the distribution of synapse-associated protein 90 (SAP90), a protein capable to induce in vitro clustering of Kv1 proteins. With an improved preembedding technique including ultrasmall gold particles, silver enhancement and gold toning, we could show that antibodies recognizing Kv1.1, Kv1.2 and SAP90 are predominantly localized to septate-like junctions, which connect the basket cell axonal branchlets. Kv3.4 immunoreactivity is not concentrated in junctional regions but uniformly distributed over the Pinceau and the pericellular basket surrounding the Purkinje cell soma. In contrast, voltage-activated sodium channels were not detected in the Pinceau, but localized to the Purkinje cell axon initial segment. The results suggest that Kv1.1 and Kv1.2 form heterooligomeric delayed rectifier type Kv channels, being colocalized to septate-like junctions by interaction with SAP90.
Collapse
Affiliation(s)
- G Laube
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies.
Collapse
Affiliation(s)
- P M Lackie
- Southampton University Medicine, Southampton General Hospital, England
| |
Collapse
|
20
|
Danscher G. The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. THE HISTOCHEMICAL JOURNAL 1996; 28:361-73. [PMID: 8818683 DOI: 10.1007/bf02331399] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new version of Timm's sulphide silver method involving in vivo binding of zinc ions in zinc enriched terminals is presented. By injecting sodium sulphide into the vena cava of deeply anaesthetized animals, it is possible to bind chemically the vesicular zinc, i.e. chelatable zinc (zinc ions), in secretory and synaptic vesicles, in the form of zinc sulphide crystal lattices. Four minutes after the intravenous injection the animal is perfused transcardially with a phosphate-buffered solution of glutaraldehyde, glutaraldehyde and formaldehyde, or with a saline solution. The nanometer-sized catalytic crystals can then be silver-amplified in cryostat and vibratome sections by exposure to an autometallographic developer. It is demonstrated that contemporaneously with silver enhancement, the zinc sulphide crystals are transformed to the corresponding silver sulphide crystals. For ultrastructural studies, autometallographic development of vibratome sections is recommended. From these sections tissue blocks are cut from the areas of interest, blockstained with osmium tetroxide and embedded in Epon. This approach results in a zinc-specific autometallographic staining of the sections of a hitherto unseen, high technical quality.
Collapse
Affiliation(s)
- G Danscher
- Department of Neurobiology, Steno Center, University of Aarhus, Denmark
| |
Collapse
|
21
|
Li Q, Hacker GW, Danscher G, Sonnleitner-Wittauer U, Grimelius L. Argyrophilic nucleolar organizer regions. A revised version of the Ag-NOR-staining technique. Histochem Cell Biol 1995; 104:145-50. [PMID: 8536071 DOI: 10.1007/bf01451573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Silver staining techniques developed to demonstrate argyrophilic nucleolar organizer regions (Ag-NORs) have been widely applied in a variety of cell kinetic studies, using the mean number of AgNORs in tumour cells as a marker for malignancy of certain types of neoplasms. However, the AgNOR techniques currently available are not entirely satisfactory, as unspecific silver precipitates readily form in the sections. On the other hand, the contrast staining may be so weak as to render identification of the AgNORs difficult. In the present study, some of the key factors influencing the outcome of AgNOR staining were evaluated in a more systematic way. A modified AgNOR staining procedure is now proposed, giving highly contrasting AgNORs with minimal unspecific silver precipitation, thus facilitating both manual and computerized counting. The new technique involves the use of microwave irradiation in order to shorten the processing time, the use of gelatin as a protective colloid, and a Farmer's solution to optimize the specificity of the technique.
Collapse
Affiliation(s)
- Q Li
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
22
|
Ostrander GK, Blair JB, Stark BA, Marley GM, Bales WD, Veltri RW, Hinton DE, Okihiro M, Ortego LS, Hawkins WE. Long-term primary culture of epithelial cells from rainbow trout Oncorhynchus mykiss) liver. In Vitro Cell Dev Biol Anim 1995; 31:367-78. [PMID: 7543343 DOI: 10.1007/bf02634286] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term primary cultures of epithelial cells from rainbow trout (Oncorhynchus mykiss) liver have been established. Nearly homogenous (> 97%) populations of hepatocytes were placed into primary culture and remained viable and proliferative for at least 70 d. In addition to hepatocytes, proliferative biliary cells persisted in the cultures for at least 30 d. Finally, a third type of epithelial cell, which we have termed a "spindle cell," consistently appeared and proliferated to confluence in these cultures. The confluent cultures of spindle cells were successfully subcultured and passaged. The initial behavior, growth, and optimization of serum and media requirements for these cells is described. All three cell types proliferated as measured by thymidine incorporation, autoradiography, proliferating cellular nuclear antigen analysis, and propidium iodine staining. Further efforts to characterize the cells included western blotting and immunohistochemical staining with antibodies to cytokeratins previously reported in fish liver. From these data, it appears that all three cell populations are epithelial in nature. Furthermore, significant changes in actin organization, often indicative of transformation or pluripotent cells, were observed with increased time in primary culture.
Collapse
Affiliation(s)
- G K Ostrander
- Department of Zoology, Oklahoma State University, Stillwater 74078, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Danscher G, Stoltenberg M, Juhl S. How to detect gold, silver and mercury in human brain and other tissues by autometallographic silver amplification. Neuropathol Appl Neurobiol 1994; 20:454-67. [PMID: 7845531 DOI: 10.1111/j.1365-2990.1994.tb00996.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gold, silver, mercury and zinc bind chemically to sulphide or selenide ions and create crystal lattices that can be detected in histological sections by a silver amplification technique called autometallography (AMG). The technique specifically magnifies such nanometer-sized catalytic crystals. For each metal, a detailed protocol has been worked out. If several different AMG metals/metal molecules are present in the same tissue, it is possible to distinguish one from another. The AMG technique is based on the capability of small crystal lattices of the aforementioned metals and metal molecules to initiate AMG silver amplification. Electrons released from adhering hydroquinone molecules reduce silver ions that are integrally connected with the crystal lattices. In this manner, particles consisting of only a few atoms of, say, gold, or molecules of mercury selenide (Figure 1), can be silver amplified to a size at which they can be detected in the electron microscope, or even further to dimensions that can be observed in the light microscope. Thus the AMG technique opens up the possibility of visualizing gold, e.g. in the nervous system of rheumatic patients who have been treated with aurothiomalate. Mercury can similarly be visualized in tissues from individuals who have been exposed to mercury, either through leaching from amalgam dental fillings, through eating fish, or by occupational exposure, and silver in the central (CNS) and peripheral nervous systems (PNS) and other tissues from individuals exposed to silver in one form or another. In the future, the possibility of demonstrating vesicular zinc, a particular pool of endogenous zinc that is found in terminals of zinc-enriched neurons (ZEN neurons), might prove valuable for pathological interpretation of diseases such as Alzheimer's disease. The vesicular zinc, present in some of the synaptic vesicles of ZEN neuron terminals, is most impressively demonstrated by AMG in telencephalic structures. It is becoming increasingly indisputable that vesicular zinc is related to synaptic activity influencing or modulating facilitatory synapses. ZEN neurons are probably a sub-population of glutaminergic neurons. A technique for the post-mortem demonstration of vesicular zinc in terminals of ZEN neurons in human brains is therefore urgently required.
Collapse
Affiliation(s)
- G Danscher
- Steno Institute, Department of Neurobiology, University of Aarhus, Denmark
| | | | | |
Collapse
|