1
|
Roka K, Solomou E, Kattamis A, Stiakaki E. Telomere biology disorders: from dyskeratosis congenita and beyond. Postgrad Med J 2024; 100:879-889. [PMID: 39197110 DOI: 10.1093/postmj/qgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Defective telomerase function or telomere maintenance causes genomic instability. Alterations in telomere length and/or attrition are the primary features of rare diseases known as telomere biology disorders or telomeropathies. Recent advances in the molecular basis of these disorders and cutting-edge methods assessing telomere length have increased our understanding of this topic. Multiorgan manifestations and different phenotypes have been reported even in carriers within the same family. In this context, apart from dyskeratosis congenita, disorders formerly considered idiopathic (i.e. pulmonary fibrosis, liver cirrhosis) frequently correlate with underlying defective telomere maintenance mechanisms. Moreover, these patients are prone to developing specific cancer types and exhibit exceptional sensitivity and toxicity in standard chemotherapy regimens. The current review describes the diverse spectrum of clinical manifestations of telomere biology disorders in pediatric and adult patients, their correlation with pathogenic variants, and considerations during their management to increase awareness and improve a multidisciplinary approach.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Full Member of ERN GENTURIS and ERN EuroBloodnet, 8 Levadias Street, Goudi, Athens, 11527, Greece
| | - Elena Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, 26500, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Full Member of ERN GENTURIS and ERN EuroBloodnet, 8 Levadias Street, Goudi, Athens, 11527, Greece
| | - Eftychia Stiakaki
- Department of Pediatric Hematology-Oncology & Autologous Hematopoietic Stem Cell Transplantation Unit, University Hospital of Heraklion & Laboratory of Blood Diseases and Childhood Cancer Biology, School of Medicine, University of Crete, Voutes, Heraklion, Crete, 71500, Greece
| |
Collapse
|
2
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
3
|
Rolles B, Tometten M, Meyer R, Kirschner M, Beier F, Brümmendorf TH. Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment. Transfus Med Hemother 2024; 51:292-309. [PMID: 39371255 PMCID: PMC11452174 DOI: 10.1159/000540109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Telomeres are the end-capping structures of all eukaryotic chromosomes thereby protecting the genome from damage and degradation. During the aging process, telomeres shorten continuously with each cell division until critically short telomeres prevent further proliferation whereby cells undergo terminal differentiation, senescence, or apoptosis. Premature aging due to critically short telomere length (TL) can also result from pathogenic germline variants in the telomerase complex or related genes that typically counteract replicative telomere shortening in germline and certain somatic cell populations, e.g., hematopoetic stem cells. Inherited diseases that result in altered telomere maintenance are summarized under the term telomere biology disorder (TBD). Summary Since TL both reflects but more importantly restricts the replicative capacity of various human tissues, a sufficient telomere reserve is particularly important in cells with high proliferative activity (e.g., hematopoiesis, immune cells, intestinal cells, liver, lung, and skin). Consequently, altered telomere maintenance as observed in TBDs typically results in premature replicative cellular exhaustion in the respective organ systems eventually leading to life-threatening complications such as bone marrow failure (BMF), pulmonary fibrosis, and liver cirrhosis. Key Messages The recognition of a potential congenital origin in approximately 10% of adult patients with clinical BMF is of utmost importance for the proper diagnosis, appropriate patient and family counseling, to prevent the use of inefficient treatment and to avoid therapy-related toxicities including appropriate donor selection when patients have to undergo stem cell transplantation from related donors. This review summarizes the current state of knowledge about TBDs with particular focus on the clinical manifestation patterns in children (termed early onset TBD) compared to adults (late-onset TBD) including typical treatment- and disease course-related complications as well as their prognosis and adequate therapy. Thereby, it aims to raise awareness for a disease group that is currently still highly underdiagnosed particularly when it first manifests itself in adulthood.
Collapse
Affiliation(s)
- Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Mareike Tometten
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Robert Meyer
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
4
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Unveil the Molecular Interplay between Aminoglycosides and Pseudouridine in IRES Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614200. [PMID: 39345397 PMCID: PMC11429969 DOI: 10.1101/2024.09.20.614200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the wild-type ribosomes and those lacking pseudouridine ( cbf5 -D95A). We showed that the cbf5 -D95A ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with an internal ribosome entry site (IRES) RNA, elongation factor eEF2, GTP, sordarin, hygromycin B preferentially binds to the cbf5 -D95A ribosomes during initiation by blocking eEF2 binding and stalls the ribosomes in a non-rotated conformation, further hindering translocation. Hygromycin B binds to the inter-subunit bridge B2a that is known to be sensitive to pseudouridine, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides. Highlights Loss of pseudouridine increases cell sensitivity to aminoglycosidesPseudouridine enhances ribosome thermostabilityHygromycin B competes with eEF2 for the non-rotated ribosomeHygromycin B deforms the codon-anticodon duplex.
Collapse
|
5
|
Warsame F, Simonetto DA. Telomere Biology Disorder: A Focus on Gastrointestinal and Hepatic Manifestations. Curr Hematol Malig Rep 2024; 19:75-81. [PMID: 38372947 DOI: 10.1007/s11899-023-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW Telomere biology disorders (TBD) encompass several illnesses caused by underlying mutations in telomere maintenance leading to premature telomere attrition and telomere dysfunction. These disorders have unique features but share common disease manifestations including pulmonary fibrosis, cirrhosis, and bone marrow failure. The goals of this article are to provide an overview of the gastrointestinal and hepatic manifestations of TBD, focusing on their pathophysiology, clinical disease states, and current management strategies. RECENT FINDINGS Telomere shortening has been observed in patients with chronic liver disease and is associated with a higher risk of progression to cirrhosis and portal hypertension. While the directionality of the association between telomere dysfunction and senescence on liver disease is not fully understood, research in TBD may provide clarity and could lead to future therapies for this increasingly prevalent disease. While treatment options remain limited in TBD-associated liver disease, recent studies point to the safety and efficacy of liver transplantation among patients with end-stage liver disease.
Collapse
Affiliation(s)
- Fatima Warsame
- Internal Medicine Residency, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Douglas A Simonetto
- Gastroenterology and Hepatology Fellowship Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1St SW, Rochester, MN, USA.
| |
Collapse
|
6
|
Kulasekararaj A, Cavenagh J, Dokal I, Foukaneli T, Gandhi S, Garg M, Griffin M, Hillmen P, Ireland R, Killick S, Mansour S, Mufti G, Potter V, Snowden J, Stanworth S, Zuha R, Marsh J. Guidelines for the diagnosis and management of adult aplastic anaemia: A British Society for Haematology Guideline. Br J Haematol 2024; 204:784-804. [PMID: 38247114 DOI: 10.1111/bjh.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 01/23/2024]
Abstract
Pancytopenia with hypocellular bone marrow is the hallmark of aplastic anaemia (AA) and the diagnosis is confirmed after careful evaluation, following exclusion of alternate diagnosis including hypoplastic myelodysplastic syndromes. Emerging use of molecular cyto-genomics is helpful in delineating immune mediated AA from inherited bone marrow failures (IBMF). Camitta criteria is used to assess disease severity, which along with age and availability of human leucocyte antigen compatible donor are determinants for therapeutic decisions. Supportive care with blood and platelet transfusion support, along with anti-microbial prophylaxis and prompt management of opportunistic infections remain key throughout the disease course. The standard first-line treatment for newly diagnosed acquired severe/very severe AA patients is horse anti-thymocyte globulin and ciclosporin-based immunosuppressive therapy (IST) with eltrombopag or allogeneic haemopoietic stem cell transplant (HSCT) from a matched sibling donor. Unrelated donor HSCT in adults should be considered after lack of response to IST, and up front for young adults with severe infections and a readily available matched unrelated donor. Management of IBMF, AA in pregnancy and in elderly require special attention. In view of the rarity of AA and complexity of management, appropriate discussion in multidisciplinary meetings and involvement of expert centres is strongly recommended to improve patient outcomes.
Collapse
Affiliation(s)
- Austin Kulasekararaj
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Jamie Cavenagh
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Inderjeet Dokal
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Barts Health NHS Trust, London, UK
| | - Theodora Foukaneli
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NHS Blood and Transplant, Bristol, UK
| | - Shreyans Gandhi
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Leicester, UK
- British Society Haematology Task Force Representative, London, UK
| | | | | | - Robin Ireland
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Sally Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Sahar Mansour
- St George's Hospital/St George's University of London, London, UK
| | - Ghulam Mufti
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Victoria Potter
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - John Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Simon Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Roslin Zuha
- James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, Norfolk, England
| | - Judith Marsh
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| |
Collapse
|
7
|
Chen H, Wu Y, Jiang Y, Chen Z, Zheng T. DKC1 aggravates gastric cancer cell migration and invasion through up-regulating the expression of TNFAIP6. Funct Integr Genomics 2024; 24:38. [PMID: 38376551 PMCID: PMC10879254 DOI: 10.1007/s10142-024-01313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Gastric cancer (GC) is one hackneyed malignancy tumor accompanied by high death rate. DKC1 has been discovered to serve as a facilitator in several cancers. Additionally, it was discovered from one study that DKC1 displayed higher expression in GC tissues than in the normal tissues. Nevertheless, its role and regulatory mechanism in GC is yet to be illustrated. In this study, it was proved that DKC1 expression was upregulated in GC tissues through GEPIA and UALCAN databases. Moreover, we discovered that DKC1 exhibited higher expression in GC cells. Functional experiments testified that DKC1 accelerated cell proliferation, migration, and invasion in GC. Further investigation disclosed that the weakened cell proliferation, migration, and invasion stimulated by DKC1 knockdown can be reversed after TNFAIP6 overexpression. Lastly, through in vivo experiments, it was demonstrated that DKC1 strengthened tumor growth. In conclusion, our work uncovered that DKC1 aggravated GC cell migration and invasion through upregulating the expression of TNFAIP6. This discovery might highlight the function of DKC1 in GC treatment.
Collapse
Affiliation(s)
- Huihua Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Yibo Wu
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China.
| | - Yancheng Jiang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Zixuan Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| |
Collapse
|
8
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
9
|
Chen JL, Leeder WM, Morais P, Adachi H, Yu YT. Pseudouridylation-mediated gene expression modulation. Biochem J 2024; 481:1-16. [PMID: 38174858 DOI: 10.1042/bcj20230096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA-guided pseudouridylation, a widespread post-transcriptional RNA modification, has recently gained recognition for its role in cellular processes such as pre-mRNA splicing and the modulation of premature termination codon (PTC) readthrough. This review provides insights into its mechanisms, functions, and potential therapeutic applications. It examines the mechanisms governing RNA-guided pseudouridylation, emphasizing the roles of guide RNAs and pseudouridine synthases in catalyzing uridine-to-pseudouridine conversion. A key focus is the impact of RNA-guided pseudouridylation of U2 small nuclear RNA on pre-mRNA splicing, encompassing its influence on branch site recognition and spliceosome assembly. Additionally, the review discusses the emerging role of RNA-guided pseudouridylation in regulating PTC readthrough, impacting translation termination and genetic disorders. Finally, it explores the therapeutic potential of pseudouridine modifications, offering insights into potential treatments for genetic diseases and cancer and the development of mRNA vaccine.
Collapse
Affiliation(s)
- Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | | | | | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, U.S.A
| |
Collapse
|
10
|
Li J, Bledsoe JR. Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol 2023; 40:429-442. [PMID: 37507252 DOI: 10.1053/j.semdp.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| |
Collapse
|
11
|
Martínez-Balsalobre E, García-Castillo J, García-Moreno D, Naranjo-Sánchez E, Fernández-Lajarín M, Blasco MA, Alcaraz-Pérez F, Mulero V, Cayuela ML. Telomerase RNA-based aptamers restore defective myelopoiesis in congenital neutropenic syndromes. Nat Commun 2023; 14:5912. [PMID: 37737237 PMCID: PMC10516865 DOI: 10.1038/s41467-023-41472-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Telomerase RNA (TERC) has a noncanonical function in myelopoiesis binding to a consensus DNA binding sequence and attracting RNA polymerase II (RNA Pol II), thus facilitating myeloid gene expression. The CR4/CR5 domain of TERC is known to play this role, since a mutation of this domain found in dyskeratosis congenita (DC) patients decreases its affinity for RNA Pol II, impairing its myelopoietic activity as a result. In this study, we report that two aptamers, short single-stranded oligonucleotides, based on the CR4/CR5 domain were able to increase myelopoiesis without affecting erythropoiesis in zebrafish. Mechanistically, the aptamers functioned as full terc; that is, they increased the expression of master myeloid genes, independently of endogenous terc, by interacting with RNA Pol II and with the terc-binding sequences of the regulatory regions of such genes, enforcing their transcription. Importantly, aptamers harboring the CR4/CR5 mutation that was found in DC patients failed to perform all these functions. The therapeutic potential of the aptamers for treating neutropenia was demonstrated in several preclinical models. The findings of this study have identified two potential therapeutic agents for DC and other neutropenic patients.
Collapse
Affiliation(s)
- Elena Martínez-Balsalobre
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Jesús García-Castillo
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Elena Naranjo-Sánchez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - Miriam Fernández-Lajarín
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| | - María L Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Zhao Y, Rai J, Li H. Regulation of translation by ribosomal RNA pseudouridylation. SCIENCE ADVANCES 2023; 9:eadg8190. [PMID: 37595043 PMCID: PMC10438446 DOI: 10.1126/sciadv.adg8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Pseudouridine is enriched in ribosomal, spliceosomal, transfer, and messenger RNA and thus integral to the central dogma. The chemical basis for how pseudouridine affects the molecular apparatus such as ribosome, however, remains elusive owing to the lack of structures without this natural modification. Here, we studied the translation of a hypopseudouridylated ribosome initiated by the internal ribosome entry site (IRES) elements. We analyzed eight cryo-electron microscopy structures of the ribosome bound with the Taura syndrome virus IRES in multiple functional states. We found widespread loss of pseudouridine-mediated interactions through water and long-range base pairings. In the presence of the translocase, eukaryotic elongation factor 2, and guanosine 5'-triphosphate hydrolysis, the hypopseudouridylated ribosome favors a rare unconducive conformation for decoding that is partially recouped in the ribosome population that remains modified at the P-site uridine. The structural principles learned establish the link between functional defects and modification loss and are likely applicable to other pseudouridine-associated processes.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Uria-Oficialdegui ML, Navarro S, Murillo-Sanjuan L, Rodriguez-Vigil C, Benitez-Carbante MI, Blazquez-Goñi C, Salinas JA, Diaz-de-Heredia C. Dyskeratosis congenita: natural history of the disease through the study of a cohort of patients diagnosed in childhood. Front Pediatr 2023; 11:1182476. [PMID: 37593443 PMCID: PMC10427857 DOI: 10.3389/fped.2023.1182476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Background Dyskeratosis congenita (DC) is a multisystem and ultra-rare hereditary disease characterized by somatic involvement, bone marrow failure, and predisposition to cancer. The main objective of this study is to describe the natural history of DC through a cohort of patients diagnosed in childhood and followed up for a long period of time. Material and methods Multicenter, retrospective, longitudinal study conducted in patients followed up to 24 years since being diagnosed in childhood (between 1998 and 2020). Results Fourteen patients were diagnosed with DC between the ages of 3 and 17 years (median, 8.5 years). They all had hematologic manifestations at diagnosis, and nine developed mucocutaneous manifestations during the first decade of life. Seven presented severe DC variants. All developed non-hematologic manifestations during follow-up. Mutations were identified in 12 patients. Thirteen progressed to bone marrow failure at a median age of 8 years [range, 3-18 years], and eight received a hematopoietic stem cell transplant. Median follow-up time was 9 years [range, 2-24 years]. Six patients died, the median age was 13 years [range, 6-24 years]. As of November 2022, eight patients were still alive, with a median age of 18 years [range, 6-32 years]. None of them have developed myeloblastic syndrome or cancer. Conclusions DC was associated with high morbidity and mortality in our series. Hematologic manifestations appeared early and consistently. Non-hematologic manifestations developed progressively. No patient developed cancer possibly due to their young age. Due to the complexity of the disease multidisciplinary follow-up and adequate transition to adult care are essential.
Collapse
Affiliation(s)
- M. L. Uria-Oficialdegui
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - S. Navarro
- Pediatric Division, Hospital Universitario SonEspases, Palma de Mallorca, Spain
| | - L. Murillo-Sanjuan
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | - C. Rodriguez-Vigil
- Pediatric Oncohaematology Unit, Paediatric Division, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - M. I. Benitez-Carbante
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | - J. A. Salinas
- Pediatric Division, Hospital Universitario SonEspases, Palma de Mallorca, Spain
| | - C. Diaz-de-Heredia
- Pediatric Hematology and Oncology Division, Hospital Universitari Vall d´Hebron, Barcelona, Spain
| |
Collapse
|
14
|
Putra J, Agarwal S, Al-Ibraheemi A, Alomari AI, Perez-Atayde AR. Spectrum of Liver Pathology in Dyskeratosis Congenita. Am J Surg Pathol 2023; 47:869-877. [PMID: 37246821 PMCID: PMC10524011 DOI: 10.1097/pas.0000000000002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Dyskeratosis congenita (DC) is a rare multisystemic disorder associated with defective telomere maintenance. Frequent clinical manifestations of DC include reticular skin pigmentation, dystrophic nails, oral leukoplakia, and bone marrow failure. Hepatic disturbances are reported to occur in 7% of DC patients. This study aimed to evaluate the histopathologic spectrum of hepatic involvement in this disorder. DC patients with liver tissue in the pathology database at Boston Children's Hospital from 1995 to 2022 were identified. Clinical and pathologic information was documented. Thirteen specimens from 11 DC patients were included (M:F = 7:4; median age at the time of liver tissue evaluation: 18 y). DC-associated gene mutations were identified in 9 patients; TERF1-interacting nuclear factor 2 ( TINF2) was the most frequently represented gene mutation, seen in 4 patients. All patients had bone marrow failure, whereas dystrophic nails, cutaneous abnormal pigmentation, and oral leukoplakia were noted in 73%, 64%, and 55% of patients, respectively. Seven patients underwent bone marrow transplants before biopsy/autopsy (median interval of 45 mo). Histologically, 3 of 4 patients who presented with portal hypertension showed noncirrhotic changes (nodular regenerative hyperplasia and/or obliterative portal venopathy), whereas prominent central and sinusoidal fibrosis was noted in patients with intrahepatic shunting and those showing features of chronic passive congestion. All cases showed hepatocyte anisonucleosis. One patient developed hepatic angiosarcoma, and another 1 had colorectal adenocarcinoma metastatic to the liver. DC patients show heterogeneous histologic findings in their liver. The findings of noncirrhotic portal hypertension, intrahepatic shunting, and angiosarcoma suggest vascular functional/structural pathology as a possible unifying etiology of hepatic manifestations of DC.
Collapse
Affiliation(s)
| | | | | | - Ahmad I Alomari
- Division of Vascular and Interventional Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
15
|
Mathuram Thiyagarajan U, Lee S, Shapiro A. First Successful Liver-Alone Transplantation for TERT (Telomerase Reverse Transcriptase)-Telomeropathy-Related Hepatoportal Sclerosis Cirrhosis. Cureus 2023; 15:e41296. [PMID: 37539400 PMCID: PMC10394478 DOI: 10.7759/cureus.41296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Hepatoportal sclerosis is a rare but well-described condition leading to end-stage liver disease. Telomeropathy is a rare genetic disorder which manifests as premature senescence of cells leading to multisystem disease involving bone marrow, lungs and skin. To the best of our knowledge, there is no report of telomeropathy precipitating end-stage liver disease. Our case presented hepatopulmonary syndrome. Herein, we report a successful liver transplantation in a patient who suffered hepatoportal cirrhosis from telomerase reverse transcriptase (TERT)-telomeropathy.
Collapse
Affiliation(s)
| | - Samuel Lee
- Gastroenterology, Faculty of Medicine, University of Calgary, Calgary, CAN
| | - Amj Shapiro
- Surgery, Medicine and Surgical Oncology, University of Alberta Hospital, Edmonton, CAN
| |
Collapse
|
16
|
Lin MH, Chou PC, Lee IC, Yang SF, Yu HS, Yu S. Inherited Reticulate Pigmentary Disorders. Genes (Basel) 2023; 14:1300. [PMID: 37372478 DOI: 10.3390/genes14061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Reticulate pigmentary disorders (RPDs) are a group of inherited and acquired skin conditions characterized by hyperpigmented and/or hypopigmented macules. Inherited RPDs include dyschromatosis symmetrica hereditaria (DSH), dyschromatosis universalis hereditaria (DUH), reticulate acropigmentation of Kitamura (RAK), Dowling-Degos disease (DDD), dyskeratosis congenita (DKC), Naegeli-Franceschetti-Jadassohn syndrome (NFJS), dermatopathia pigmentosa reticularis (DPR), and X-linked reticulate pigmentary disorder. Although reticulate pattern of pigmentation is a common characteristic of this spectrum of disorders, the distribution of pigmentation varies among these disorders, and there may be clinical manifestations beyond pigmentation. DSH, DUH, and RAK are mostly reported in East Asian ethnicities. DDD is more common in Caucasians, although it is also reported in Asian countries. Other RPDs show no racial predilection. This article reviews the clinical, histological, and genetic variations of inherited RPDs.
Collapse
Affiliation(s)
- Min-Huei Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Chen Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Chen Lee
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Syuan-Fei Yang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sebastian Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
17
|
Proskuriakova E, Jasaraj RB, San Hernandez AM, Sakhuja A, Khoury M, Khosla P. A Case of Severe Aplastic Anemia in a 35-Year-Old Male With a Good Response to Immunosuppressive Therapy. Cureus 2023; 15:e40210. [PMID: 37435252 PMCID: PMC10332331 DOI: 10.7759/cureus.40210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Aplastic anemia (AA) is a severe but rare hematologic condition associated with hematopoietic failure leading to decreased or total absent hematopoietic precursor cells in the bone marrow. AA presents at any age with equal distribution among gender and race. There are three known mechanisms of AA: direct injuries, immune-mediated disease, and bone marrow failure. The most common etiology of AA is considered to be idiopathic. Patients usually present with non-specific findings, such as easy fatigability, dyspnea on exertion, pallor, and mucosal bleeding. The primary treatment of AA is to remove the offending agent. In patients in whom the reversible cause was not found, patient management depends on age, disease severity, and donor availability. Here, we present a case of a 35-year-old male who presented to the emergency room with profuse bleeding after a deep dental cleaning. He was found to have pancytopenia on his laboratory panel and had an excellent response to immunosuppressive therapy.
Collapse
Affiliation(s)
| | | | | | | | - Mtanis Khoury
- Internal Medicine, Mount Sinai Hospital, Chicago, USA
| | - Pam Khosla
- Hematology and Oncology, Mount Sinai Hospital, Chicago, USA
| |
Collapse
|
18
|
Roka K, Solomou EE, Kattamis A. Telomere biology: from disorders to hematological diseases. Front Oncol 2023; 13:1167848. [PMID: 37274248 PMCID: PMC10235513 DOI: 10.3389/fonc.2023.1167848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Variations in the length of telomeres and pathogenic variants involved in telomere length maintenance have been correlated with several human diseases. Recent breakthroughs in telomere biology knowledge have contributed to the identification of illnesses named "telomeropathies" and revealed an association between telomere length and disease outcome. This review emphasizes the biology and physiology aspects of telomeres and describes prototype diseases in which telomeres are implicated in their pathophysiology. We also provide information on the role of telomeres in hematological diseases ranging from bone marrow failure syndromes to acute and chronic leukemias.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| |
Collapse
|
19
|
Byrjalsen A, Brainin AE, Lund TK, Andersen MK, Jelsig AM. Size matters in telomere biology disorders ‒ expanding phenotypic spectrum in patients with long or short telomeres. Hered Cancer Clin Pract 2023; 21:7. [PMID: 37189188 PMCID: PMC10184327 DOI: 10.1186/s13053-023-00251-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
The end of each chromosome consists of a DNA region termed the telomeres. The telomeres serve as a protective shield against degradation of the coding DNA sequence, as the DNA strand inevitably ‒ with each cell division ‒ is shortened. Inherited genetic variants cause telomere biology disorders when located in genes (e.g. DKC1, RTEL1, TERC, TERT) playing a role in the function and maintenance of the telomeres. Subsequently patients with telomere biology disorders associated with both too short or too long telomeres have been recognized. Patients with telomere biology disorders associated with short telomeres are at increased risk of dyskeratosis congenita (nail dystrophy, oral leukoplakia, and hyper- or hypo-pigmentation of the skin), pulmonary fibrosis, hematologic disease (ranging from cytopenia to leukemia) and in rare cases very severe multiorgan manifestations and early death. Patients with telomere biology disorders associated with too long telomeres have in recent years been found to confer an increased risk of melanoma and chronic lymphocytic leukemia. Despite this, many patients have an apparently isolated manifestation rendering telomere biology disorders most likely underdiagnosed. The complexity of telomere biology disorders and many causative genes makes it difficult to design a surveillance program which will ensure identification of early onset disease manifestation without overtreatment.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark.
| | - Anna Engell Brainin
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Thomas Kromann Lund
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, Copenhagen East, 2100, Denmark
| | - Mette Klarskov Andersen
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Anne Marie Jelsig
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| |
Collapse
|
20
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
21
|
Nisar H, Khan M, Chaudhry QUN, Iftikhar R, Ghafoor T. Case report: A novel mutation in RTEL1 gene in dyskeratosis congenita. Front Oncol 2023; 13:1098876. [PMID: 36937416 PMCID: PMC10017992 DOI: 10.3389/fonc.2023.1098876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Dyskeratosis congenita (DKC), also known as Zinsser-Cole-Engman syndrome, is a telomeropathy typically presenting as a triad of leukoplakia, nail dystrophy, and reticular hyperpigmentation. Reported genetic mutations linked to DKC include DKC1, TINF2, TERC, TERT, C16orf57, NOLA2, NOLA3, WRAP53/TCAB1, and RTEL1. Homozygous, compound heterozygous, and heterozygous mutations in RTEL1 (RTEL1, regulator of telomere elongation helicase 1) gene on chromosome 20q13 are known to cause autosomal dominant as well as recessive DKC. Pathogenic variants of RTEL1 gene in DKC patients include c.2288G>T (p. Gly763Val), c.3791G>A (p. Arg1264His), and RTEL p. Arg981Trp. We report a novel homozygous variant of RTEL1, transcript ID: ENST00000360203.11, exon 24, c.2060C>T (p.Ala687Val), in a patient of DKC presenting with leukoplakia, dystrophic nails, reticulate pigmentation, and positive family history of a similar phenotype. The novel variant, reported as a variant of uncertain significance, may therefore be considered diagnostic for DKC in a Pakistani population.
Collapse
Affiliation(s)
- Haider Nisar
- Adult and Pediatric Transplant Unit, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
| | - Memoona Khan
- Pathology Department and Stem Cell Research Lab, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
- *Correspondence: Memoona Khan,
| | - Qamar Un Nisa Chaudhry
- Adult and Pediatric Transplant Unit, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
- Pathology Department and Stem Cell Research Lab, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
| | - Raheel Iftikhar
- Adult and Pediatric Transplant Unit, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
| | - Tariq Ghafoor
- Adult and Pediatric Transplant Unit, Armed Forces Bone Marrow Transplant Center/National Institute of Bone Marrow Transplant, Rawalpindi, Pakistan
| |
Collapse
|
22
|
Gadelha RB, Machado CB, Pessoa FMCDP, Pantoja LDC, Barreto IV, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira-Nunes CA. The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Curr Issues Mol Biol 2022; 44:5498-5515. [PMID: 36354684 PMCID: PMC9688736 DOI: 10.3390/cimb44110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53β is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53β's multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer.
Collapse
Affiliation(s)
- Renan Brito Gadelha
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, PA, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Igor Valentim Barreto
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Department of Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
| |
Collapse
|
23
|
Yuan C, Deng D, Yang J, Liu S, Qian Q, Chen M, Zhou S, Li Y, Li M. A Novel Variant and a Missense Variant Identified in the DKC1 Gene in Three Chinese Familieswith Dyskeratosis Congenita. Clin Cosmet Investig Dermatol 2022; 15:1837-1845. [PMID: 36111181 PMCID: PMC9469802 DOI: 10.2147/ccid.s371794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Purpose Dyskeratosis congenita (DC) is an inherited telomere biology disorder characterized clinically by mucocutaneous triad of reticulate hyperpigmentation, nail changes and oral leukoplakia. Bone marrow failure, pulmonary fibrosis and malignancies are the mainly life-threatening causes. There are X-linked recessive, autosomal dominant and autosomal recessive patterns of DC. DKC1 is the most common pathogenic mutation gene responsible for X-linked DC, and it encodes a protein, dyskerin, which is a component of telomerase holoenzyme complex essential for telomere maintenance. Patients with DC have very short telomeres, but the precise pathogenic mechanism remains unclear. This study aimed to identify the causative mutations in the DKC1 gene in three Chinese families with the X-linked form of DC. Patients and Methods Three Chinese families with DC were included in this study. Whole exome sequencing and Sanger sequencing were performed to clarify the mutation of DKC1 gene. Measurement of relative telomere length through qPCR. Predictions of protein structure and function were performed using bioinformatics tools, including I-TASSER, Polyphen-2 and SIFT. Results There were four males with DC and a female carrier in three Chinese pedigrees. The novel mutation c.92A>C (p. Q31P) and the missense mutation c.1058C>T (p. A353V) in DKC1 were identified. Both mutations locally changed the structure of dyskerin. Variant Q31P and A353V were predicted to have “deleterious” and “natural” effects on the function of dyskerin, respectively. Conclusion The novel variant and missense variant detected in the DKC1 gene improve our understanding of DC and broaden the mutation spectrum of the DKC1 gene.
Collapse
Affiliation(s)
- Chunyu Yuan
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Dongmei Deng
- Health Management Center, The Fifth People's Hospital of Hainan Province, Haikou Ctiy, Hainan, People's Republic of China
| | - Jianqiu Yang
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Simeng Liu
- Department of Dermatology, Aerospace Center Hospital, Beijing Ctiy, People's Republic of China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Min Chen
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Shengru Zhou
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China
| | - Yujiang Li
- Department of Dermatology, Sanmenxia Central Hospital, Sanmenxia Ctiy, Henan, People's Republic of China
| | - Min Li
- Department of Dermatology, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University, Suzhou Dushu Lake Hospital), Suzhou Ctiy, Jiangsu, People's Republic of China.,Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou Ctiy, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
25
|
Choo S, Lorbeer FK, Regalado SG, Short SB, Wu S, Rieser G, Bertuch AA, Hockemeyer D. Editing TINF2 as a potential therapeutic approach to restore telomere length in dyskeratosis congenita. Blood 2022; 140:608-618. [PMID: 35421215 PMCID: PMC9373014 DOI: 10.1182/blood.2021013750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the TINF2 gene, encoding the shelterin protein TIN2, cause telomere shortening and the inherited bone marrow (BM) failure syndrome dyskeratosis congenita (DC). A lack of suitable model systems limits the mechanistic understanding of telomere shortening in the stem cells and thus hinders the development of treatment options for BM failure. Here, we endogenously introduced TIN2-DC mutations in human embryonic stem cells (hESCs) and human hematopoietic stem and progenitor cells (HSPCs) to dissect the disease mechanism and identify a gene-editing strategy that rescued the disease phenotypes. The hESCs with the T284R disease mutation exhibited the short telomere phenotype observed in DC patients. Yet, telomeres in mutant hESCs did not trigger DNA damage responses at telomeres or show exacerbated telomere shortening when differentiated into telomerase-negative cells. Disruption of the mutant TINF2 allele by introducing a frameshift mutation in exon 2 restored telomere length in stem cells and the replicative potential of differentiated cells. Similarly, we introduced TIN2-DC disease variants in human HSPCs to assess the changes in telomere length and proliferative capacity. Lastly, we showed that editing at exon 2 of TINF2 that restored telomere length in hESCs could be generated in TINF2-DC patient HSPCs. Our study demonstrates a simple genetic intervention that rescues the TIN2-DC disease phenotype in stem cells and provides a versatile platform to assess the efficacy of potential therapeutic approaches in vivo.
Collapse
Affiliation(s)
- Seunga Choo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Franziska K Lorbeer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Samuel G Regalado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Sarah B Short
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Shannon Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Gabrielle Rieser
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA; and
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
26
|
Are Dyskeratosis Congenita Patients at Higher Risk of Symptomatic COVID-19? Med Hypotheses 2022; 163:110843. [PMID: 35464998 PMCID: PMC9011900 DOI: 10.1016/j.mehy.2022.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Dyskeratosis Congenita (DC) is a rare and heterogeneous disease. This disorder is resulted from a defect in the telomere maintenance in stem cells. Telomerase RNA component, shelterin complex, and telomerase reverse transcriptase are mutated in this disease. Many studies have previously confirmed shorter leukocyte telomere length in DC. On the other hand, the association between telomere length and Coronavirus disease 2019 (COVID-19) indicated that people with a short telomere background mostly show more severe symptoms related to COVID-19, and the mortality rate among them increases as well. Because patients with DC have an abnormally short telomere length, in the current study, we hypothesized that they are at higher risk of developing symptomatic COVID-19 that requires further clinical care.
Collapse
|
27
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
28
|
Multisystemic Manifestations in Rare Diseases: The Experience of Dyskeratosis Congenita. Genes (Basel) 2022; 13:genes13030496. [PMID: 35328050 PMCID: PMC8953471 DOI: 10.3390/genes13030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Dyskeratosis congenital (DC) is the first genetic syndrome described among telomeropathies. Its classical phenotype is characterized by the mucocutaneous triad of reticulated pigmentation of skin lace, nail dystrophy and oral leukoplakia. The clinical presentation, however, is heterogeneous and serious clinical complications include bone marrow failure, hematological and solid tumors. It may also involve immunodeficiencies, dental, pulmonary and liver disorders, and other minor complication. Dyskeratosis congenita shows marked genetic heterogeneity, as at least 14 genes are responsible for the shortening of telomeres characteristic of this disease. This review discusses clinical characteristics, molecular genetics, disease evolution, available therapeutic options and differential diagnosis of dyskeratosis congenita to provide an interdisciplinary and personalized medical assessment that includes family genetic counseling.
Collapse
|
29
|
Hussein F, Omar Z. Dyskeratosis congenita: rare case report of Syria. Oxf Med Case Reports 2021; 2021:omab041. [PMID: 34858620 PMCID: PMC8633647 DOI: 10.1093/omcr/omab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited disease characterized by the triad of abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia. Non-cutaneous abnormalities (dental, gastrointestinal, genitourinary, neurological, ophthalmic, pulmonary and skeletal) have also been reported. Bone marrow failure (BMF) is the main cause of early mortality, with an additional predisposition to malignancy. DC results from an anomalous progressive shortening of telomeres resulting in DNA replication problems inducing replicative senescence. Men are more affected than women are and X-linked recessive, autosomal dominant and autosomal recessive forms of the disease are recognized. There are no targeted therapies for DC. Patients treated with androgens had a hematological response. We herein describe case of a 32-year-old man, presented with several characteristic systemic features of this condition, including the classic triad of lesions, dysplastic bone marrow, epiphora and liver cirrhosis with grade I esophageal varices. Therefore, a prophylactic propranolol was started in additional to danazol. Three-week later, the patient had subsequent increases in his platelet, red cell and white cell counts.
Collapse
Affiliation(s)
- Firas Hussein
- Department of Clinical Hematology, Tishreen University Hospital, Tishreen Street, Lattakia 041, Syria
| | - Zainab Omar
- Department of Clinical Hematology, Tishreen University Hospital, Tishreen Street, Lattakia 041, Syria
| |
Collapse
|
30
|
A large buccal hematoma in a patient with Hoyeraal-Hreidarsson syndrome. ORAL AND MAXILLOFACIAL SURGERY CASES 2021. [DOI: 10.1016/j.omsc.2021.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Stock AJ, Liu Y. NAD-Linked Metabolism and Intervention in Short Telomere Syndromes and Murine Models of Telomere Dysfunction. FRONTIERS IN AGING 2021; 2:785171. [PMID: 35822010 PMCID: PMC9261345 DOI: 10.3389/fragi.2021.785171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Telomeres are specialized nucleoprotein structures that form protective caps at the ends of chromosomes. Short telomeres are a hallmark of aging and a principal defining feature of short telomere syndromes, including dyskeratosis congenita (DC). Emerging evidence suggests a crucial role for critically short telomere-induced DNA damage signaling and mitochondrial dysfunction in cellular dysfunction in DC. A prominent factor linking nuclear DNA damage and mitochondrial homeostasis is the nicotinamide adenine dinucleotide (NAD) metabolite. Recent studies have demonstrated that patients with DC and murine models with critically short telomeres exhibit lower NAD levels, and an imbalance in the NAD metabolome, including elevated CD38 NADase and reduced poly (ADP-ribose) polymerase and SIRT1 activities. CD38 inhibition and/or supplementation with NAD precursors reequilibrate imbalanced NAD metabolism and alleviate mitochondrial impairment, telomere DNA damage, telomere dysfunction-induced DNA damage signaling, and cellular growth retardation in primary fibroblasts derived from DC patients. Boosting NAD levels also ameliorate chemical-induced liver fibrosis in murine models of telomere dysfunction. These findings underscore the relevance of NAD dysregulation to telomeropathies and demonstrate how NAD interventions may prove to be effective in combating cellular and organismal defects that occur in short telomere syndromes.
Collapse
|
32
|
Graniel JV, Bisht K, Friedman A, White J, Perkey E, Vanderbeck A, Moroz A, Carrington LJ, Brandstadter JD, Allen F, Shami AN, Thomas P, Crayton A, Manzor M, Mychalowych A, Chase J, Hammoud SS, Keegan CE, Maillard I, Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci Alliance 2021; 5:5/1/e202101208. [PMID: 34645668 PMCID: PMC8548261 DOI: 10.26508/lsa.202101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
A TPP1 mutation known to cause telomere shortening and bone marrow failure in humans recapitulates telomere loss but results in severe germline defects in mice without impacting murine hematopoiesis. Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.
Collapse
Affiliation(s)
- Jacqueline V Graniel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Oncology Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Ann Friedman
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - James White
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Eric Perkey
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alina Moroz
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adrienne Niederriter Shami
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Aniela Crayton
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Mariel Manzor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Jennifer Chase
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA .,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Hock H, Kelly HR, Meyerowitz EA, Frigault MJ, Massoth LR. Case 31-2021: A 21-Year-Old Man with Sore Throat, Epistaxis, and Oropharyngeal Petechiae. N Engl J Med 2021; 385:1511-1520. [PMID: 34644476 PMCID: PMC8531984 DOI: 10.1056/nejmcpc2027096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hanno Hock
- From the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Massachusetts General Hospital, the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Harvard Medical School, and the Department of Radiology, Massachusetts Eye and Ear (H.R.K.) - all in Boston; and the Department of Medicine, Montefiore Medical Center, New York (E.A.M.)
| | - Hillary R Kelly
- From the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Massachusetts General Hospital, the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Harvard Medical School, and the Department of Radiology, Massachusetts Eye and Ear (H.R.K.) - all in Boston; and the Department of Medicine, Montefiore Medical Center, New York (E.A.M.)
| | - Eric A Meyerowitz
- From the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Massachusetts General Hospital, the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Harvard Medical School, and the Department of Radiology, Massachusetts Eye and Ear (H.R.K.) - all in Boston; and the Department of Medicine, Montefiore Medical Center, New York (E.A.M.)
| | - Matthew J Frigault
- From the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Massachusetts General Hospital, the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Harvard Medical School, and the Department of Radiology, Massachusetts Eye and Ear (H.R.K.) - all in Boston; and the Department of Medicine, Montefiore Medical Center, New York (E.A.M.)
| | - Lucas R Massoth
- From the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Massachusetts General Hospital, the Departments of Medicine (H.H., M.J.F.), Radiology (H.R.K.), and Pathology (L.R.M.), Harvard Medical School, and the Department of Radiology, Massachusetts Eye and Ear (H.R.K.) - all in Boston; and the Department of Medicine, Montefiore Medical Center, New York (E.A.M.)
| |
Collapse
|
34
|
Schneider KW, Suttman A, McKinney C, Giller R, Dollerschell K, Nakano TA. Incorporating genetic counseling into the evaluation of pediatric bone marrow failure. J Genet Couns 2021; 31:433-446. [PMID: 34570941 DOI: 10.1002/jgc4.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022]
Abstract
The timely identification of germline genetic causes of pediatric bone marrow failure (BMF) impacts medical screening practices, family counseling, therapeutic decision-making, and risk of progression to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). At diagnosis, treatment decisions need to be made quickly to mitigate risks associated with profound cytopenias. As genetic testing options are rapidly evolving, an efficient multi-disciplinary approach and algorithm, including early involvement of a genetics team, is needed to expedite diagnosis and therapeutic decision-making. This process aids in the identification of appropriate candidates for molecular genetic testing. We present our single center experience reviewing the implementation of genetic counseling and a diagnostic and therapeutic algorithm used to guide genetic evaluation of pediatric BMF. Disease-specific next-generation sequencing (NGS) panels were most often pursued in patients who presented with a clinical phenotype consistent with a known inherited BMF syndrome and when trying to reduce incidental or uninformative results. Broader BMF NGS panels were most often utilized when unable to narrow the suspected etiology to a single disorder. Whole exome sequencing helped with optimizing treatment decision-making in higher risk children with BMF who required expedited hematopoietic stem cell transplantation. The experience has led to improvements to our process for evaluating patients with BMF.
Collapse
Affiliation(s)
- Kami Wolfe Schneider
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Alexandra Suttman
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Christopher McKinney
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Roger Giller
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Kaylee Dollerschell
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| | - Taizo A Nakano
- Department of Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplantation, University of Colorado, Aurora, CO, USA
| |
Collapse
|
35
|
Pulmonary fibrosis in dyskeratosis congenita: a case report with a PRISMA-compliant systematic review. BMC Pulm Med 2021; 21:279. [PMID: 34479523 PMCID: PMC8418029 DOI: 10.1186/s12890-021-01645-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
Background Dyskeratosis congenita (DC) is a rare genetic disorder of poor telomere maintenance. Pulmonary fibrosis (PF) related to DC is rarely reported. Case presentation A 23-year-old student presented with a four-year history of progressive cough and exertional dyspnea. Physical examination was remarkable for typical mucocutaneous abnormalities. Chest computerized tomography scan revealed interstitial fibrosis. Testing of peripheral blood leukocytes confirmed that his telomeres were 30th percentile of age-matched controls. A heterozygous missense mutation located in exon 22 of PARN gene was identified in the patient by whole exome sequencing. The patient refused danazol therapy and lung transplantation, and died of respiratory failure 2 years later. In addition, this case and 26 reported cases of DC-related PF identified through the comprehensive search of PubMed, Web of Science, WANFANG and CNKI were reviewed. Later-onset PF was observed in 11 patients (40.7%). Radiological usual interstitial pneumonia (UIP) pattern or possible UIP pattern was noted only in half of patients. However, histopathological UIP or probable UIP patterns were found in 63.6% of patients. Age at bone marrow failure (BMF) and the frequency of normal to mild thrombocytopenia in later-onset patients was significantly higher than in early-onset patients (p = 0.017 and p = 0.021, respectively). Age at PF and age at BMF in DC patients with TERC/TERT variants was significantly higher than in those with TINF2 variants or DKC1/NHP2 variants (p = 0.004 and p = 0.003, respectively). The patients with TERT/TERC/RTEL1/PARN variants had a significantly better transplant-free survival than those with TINF2 variants or DKC1/NHP2 variants (p < 0.05). Patients who underwent surgical lung biopsy had significantly worse transplant-free survival than those without lung biopsy (p = 0.042). Worse survival was found in patients with immunosuppression therapy than in those without (p = 0.012). Conclusions It is common for DC-associated PF to occur later in life without significant hematological manifestations. Mutations in the genes encoding different components of the telomere maintenance pathway were associated with clinical phenotypes and prognosis. PF caused by DC should be kept in mind by clinicians in the differential diagnosis of patients with unexplained PF and should be excluded before diagnostic surgical lung biopsy is undertaken or empirical immunosuppression therapy is prescribed. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01645-w.
Collapse
|
36
|
Juay L, Chandran NS. Two Cases of Dyskeratosis Congenita with Clinically Distinct Presentations, Seen in National University Hospital, Singapore. Skin Appendage Disord 2021; 8:53-56. [DOI: 10.1159/000518299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DKC) is a genodermatosis of variable inheritance and is often characterised by the classical triad of nail dysplasia, reticulate hyperpigmentation of upper chest and neck, and oral leukoplakia. We report 2 cases of DKC from National University Hospital, Singapore, whose clinical presentations differed greatly from each other. Dermatologists should hold a high index of suspicion for DKC in young patients who present without the classical triad of features, as early dermatological care can be instituted through reinforcement of rigorous sun protection and regular surveillance for skin cancers. Early diagnosis also offers physicians the time to organise haematopoietic stem cell transplantation if necessary, as bone marrow failure is often inevitable. As a multisystemic disease with high morbidity and mortality particularly from haematological complications if left undetected and untreated in the early stages, the role of the dermatologist in diagnosing DKC is a crucial one.
Collapse
|
37
|
Vieri M, Brümmendorf TH, Beier F. Treatment of telomeropathies. Best Pract Res Clin Haematol 2021; 34:101282. [PMID: 34404536 DOI: 10.1016/j.beha.2021.101282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Telomeropathies or telomere biology disorders (TBDs) are a group of rare diseases characterised by altered telomere maintenance. Most patients with TBDs show pathogenic variants of genes that encode factors involved in the prevention of telomere shortening. Particularly in adults, TBDs mostly present themselves with heterogeneous clinical features that often include bone marrow failure, hepatopathies, interstitial lung disease and other organ sites. Different degrees of severity are also observed among patients with TBDs, ranging from very severe syndromes manifesting themselves in early childhood, such as Revesz syndrome, Hoyeraal-Hreidarsson syndrome, and Coats plus disease, to dyskeratosis congenita (DKC) and adult-onset "cryptic" forms of TBD, which often affect fewer organ systems. Overall, the most relevant clinical complications of TBD are bone marrow failure, lung fibrosis, and liver cirrhosis. In this review, we summarise recent advances in the management and treatment of TBD and provide a brief overview of the various treatment approaches.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
38
|
Telomerase RNA recruits RNA polymerase II to target gene promoters to enhance myelopoiesis. Proc Natl Acad Sci U S A 2021; 118:2015528118. [PMID: 34353901 DOI: 10.1073/pnas.2015528118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure and cancer predisposition syndrome caused by mutations in telomerase or telomeric proteins. Here, we report that zebrafish telomerase RNA (terc) binds to specific DNA sequences of master myeloid genes and controls their expression by recruiting RNA Polymerase II (Pol II). Zebrafish terc harboring the CR4-CR5 domain mutation found in DC patients hardly interacted with Pol II and failed to regulate myeloid gene expression in vivo and to increase their transcription rates in vitro. Similarly, TERC regulated myeloid gene expression and Pol II promoter occupancy in human myeloid progenitor cells. Strikingly, induced pluripotent stem cells derived from DC patients with a TERC mutation in the CR4-CR5 domain showed impaired myelopoiesis, while those with mutated telomerase catalytic subunit differentiated normally. Our findings show that TERC acts as a transcription factor, revealing a target for therapeutic intervention in DC patients.
Collapse
|
39
|
Luchkin AV, Mikhailova EA, Fidarova ZT, Troitskaya VV, Galtseva IV, Kovrigina AM, Glinkina SA, Dvirnyk VN, Raykina EV, Pavlova AV, Demina IA, Parovichnikova EN. A case report of familial dyskeratosis congenital. Case report. TERAPEVT ARKH 2021; 93:818-825. [DOI: 10.26442/00403660.2021.07.200955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Dyskeratosis congenita (DC) is a hereditary syndrome of bone marrow failure, which develops because of telomeres defects and combines with cancer predisposition. Its classical clinical features are skin pigmentation, nail dystrophy, oral leukoplakia (skin-mucosa triad). The goal is to describe the algorithm of diagnosis, clinical specificities of DC and specific treatment for cases of DC in one family. The present report includes descriptions of diagnosis and treatment of family members diagnosed for the first time as having a DC. The report shows an importance of all diagnostic stages: from a medical history and clinical picture to an application of modern high-tech diagnostic methods (flow-FISH, NGS). The report underlines an importance of diagnosis of all family members for excluding an asymptomatic form after a case of DC has been already detected in that family. A high frequency of a toxicity and secondary neoplasia makes it necessary to realize an individual approach at treatment of each patient with DC (the earliest start of androgen treatment, prompt decision of implementation of allogenic hematopoietic stem cell transplantation). The knowledge of pathogenesis, clinical features and principles of diagnosis and therapy of this disease is relevant to pediatricians and hematologists.
Collapse
|
40
|
Grill S, Padmanaban S, Friedman A, Perkey E, Allen F, Tesmer VM, Chase J, Khoriaty R, Keegan CE, Maillard I, Nandakumar J. TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight 2021; 6:138059. [PMID: 33822766 PMCID: PMC8262337 DOI: 10.1172/jci.insight.138059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Ann Friedman
- Life Sciences Institute,,Department of Internal Medicine
| | - Eric Perkey
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jennifer Chase
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and
| | - Rami Khoriaty
- Department of Internal Medicine,,Department of Cell and Developmental Biology
| | - Catherine E. Keegan
- Department of Pediatrics, and,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivan Maillard
- Life Sciences Institute,,Department of Internal Medicine,,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology,,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
41
|
Zhang MJ, Cao YX, Wu HY, Li HH. Brain imaging features of children with Hoyeraal-Hreidarsson syndrome. Brain Behav 2021; 11:e02079. [PMID: 33734615 PMCID: PMC8119832 DOI: 10.1002/brb3.2079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE This study aimed to summarize the magnetic resonance imaging (MRI) and computed tomography (CT) features of the central nervous system (CNS) in children with Hoyeraal-Hreidarsson syndrome. METHODS The imaging and clinical data of four children diagnosed with Hoyeraal-Hreidarsson syndrome by clinical and laboratory tests in the Guangzhou Women and Children's Medical Center were gathered and analyzed retrospectively. The clinical manifestations and CNS imaging features of Hoyeraal-Hreidarsson syndrome were summarized based on our results and a literature review. RESULTS Our results showed that delayed development, skin pigmentation, nail/toenail dystrophy, thrombocytopenia, and anemia are the most observed clinical presentations of Hoyeraal-Hreidarsson syndrome. Important findings on CNS imaging showed that all patients had cerebellar hypoplasia, delayed myelination, hydrocephalus, brain atrophy, and calcification. The gene mutations in all cases were consistent with those of dyskeratosis congenita, including TINF2 mutations in three cases and DKC1 mutations in one case. CONCLUSION Hoyeraal-Hreidarsson syndrome is a severe variant of dyskeratosis congenita. Both DKC1 and TINF2 mutations can lead to the phenotypes of Hoyeraal-Hreidarsson syndrome. In our study, CNS imaging revealed that cerebellar hypoplasia has an important diagnostic value for Hoyeraal-Hreidarsson syndrome while delayed myelination, calcification of the parenchyma, brain atrophy, and hydrocephalus are also important findings on CNS imaging. Combining imaging features with clinical and laboratory indicators can assist the diagnosis of Hoyeraal-Hreidarsson syndrome.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ya-Xian Cao
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hui-Ying Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - He-Hong Li
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
42
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
43
|
Rayinda T, van Steensel M, Danarti R. Inherited skin disorders presenting with poikiloderma. Int J Dermatol 2021; 60:1343-1353. [PMID: 33739439 DOI: 10.1111/ijd.15498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
Poikiloderma is a skin condition that combines atrophy, telangiectasia, and macular pigment changes (hypo- as well as hyperpigmentation). It is often mistaken for mottled pigmentation by general practitioners or nondermatology specialists. Poikiloderma can be a key presenting symptom of Rothmund-Thomson syndrome (RTS), dyskeratosis congenita (DC), hereditary sclerosing poikiloderma (HSP), hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP), xeroderma pigmentosum (XP), Bloom syndrome (BS), Kindler syndrome (KS), and Clericuzio-type poikiloderma with neutropenia (PN). In these conditions, poikiloderma starts early in life, usually before the second or third year. They may also be associated with photosensitivity and other significant multi-organ manifestation developed later in life. Poikiloderma could indicate the presence of a genetic disorder with potentially serious consequences. Poikiloderma almost always precedes more severe manifestations of these genodermatoses. Prompt diagnosis at the time of presentation could help to prevent complications and mitigate the course of the disease. This review discusses these to help the practicing clinician manage patients presenting with the symptom. To further facilitate early recognition, this paper also proposes a simple diagnostic algorithm.
Collapse
Affiliation(s)
- Tuntas Rayinda
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maurice van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Skin Center, Singapore, Singapore
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
44
|
Michniacki TF, Weyand AC. Gastrointestinal Bleeding: Expanding the Shortened Telomere Disorder Phenotype. J Pediatr 2021; 230:12-14. [PMID: 33121962 DOI: 10.1016/j.jpeds.2020.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Thomas F Michniacki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Angela C Weyand
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Sławińska N, Krupa R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int J Mol Sci 2021; 22:ijms22020590. [PMID: 33435578 PMCID: PMC7827783 DOI: 10.3390/ijms22020590] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cells can become senescent in response to stress. Senescence is a process characterised by a stable proliferative arrest. Sometimes it can be beneficial—for example, it can suppress tumour development or take part in tissue repair. On the other hand, studies show that it is also involved in the ageing process. DNA damage response (DDR) is triggered by DNA damage or telomere shortening during cell division. When left unresolved, it may lead to the activation of senescence. Senescent cells secrete certain proteins in larger quantities. This phenomenon is referred to as senescence-associated secretory phenotype (SASP). SASP can induce senescence in other cells; evidence suggests that overabundance of senescent cells contributes to ageing. SASP proteins include proinflammatory cytokines and metalloproteinases, which degrade the extracellular matrix. Shortening of telomeres is another feature associated with organismal ageing. Older organisms have shorter telomeres. Restoring telomerase activity in mice not only slowed but also partially reversed the symptoms of ageing. Changes in chromatin structure during senescence include heterochromatin formation or decondensation and loss of H1 histones. During organismal ageing, cells can experience heterochromatin loss, DNA demethylation and global histone loss. Cellular and organismal ageing are both complex processes with many aspects that are often related. The purpose of this review is to bring some of these aspects forward and provide details regarding them.
Collapse
|
46
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
47
|
Kaliatsi EG, Giarimoglou N, Stathopoulos C, Stamatopoulou V. Non-Coding RNA-Driven Regulation of rRNA Biogenesis. Int J Mol Sci 2020; 21:E9738. [PMID: 33419375 PMCID: PMC7766524 DOI: 10.3390/ijms21249738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Ribosomal RNA (rRNA) biogenesis takes place in the nucleolus, the most prominent condensate of the eukaryotic nucleus. The proper assembly and integrity of the nucleolus reflects the accurate synthesis and processing of rRNAs which in turn, as major components of ribosomes, ensure the uninterrupted flow of the genetic information during translation. Therefore, the abundant production of rRNAs in a precisely functional nucleolus is of outmost importance for the cell viability and requires the concerted action of essential enzymes, associated factors and epigenetic marks. The coordination and regulation of such an elaborate process depends on not only protein factors, but also on numerous regulatory non-coding RNAs (ncRNAs). Herein, we focus on RNA-mediated mechanisms that control the synthesis, processing and modification of rRNAs in mammals. We highlight the significance of regulatory ncRNAs in rRNA biogenesis and the maintenance of the nucleolar morphology, as well as their role in human diseases and as novel druggable molecular targets.
Collapse
Affiliation(s)
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| | - Vassiliki Stamatopoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (E.G.K.); (N.G.)
| |
Collapse
|
48
|
Schratz KE. Extrahematopoietic manifestations of the short telomere syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:115-122. [PMID: 33275732 PMCID: PMC7727508 DOI: 10.1182/hematology.2020000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The short telomere syndromes encompass a spectrum of clinical manifestations that present from infancy to late adulthood. They are caused by mutations in telomerase and other telomere maintenance genes and have a predominantly degenerative phenotype characterized by organ failure across multiple systems. They are collectively one of the most common inherited bone marrow failure syndromes; however, their most prevalent presentations are extrahematopoietic. This review focuses on these common nonhematologic complications, including pulmonary fibrosis, liver pathology, and immunodeficiency. The short telomere syndrome diagnosis informs clinical care, especially in guiding diagnostic evaluations as well as in the solid organ transplant setting. Early recognition allows an individualized approach to screening and management. This review illustrates a myriad of extrahematopoietic presentations of short telomere syndromes and how they impact clinical decisions.
Collapse
Affiliation(s)
- Kristen E Schratz
- Department of Oncology and Telomere Center at Johns Hopkins, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Ibáñez-Cabellos JS, Seco-Cervera M, Picher-Latorre C, Pérez-Machado G, García-Giménez JL, Pallardó FV. Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53 pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118845. [DOI: 10.1016/j.bbamcr.2020.118845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
50
|
Alebrahim M, Akateh C, Arnold CA, Benissan-Messan D, Chavez JA, Singh N, Al-Adwan Y, El-Hinnawi A, Michaels A, Black SM. Liver Transplant for Management of Hepatic Complications of Dyskeratosis Congenita: A Case Report. EXP CLIN TRANSPLANT 2020; 20:702-705. [PMID: 33272154 DOI: 10.6002/ect.2020.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dyskeratosis congenita, a rare genetic disorder typified by progressive bone marrow failure, is classically characterized by the triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia; however, it is a multisystem disease. Although hepatic involvement occurs in about 7% of patients with dyskeratosis congenita, end-stage liver disease is rare. Treatment of dyskeratosis congenita generally involves hematopoietic stem cell transplant. For patients with hepatic failure, liver transplant can be an option. Here, we describe a case of a patient with dyskeratosis congenita who presented with liver failure and pulmonary failure, precluding him from hematopoietic stem cell transplant. After liver transplant, the patient had significant improvements in pulmonary function and transfusion requirements, allowing the patient to qualify for hematopoietic stem cell transplant. Although hematopoietic stem cell transplant is typically the first step in the management of dyskeratosis congenita, for patients with severe hepatic manifestations of the disease, a liver transplant first approach may result in better disease management.
Collapse
Affiliation(s)
- Musab Alebrahim
- From the Division of Transplant Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|