1
|
Salman DM, Mohammad TAM. Leukemia cancer cells and immune cells derived-exosomes: Possible roles in leukemia progression and therapy. Cell Biochem Funct 2024; 42:e3960. [PMID: 38424731 DOI: 10.1002/cbf.3960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Exosomes have a significant impact on tumor survival, proliferation, metastasis, and recurrence. They also open up new therapeutic options and aid in the pathological identification and diagnosis of cancers. Exosomes have been shown in numerous studies to be essential for facilitating cell-to-cell communication. In B-cell hematological malignancies, the proteins and RNAs that are encased by circulating exosomes are thought to represent prospective sources for therapeutic drugs as well as biomarkers for diagnosis and prognosis. Additionally, exosomes can offer a "snapshot" of the tumor and the metastatic environment at any given point in time. In this review study, we concluded that leukemia-derived exosomes could be utilized as prognostic, diagnostic, and therapeutic biomarkers for individuals suffering from leukemia. Moreover, clinical studies have demonstrated that immune cells like dendritic cells create exosomes, which have the ability to activate the immune system against leukemia.
Collapse
Affiliation(s)
- Dyar Mudhafar Salman
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
- Faculty of Pharmacy, Tishk International University, Kurdistan Region-Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Department of Clinical Pharmacy, College of Pharmacy, Hawler Medical University, Kurdistan Region-Erbil, Iraq
| |
Collapse
|
2
|
Molecular Measurable Residual Disease Assessment before Hematopoietic Stem Cell Transplantation in Pediatric Acute Myeloid Leukemia Patients: A Retrospective Study by the I-BFM Study Group. Biomedicines 2022; 10:biomedicines10071530. [PMID: 35884834 PMCID: PMC9313005 DOI: 10.3390/biomedicines10071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative post-remission treatment in patients with acute myeloid leukemia (AML), but relapse after transplant is still a challenging event. In recent year, several studies have investigated the molecular minimal residual disease (qPCR-MRD) as a predictor of relapse, but the lack of standardized protocols, cut-offs, and timepoints, especially in the pediatric setting, has prevented its use in several settings, including before HSCT. Here, we propose the first collaborative retrospective I-BFM-AML study assessing qPCR-MRD values in pretransplant bone marrow samples of 112 patients with a diagnosis of AML harboring t(8;21)(q22; q22)RUNX1::RUNX1T1, or inv(16)(p13q22)CBFB::MYH11, or t(9;11)(p21;q23)KMT2A::MLLT3, or FLT3-ITD genetic markers. We calculated an ROC cut-off of 2.1 × 10−4 that revealed significantly increased OS (83.7% versus 57.1%) and EFS (80.2% versus 52.9%) for those patients with lower qPCR-MRD values. Then, we partitioned patients into three qPCR-MRD groups by combining two different thresholds, 2.1 × 10−4 and one lower cut-off of 1 × 10−2, and stratified patients into low-, intermediate-, and high-risk groups. We found that the 5-year OS (83.7%, 68.6%, and 39.2%, respectively) and relapse-free survival (89.2%, 73.9%, and 67.9%, respectively) were significantly different independent of the genetic lesion, conditioning regimen, donor, and stem cell source. These data support the PCR-based approach playing a clinical relevance in AML transplant management.
Collapse
|
3
|
Khabirova E, Jardine L, Coorens THH, Webb S, Treger TD, Engelbert J, Porter T, Prigmore E, Collord G, Piapi A, Teichmann SA, Inglott S, Williams O, Heidenreich O, Young MD, Straathof K, Bomken S, Bartram J, Haniffa M, Behjati S. Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nat Med 2022; 28:743-751. [PMID: 35288693 PMCID: PMC9018413 DOI: 10.1038/s41591-022-01720-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
KMT2A-rearranged infant ALL is an aggressive childhood leukemia with poor prognosis. Here, we investigated the developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia (B-ALL) using bulk messenger RNA (mRNA) meta-analysis and examination of single lymphoblast transcriptomes against a developing bone marrow reference. KMT2A-rearranged infant B-ALL was uniquely dominated by an early lymphocyte precursor (ELP) state, whereas less adverse NUTM1-rearranged infant ALL demonstrated signals of later developing B cells, in line with most other childhood B-ALLs. We compared infant lymphoblasts with ELP cells and revealed that the cancer harbored hybrid myeloid-lymphoid features, including nonphysiological antigen combinations potentially targetable to achieve cancer specificity. We validated surface coexpression of exemplar combinations by flow cytometry. Through analysis of shared mutations in separate leukemias from a child with infant KMT2A-rearranged B-ALL relapsing as AML, we established that KMT2A rearrangement occurred in very early development, before hematopoietic specification, emphasizing that cell of origin cannot be inferred from the transcriptional state.
Collapse
Affiliation(s)
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Grace Collord
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, University College London Hospital, London, UK
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Alice Piapi
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Sarah Inglott
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Owen Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Karin Straathof
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Jack Bartram
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Balduzzi A, Buechner J, Ifversen M, Dalle JH, Colita AM, Bierings M. Acute Lymphoblastic Leukaemia in the Youngest: Haematopoietic Stem Cell Transplantation and Beyond. Front Pediatr 2022; 10:807992. [PMID: 35281233 PMCID: PMC8911028 DOI: 10.3389/fped.2022.807992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The ALL SCTped 2012 FORUM (For Omitting Radiation Under Majority age) trial compared outcomes for children ≥4 years of age transplanted for acute lymphoblastic leukaemia (ALL) who were randomised to myeloablation with a total body irradiation (TBI)-based or chemotherapy-based conditioning regimen. The TBI-based preparation was associated with a lower rate of relapse compared with chemoconditioning. Nevertheless, the age considered suitable for TBI was progressively raised over time to spare the most fragile youngest patients from irradiation-related complications. The best approach to use for children <4 years of age remains unclear. Children diagnosed with ALL in their first year of life, defined as infants, have a remarkably poorer prognosis compared with older children. This is largely explained by the biology of their ALL, with infants often carrying a KMT2A gene rearrangement, as well as by their fragility. In contrast, the clinical presentations and biological features of ALL in children >1 year but <4 years often resemble those presented by older children. In this review, we explore the state of the art regarding haematopoietic stem cell transplantation (HSCT) in children <4 years, the preparative regimens available, and new developments in the field that may influence treatment decisions.
Collapse
Affiliation(s)
- Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano-Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Monza, Italy
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Jean-Hugues Dalle
- Hôpital Robert Debré, GH AP-HP. Nord Université de Paris, Paris, France
| | - Anca M Colita
- Department of Pediatric Hematology and BMT, Fundeni Clinical Institute, "Carol Davila" University of Medicine, Bucharest, Romania
| | | |
Collapse
|
5
|
Popov A, Tsaur G, Verzhbitskaya T, Riger T, Permikin Z, Demina A, Mikhailova E, Shorikov E, Arakaev O, Streneva O, Khlebnikova O, Makarova O, Miakova N, Fominikh V, Boichenko E, Kondratchik K, Ponomareva N, Novichkova G, Karachunskiy A, Fechina L. Comparison of minimal residual disease measurement by multicolour flow cytometry and PCR for fusion gene transcripts in infants with acute lymphoblastic leukaemia with KMT2A gene rearrangements. Br J Haematol 2021; 201:510-519. [PMID: 34970734 DOI: 10.1111/bjh.18021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the concordance between minimal residual disease (MRD) results obtained by multicolour flow cytometry (MFC) and polymerase chain reaction for fusion gene transcripts (FGTs) in infants with acute lymphoblastic leukaemia (ALL) associated with rearrangement of the KMT2A gene (KMT2A-r). A total of 942 bone marrow (BM) samples from 123 infants were studied for MFC-MRD and FGT-MRD. In total, 383 samples (40.7%) were concordantly MRD-negative. MRD was detected by the two methods in 441 cases (46.8%); 99 samples (10.5%) were only FGT-MRD-positive and 19 (2.0%) were only MFC-MRD-positive. A final concordance rate of 87.4% was established. Most discordance occurred if residual leukaemia was present at levels close to the sensitivity limits. Neither the type of KMT2A fusion nor a new type of treatment hampering MFC methodology had an influence on the concordance rate. The prognostic value of MFC-MRD and FGT-MRD differed. MFC-MRD was able to identify a rapid response at early time-points, whereas FGT-MRD was a reliable relapse predictor at later treatment stages. Additionally, the most precise risk definition was obtained when combining the two methods. Because of the high comparability in results, these two rather simple and inexpensive approaches could be good options of high clinical value.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Tatiana Riger
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Zhan Permikin
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Anna Demina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Ekaterina Mikhailova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Egor Shorikov
- PET-Technology Center of Nuclear Medicine, Ekaterinburg, Russian Federation
| | - Oleg Arakaev
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | | | - Olga Makarova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Veronika Fominikh
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elmira Boichenko
- City Children's Hospital №1, Saint-Petersburg, Russian Federation
| | | | | | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| |
Collapse
|
6
|
Popov A, Fominikh V, Mikhailova E, Shelikhova L, Tsaur G, Abugova Y, Zerkalenkova E, Olshanskaya Y, Balashov D, Novichkova G, Maschan A, Miakova N. Blinatumomab following haematopoietic stem cell transplantation - a novel approach for the treatment of acute lymphoblastic leukaemia in infants. Br J Haematol 2021; 194:174-178. [PMID: 33843056 DOI: 10.1111/bjh.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
Blinatumomab with subsequent haematopoietic stem cell transplantation was applied in 13 infants with acute lymphoblastic leukaemia (ALL). Eight patients were treated in first remission due to slow clearance of minimal residual disease (MRD); one for MRD-reappearance after long MRD negativity, one for primary refractory disease and three during relapse treatment. In slow MRD responders, complete MRD response was achieved prior to transplantation, with an 18-month event-free survival of 75%. In contrast, only one of five patients with relapsed/refractory ALL is still in complete remission. These data provide a basis for future studies of immunotherapy in very high-risk infant ALL.
Collapse
Affiliation(s)
- Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Veronika Fominikh
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Larisa Shelikhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Yulia Abugova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Dmitry Balashov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Natalia Miakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
7
|
Abstract
Neonates are at risk for 3 major forms of leukemia in the first year of life: acute leukemia, juvenile myelomonocytic leukemia, and transient abnormal myelopoiesis associated with Down syndrome. These disorders are rare but generate interest due to aggressive clinical presentation, suboptimal response to current therapies, and fascinating biology. Each can arise as a result of unique constitutional and acquired genetic events. Genetic insights are pointing the way toward novel therapeutic approaches. This article reviews key epidemiologic, clinical, and molecular features of neonatal leukemias, focusing on risk stratification, treatment, and strategies for developing novel molecularly targeted approaches to improve future outcomes.
Collapse
Affiliation(s)
- Patrick A Brown
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
8
|
Brown PA, Kairalla JA, Hilden JM, Dreyer ZE, Carroll AJ, Heerema NA, Wang C, Devidas M, Gore L, Salzer WL, Winick NJ, Carroll WL, Raetz EA, Borowitz MJ, Small D, Loh ML, Hunger SP. FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children's Oncology Group trial AALL0631. Leukemia 2021; 35:1279-1290. [PMID: 33623141 DOI: 10.1038/s41375-021-01177-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Infants with KMT2A-rearranged acute lymphoblastic leukemia (KMT2A-r ALL) have a poor prognosis. KMT2A-r ALL overexpresses FLT3, and the FLT3 inhibitor (FLT3i) lestaurtinib potentiates chemotherapy-induced cytotoxicity in preclinical models. Children's Oncology Group (COG) AALL0631 tested whether adding lestaurtinib to post-induction chemotherapy improved event-free survival (EFS). After chemotherapy induction, KMT2A-r infants received either chemotherapy only or chemotherapy plus lestaurtinib. Correlative assays included FLT3i plasma pharmacodynamics (PD), which categorized patients as inhibited or uninhibited, and FLT3i ex vivo sensitivity (EVS), which categorized leukemic blasts as sensitive or resistant. There was no difference in 3-year EFS between patients treated with chemotherapy plus lestaurtinib (n = 67, 36 ± 6%) vs. chemotherapy only (n = 54, 39 ± 7%, p = 0.67). However, for the lestaurtinib-treated patients, FLT3i PD and FLT3i EVS significantly correlated with EFS. For FLT3i PD, EFS for inhibited/uninhibited was 59 ± 10%/28 ± 7% (p = 0.009) and for FLTi EVS, EFS for sensitive/resistant was 52 ± 8%/5 ± 5% (p < 0.001). Seventeen patients were both inhibited and sensitive, with an EFS of 88 ± 8%. Adding lestaurtinib did not improve EFS overall, but patients achieving potent FLT3 inhibition and those whose leukemia blasts were sensitive FLT3-inhibition ex vivo did benefit from the addition of lestaurtinib. Patient selection and PD-guided dose escalation may enhance the efficacy of FLT3 inhibition for KMT2A-r infant ALL.
Collapse
Affiliation(s)
- Patrick A Brown
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| | - John A Kairalla
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Joanne M Hilden
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nyla A Heerema
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Cindy Wang
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lia Gore
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Wanda L Salzer
- U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Naomi J Winick
- Division of Pediatric Hematology/Oncology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
| | - William L Carroll
- Department of Pediatrics and Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Michael J Borowitz
- Departments of Pathology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Donald Small
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Tsaur G, Popov A, Riger T, Kustanovich A, Solodovnikov A, Shorikov E, Demina A, Verzhbitskaya T, Streneva O, Makarova O, Lapotentova E, Aleinikova O, Miakova N, Boichenko E, Kondratchik K, Ponomareva N, Karachunskiy A, Roumiantsev A, Fechina L. Prognostic value of minimal residual disease measured by fusion-gene transcript in infants with KMT2A-rearranged acute lymphoblastic leukaemia treated according to the MLL-Baby protocol. Br J Haematol 2021; 193:1151-1156. [PMID: 33583020 DOI: 10.1111/bjh.17304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
The prognostic value of minimal residual disease (MRD) measured by fusion-gene transcript (FGT) detection was investigated in 76 infants (aged ≤1 year) with acute lymphoblastic leukaemia (ALL) with lysine methyltransferase 2A (KMT2A) rearrangements. Either at the end of induction or at later time-points, FGT-MRD-positivity was associated with poor outcome. FGT-MRD-positivity after first consolidation or first high-risk block detected 46·5% of infants with extremely poor outcome [disease-free survival (SE) 0·06 (0·06), cumulative incidence of relapse (SE) 0·91 (0·05)], which was also confirmed in multivariable analysis. Thus, FGT-MRD measurement at a single time-point clearly identifies infants with ALL who are curable with conventional chemotherapy and those who would benefit only from other treatment approaches.
Collapse
Affiliation(s)
- Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Tatiana Riger
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Anatoly Kustanovich
- The Sharett Institute of Oncology, Hadassah Medical Center, Jerusalem, Israel
| | - Alexander Solodovnikov
- Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Egor Shorikov
- PET-Technology Center of Nuclear Medicine, Ekaterinburg, Russian Federation
| | - Anna Demina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Olga Makarova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Elena Lapotentova
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Olga Aleinikova
- Belarussian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elmira Boichenko
- City Children's Hospital, 1, Saint-Petersburg, Russian Federation
| | | | | | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Roumiantsev
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| |
Collapse
|
10
|
Brown P, Inaba H, Annesley C, Beck J, Colace S, Dallas M, DeSantes K, Kelly K, Kitko C, Lacayo N, Larrier N, Maese L, Mahadeo K, Nanda R, Nardi V, Rodriguez V, Rossoff J, Schuettpelz L, Silverman L, Sun J, Sun W, Teachey D, Wong V, Yanik G, Johnson-Chilla A, Ogba N. Pediatric Acute Lymphoblastic Leukemia, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 18:81-112. [PMID: 31910389 DOI: 10.6004/jnccn.2020.0001] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Advancements in technology that enhance our understanding of the biology of the disease, risk-adapted therapy, and enhanced supportive care have contributed to improved survival rates. However, additional clinical management is needed to improve outcomes for patients classified as high risk at presentation (eg, T-ALL, infant ALL) and who experience relapse. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for pediatric ALL provide recommendations on the workup, diagnostic evaluation, and treatment of the disease, including guidance on supportive care, hematopoietic stem cell transplantation, and pharmacogenomics. This portion of the NCCN Guidelines focuses on the frontline and relapsed/refractory management of pediatric ALL.
Collapse
Affiliation(s)
- Patrick Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Hiroto Inaba
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | - Colleen Annesley
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Susan Colace
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Mari Dallas
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Kara Kelly
- Roswell Park Comprehensive Cancer Center
| | | | | | | | - Luke Maese
- Huntsman Cancer Institute at the University of Utah
| | - Kris Mahadeo
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Jenna Rossoff
- Ann & Robert H. Lurie Children's Hospital of Chicago
| | - Laura Schuettpelz
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Weili Sun
- City of Hope National Medical Center
| | - David Teachey
- Abramson Cancer Center at the University of Pennsylvania
| | | | | | | | | |
Collapse
|
11
|
Li K, Xiong H, Li Y, Zhou P, Li J, Li H, Tao F, Wang Z, Chen Z. WITHDRAWN: Clinical features and outcomes of infant acute lymphoblastic leukemia from a single center in China. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Pennella CL, Deu MA, Rossi JG, Baialardo EM, Alonso CN, Rubio P, Guitter MR, La Rosa CGS, Alfaro EM, Zubizarreta PA, Felice MS. No benefit of Interfant protocols compared to BFM-based protocols for infants with acute lymphoblastic leukemia. Results from an institution in Argentina. Pediatr Blood Cancer 2020; 67:e28624. [PMID: 32729239 DOI: 10.1002/pbc.28624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Infant acute lymphoblastic leukemia (ALL) is an infrequent disease characterized by clinical and biological features related to poor prognosis. Adapted therapies were designed without a clear consensus regarding the best treatment options. We aimed to compare the outcome between infant ALL cases receiving Interfant versus BFM-based protocols. PROCEDURE This is a retrospective observational study. From April 1990 to June 2018, infant ALL cases were enrolled in one of the five consecutive treatment protocols. Clinical, demographic, and biological features and outcome were evaluated. A comparative analysis was performed between Interfant protocols and BFM-based protocols. RESULTS During the studied period, 1913 ALL patients were admitted and 116 (6%) were infants. Treatment administered was: ALL-BFM'90 (n = 16), 1-ALL96-BFM/HPG (n = 7), Interfant-99 (n = 39), Interfant-06 (n = 35), and ALLIC-BFM'2009 (n = 19). The 5-year event-free survival probability (EFSp) was 31.9(standard error [SE] 4.6)% for the entire population, with a significant difference among risk groups according to Interfant-06 criteria (P = .0029). KMT2A-rearrangement status was the strongest prognostic factor (P = .048), independently of the protocol strategy. The median time for relapse was 24.1 months for patients with minimal residual disease (MRD)-negative versus 11.5 months for those with MRD-positive (P = .0386). EFSp and cumulative relapse risk probability (CRRp) were similar. Interfant protocols showed comparable induction (8.1% vs 7.1%, P = .852) and complete remission mortality (21.6% vs 28.6%, P = .438), failing to reduce the relapse rate (48.5% vs 30.7%, P = .149). CONCLUSIONS Interfant protocols and BFM-based protocols presented comparable results. The risk group stratification proposed by Interfant-06 was validated by our results, and MRD seems useful to identify patients with an increased risk of early relapse.
Collapse
Affiliation(s)
- Carla L Pennella
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María A Deu
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorge G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Edgardo M Baialardo
- Department of Genetics, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Cristina N Alonso
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Patricia Rubio
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Myriam R Guitter
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Cristian G Sánchez La Rosa
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Elizabeth M Alfaro
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Pedro A Zubizarreta
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - María S Felice
- Department of Hematology-Oncology, Hospital de Pediatría S.A.M.I.C Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
13
|
Forgione MO, McClure BJ, Eadie LN, Yeung DT, White DL. KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett 2019; 469:410-418. [PMID: 31705930 DOI: 10.1016/j.canlet.2019.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
KMT2A rearranged (KMT2Ar) acute lymphoblastic leukaemia (ALL) is a high-risk genomic subtype, with long-term survival rates of less than 60% across all age groups. These cases present a complex clinical challenge, with a high incidence in infants, high-risk clinical features and propensity for aggressive relapse. KMT2A rearrangements are highly pathogenic leukaemic drivers, reflected by the high incidence of KMT2Ar ALL in infants, who carry few leukaemia-associated cooperative mutations. However, transgenic murine models of KMT2Ar ALL typically exhibit long latency and mature or mixed phenotype, and fail to recapitulate the aggressive disease observed clinically. Next-generation sequencing has revealed that KMT2Ar ALL also occurs in adolescents and adults, and potentially cooperative genomic lesions such as PI3K-RAS pathway variants are present in KMT2Ar patients of all ages. This review addresses the aetiology of KMT2Ar ALL, with a focus on the cell of origin and mutational landscape, and how genomic profiling of KMT2Ar ALL patients in the era of next-generation sequencing demonstrates that KMT2Ar ALL is a complex heterogenous disease. Ultimately, understanding the underlying biology of KMT2Ar ALL will be important in improving long-term outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia.
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Department of Haematology, Royal Adelaide Hospital, SA, 5000, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Vic, 3052, Australia; Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, Vic, 3168, Australia
| |
Collapse
|
14
|
Britten O, Ragusa D, Tosi S, Kamel YM. MLL-Rearranged Acute Leukemia with t(4;11)(q21;q23)-Current Treatment Options. Is There a Role for CAR-T Cell Therapy? Cells 2019; 8:cells8111341. [PMID: 31671855 PMCID: PMC6912830 DOI: 10.3390/cells8111341] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
The MLL (mixed-lineage leukemia) gene, located on chromosome 11q23, is involved in chromosomal translocations in a subtype of acute leukemia, which represents approximately 10% of acute lymphoblastic leukemia and 2.8% of acute myeloid leukemia cases. These translocations form fusions with various genes, of which more than 80 partner genes for MLL have been identified. The most recurrent fusion partner in MLL rearrangements (MLL-r) is AF4, mapping at chromosome 4q21, accounting for approximately 36% of MLL-r leukemia and particularly prevalent in MLL-r acute lymphoblastic leukemia (ALL) cases (57%). MLL-r leukemia is associated with a sudden onset, aggressive progression, and notoriously poor prognosis in comparison to non-MLL-r leukemias. Despite modern chemotherapeutic interventions and the use of hematopoietic stem cell transplantations, infants, children, and adults with MLL-r leukemia generally have poor prognosis and response to these treatments. Based on the frequency of patients who relapse, do not achieve complete remission, or have brief event-free survival, there is a clear clinical need for a new effective therapy. In this review, we outline the current therapy options for MLL-r patients and the potential application of CAR-T therapy.
Collapse
MESH Headings
- Adult
- Child
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 4/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Immunotherapy, Adoptive/methods
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Yasser Mostafa Kamel
- ASYS Pharmaceutical Consultants-APC Inc. 2, Bedford, Nova Scotia B4A 4L2, Canada.
| |
Collapse
|
15
|
Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, Campbell M, Escherich G, Ferster A, Gardner RA, Kotecha RS, Lausen B, Li CK, Locatelli F, Attarbaschi A, Peters C, Rubnitz JE, Silverman LB, Stary J, Szczepanski T, Vora A, Schrappe M, Valsecchi MG. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J Clin Oncol 2019; 37:2246-2256. [PMID: 31283407 DOI: 10.1200/jco.19.00261] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Infant acute lymphoblastic leukemia (ALL) is characterized by KMT2A (MLL) gene rearrangements and coexpression of myeloid markers. The Interfant-06 study, comprising 18 national and international study groups, tested whether myeloid-style consolidation chemotherapy is superior to lymphoid style, the role of stem-cell transplantation (SCT), and which factors had independent prognostic value. MATERIALS AND METHODS Three risk groups were defined: low risk (LR): KMT2A germline; high risk (HR): KMT2A-rearranged and older than 6 months with WBC count 300 × 109/L or more or a poor prednisone response; and medium risk (MR): all other KMT2A-rearranged cases. Patients in the MR and HR groups were randomly assigned to receive the lymphoid course low-dose cytosine arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid courses, namely araC, daunorubicin, etoposide (ADE) and mitoxantrone, araC, etoposide (MAE). RESULTS A total of 651 infants were included, with 6-year event-free survival (EFS) and overall survival of 46.1% (SE, 2.1) and 58.2% (SE, 2.0). In West European/North American groups, 6-year EFS and overall survival were 49.4% (SE, 2.5) and 62.1% (SE, 2.4), which were 10% to 12% higher than in other countries. The 6-year probability of disease-free survival was comparable for the randomized arms (ADE+MAE 39.3% [SE 4.0; n = 169] v IB 36.8% [SE, 3.9; n = 161]; log-rank P = .47). The 6-year EFS rate of patients in the HR group was 20.9% (SE, 3.4) with the intention to undergo SCT; only 46% of them received SCT, because many had early events. KMT2A rearrangement was the strongest prognostic factor for EFS, followed by age, WBC count, and prednisone response. CONCLUSION Early intensification with postinduction myeloid-type chemotherapy courses did not significantly improve outcome for infant ALL compared with the lymphoid-type course IB. Outcome for infant ALL in Interfant-06 did not improve compared with that in Interfant-99.
Collapse
Affiliation(s)
- Rob Pieters
- Dutch Childhood Oncology Group, Utrecht, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Philip Ancliffe
- United Kingdom Children Cancer Study Group, London, United Kingdom
| | | | - Benoit Brethon
- French Acute Lymphoblastic Leukemia Study Group, Paris, France
| | - Andrea Biondi
- University of Milano-Bicocca, Monza, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.,University of Pavia, Pavia, Italy
| | | | - Gabriele Escherich
- German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Alina Ferster
- European Organisation for Research and Treatment of Cancer Children Leukemia Group, Brussels, Belgium
| | | | - Rishi Sury Kotecha
- Australian and New Zealand Children's Haematology/Oncology Group, Perth, Australia.,University of Western Australia, Perth, Western Australia, Australia
| | - Birgitte Lausen
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chi Kong Li
- The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, People's Republic of China
| | - Franco Locatelli
- University of Milano-Bicocca, Monza, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.,University of Pavia, Pavia, Italy
| | | | | | | | | | - Jan Stary
- Czech Working Group for Pediatric Hematology, Prague, Czech Republic
| | - Tomasz Szczepanski
- Polish Pediatric Leukemia/Lymphoma Study Group, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ajay Vora
- United Kingdom Children Cancer Study Group, London, United Kingdom
| | | | | |
Collapse
|
16
|
Abstract
Leukemia in infants is rare but generates tremendous interest due to its aggressive clinical presentation in a uniquely vulnerable host, its poor response to current therapies, and its fascinating biology. Increasingly, these biological insights are pointing the way toward novel therapeutic approaches. Using representative clinical case presentations, we review the key clinical, pathologic, and epidemiologic features of infant leukemia, including the high frequency of KMT2A gene rearrangements. We describe the current approach to risk-stratified treatment of infant leukemia in the major international cooperative groups. We highlight recent discoveries that elucidate the molecular biology of infant leukemia and suggest novel targeted therapeutic strategies, including modulation of aberrant epigenetic programs, inhibition of signaling pathways, and immunotherapeutics. Finally, we underscore the need for increased global collaboration to translate these discoveries into improved outcomes.
Collapse
|
17
|
|
18
|
Unrelated Cord Blood Transplantation for Acute Leukemia Diagnosed in the First Year of Life: Outcomes and Risk Factor Analysis. Biol Blood Marrow Transplant 2017; 23:96-102. [DOI: 10.1016/j.bbmt.2016.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022]
|
19
|
Abstract
Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of neonatal and adult diseases. New evidence in preclinical models as well as a few human studies show the potential utility of SCT in neuroprotection and in the modulation of inflammatory injury in at risk-neonates. This review briefly summarizes current understanding of human stem cell biology during ontogeny and present recent evidence supporting SCT as a viable approach for postinsult neonatal injury.
Collapse
Affiliation(s)
- Momoko Yoshimoto
- Assistant Research Professor, Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044W Walnut Street R4-W116, Indianapolis, IN 46202, Tel: 317-278-0598
| | - Joyce M Koenig
- Pediatrics, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63104, USA; Molecular Microbiology & Immunology, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63106, USA.
| |
Collapse
|
20
|
Lee JW, Kang HJ, Kim S, Lee SH, Yu KS, Kim NH, Jang MK, Kim H, Song SH, Park JD, Park KD, Shin HY, Jang IJ, Ahn HS. Favorable Outcome of Hematopoietic Stem Cell Transplantation Using a Targeted Once-Daily Intravenous Busulfan–Fludarabine–Etoposide Regimen in Pediatric and Infant Acute Lymphoblastic Leukemia Patients. Biol Blood Marrow Transplant 2015; 21:190-5. [DOI: 10.1016/j.bbmt.2014.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
21
|
Abstract
Although great progress has been made in the understanding and treatment of acute leukemia, this disease has not been conquered. For emergency providers (EPs), the presentation of these patients to an emergency department presents a host of challenges. A patient may present with a new diagnosis of leukemia or with complications of the disease process or associated chemotherapy. It is incumbent on EPs to be familiar with the manifestations of leukemia in its various stages and maintain some suspicion for this diagnosis, given the nebulous and insidious manner in which leukemia can present.
Collapse
Affiliation(s)
- Hayley Rose-Inman
- Department of Emergency Medicine, Carilion Clinic, Virginia Tech Carilion School of Medicine and Research Institute, 1906 Belleview Avenue, Roanoke, VA 24014, USA.
| | - Damon Kuehl
- Department of Emergency Medicine, Carilion Clinic, Virginia Tech Carilion School of Medicine and Research Institute, 1906 Belleview Avenue, Roanoke, VA 24014, USA
| |
Collapse
|