1
|
Brayer KJ, Kang H, El-Naggar AK, Andreasen S, Homøe P, Kiss K, Mikkelsen L, Heegaard S, Pelaez D, Moeyersoms A, Tse DT, Guo Y, Lee DY, Ness SA. Dominant Gene Expression Profiles Define Adenoid Cystic Carcinoma (ACC) from Different Tissues: Validation of a Gene Signature Classifier for Poor Survival in Salivary Gland ACC. Cancers (Basel) 2023; 15:1390. [PMID: 36900183 PMCID: PMC10000625 DOI: 10.3390/cancers15051390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive malignancy that most often arises in salivary or lacrimal glands but can also occur in other tissues. We used optimized RNA-sequencing to analyze the transcriptomes of 113 ACC tumor samples from salivary gland, lacrimal gland, breast or skin. ACC tumors from different organs displayed remarkedly similar transcription profiles, and most harbored translocations in the MYB or MYBL1 genes, which encode oncogenic transcription factors that may induce dramatic genetic and epigenetic changes leading to a dominant 'ACC phenotype'. Further analysis of the 56 salivary gland ACC tumors led to the identification of three distinct groups of patients, based on gene expression profiles, including one group with worse survival. We tested whether this new cohort could be used to validate a biomarker developed previously with a different set of 68 ACC tumor samples. Indeed, a 49-gene classifier developed with the earlier cohort correctly identified 98% of the poor survival patients from the new set, and a 14-gene classifier was almost as accurate. These validated biomarkers form a platform to identify and stratify high-risk ACC patients into clinical trials of targeted therapies for sustained clinical response.
Collapse
Affiliation(s)
- Kathryn J. Brayer
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Huining Kang
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Department of Internal Medicine, Division of Epidemiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Adel K. El-Naggar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Lauge Mikkelsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Acadia Moeyersoms
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - David Y. Lee
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Department of Internal Medicine, Division of Hematology/Oncology, Section of Radiation Oncology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Abstract
The first wave of erythropoiesis in amniotic animals generates all primitive erythrocytes and takes place exclusively in yolk sac mesoderm. It is less clear, however, to what extent and for how long the yolk sac contributes to the second wave of erythropoiesis which gives rise to definitive erythrocytes for later embryonic and adult use. Here, we examine the initiation, duration, and site of definitive erythrocyte formation in chicken yolk sac. We show that the earliest definitive erythrocytes are generated in yolk sac venous vessels surrounding major arteries at embryonic day (E) 4-4.5, and that mature definitive erythrocytes enter circulating at E4.5-E5. This takes place at a time when yolk sac vasculature remodels extensively to generate paired arterial/venous vessels. The yolk sac remains the predominant site for definitive erythropoiesis from E5 to E10, and continues to generate definitive erythrocytes at least until E15. Similar to primitive erythropoiesis, definitive erythropoiesis in the yolk sac is accompanied by the expression of transcriptional regulators gata1, scl, and lmo2. Furthermore, our data suggest that one main source of definitive erythropoietic cells is the pre-existing vascular endothelial cells. It remains unclear whether yolk sac derived hematopoietic progenitors that do not undergo erythropoiesis in the yolk sac may take up intraembryonic niches and contribute to erythropoietic stem cell population after hatching.
Collapse
Affiliation(s)
- Hiroki Nagai
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | |
Collapse
|
3
|
Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem 2009; 284:7719-32. [PMID: 19147501 DOI: 10.1074/jbc.m807489200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although leukemogenic tyrosine kinases (LTKs) activate a common set of downstream molecules, the phenotypes of leukemia caused by LTKs are rather distinct. Here we report the molecular mechanism underlying the development of hypereosinophilic syndrome/chronic eosinophilic leukemia by FIP1L1-PDGFRalpha. When introduced into c-Kit(high)Sca-1(+)Lineage(-) cells, FIP1L1-PDGFRalpha conferred cytokine-independent growth on these cells and enhanced their self-renewal, whereas it did not immortalize common myeloid progenitors in in vitro replating assays and transplantation assays. Importantly, FIP1L1-PDGFRalpha but not TEL-PDGFRbeta enhanced the development of Gr-1(+)IL-5Ralpha(+) eosinophil progenitors from c-Kit(high)Sca-1(+)Lineage(-) cells. FIP1L1-PDGFRalpha also promoted eosinophil development from common myeloid progenitors. Furthermore, when expressed in megakaryocyte/erythrocyte progenitors and common lymphoid progenitors, FIP1L1-PDGFRalpha not only inhibited differentiation toward erythroid cells, megakaryocytes, and B-lymphocytes but aberrantly developed eosinophil progenitors from megakaryocyte/erythrocyte progenitors and common lymphoid progenitors. As for the mechanism of FIP1L1-PDGFRalpha-induced eosinophil development, FIP1L1-PDGFRalpha was found to more intensely activate MEK1/2 and p38(MAPK) than TEL-PDGFRbeta. In addition, a MEK1/2 inhibitor and a p38(MAPK) inhibitor suppressed FIP1L1-PDGFRalpha-promoted eosinophil development. Also, reverse transcription-PCR analysis revealed that FIP1L1-PDGFRalpha augmented the expression of C/EBPalpha, GATA-1, and GATA-2, whereas it hardly affected PU.1 expression. In addition, short hairpin RNAs against C/EBPalpha and GATA-2 and GATA-3KRR, which can act as a dominant-negative form over all GATA members, inhibited FIP1L1-PDGFRalpha-induced eosinophil development. Furthermore, FIP1L1-PDGFRalpha and its downstream Ras inhibited PU.1 activity in luciferase assays. Together, these results indicate that FIP1L1-PDGFRalpha enhances eosinophil development by modifying the expression and activity of lineage-specific transcription factors through Ras/MEK and p38(MAPK) cascades.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Levasseur DN, Ryan TM, Pawlik KM, Townes TM. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 2003; 102:4312-9. [PMID: 12933581 DOI: 10.1182/blood-2003-04-1251] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although sickle cell anemia was the first hereditary disease to be understood at the molecular level, there is still no adequate long-term treatment. Allogeneic bone marrow transplantation is the only available cure, but this procedure is limited to a minority of patients with an available, histocompatible donor. Autologous transplantation of bone marrow stem cells that are transduced with a stably expressed, antisickling globin gene would benefit a majority of patients with sickle cell disease. Therefore, the development of a gene therapy protocol that corrects the disease in an animal model and is directly translatable to human patients is critical. A method is described in which unmobilized, highly purified bone marrow stem cells are transduced with a minimum amount of self-inactivating (SIN) lentiviral vector containing a potent antisickling beta-globin gene. These cells, which were transduced in the absence of cytokine stimulation, fully reconstitute irradiated recipients and correct the hemolytic anemia and organ pathology that characterize the disease in humans. The mean increase of hemoglobin concentration was 46 g/L (4.6 g/dL) and the average lentiviral copy number was 2.2; therefore, a 21-g/L /vector copy increase (2.1-g/dL) was achieved. This transduction protocol may be directly translatable to patients with sickle cell disease who cannot tolerate current bone marrow mobilization procedures and may not safely be exposed to large viral loads.
Collapse
Affiliation(s)
- Dana N Levasseur
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|