1
|
Higa KC, Goodspeed A, Chavez JS, De Dominici M, Danis E, Zaberezhnyy V, Rabe JL, Tenen DG, Pietras EM, DeGregori J. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med 2021; 218:212039. [PMID: 33914855 PMCID: PMC8094119 DOI: 10.1084/jem.20200560] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The early events that drive myeloid oncogenesis are not well understood. Most studies focus on the cell-intrinsic genetic changes and how they impact cell fate decisions. We consider how chronic exposure to the proinflammatory cytokine, interleukin-1β (IL-1β), impacts Cebpa-knockout hematopoietic stem and progenitor cells (HSPCs) in competitive settings. Surprisingly, we found that Cebpa loss did not confer a hematopoietic cell–intrinsic competitive advantage; rather chronic IL-1β exposure engendered potent selection for Cebpa loss. Chronic IL-1β augments myeloid lineage output by activating differentiation and repressing stem cell gene expression programs in a Cebpa-dependent manner. As a result, Cebpa-knockout HSPCs are resistant to the prodifferentiative effects of chronic IL-1β, and competitively expand. We further show that ectopic CEBPA expression reduces the fitness of established human acute myeloid leukemias, coinciding with increased differentiation. These findings have important implications for the earliest events that drive hematologic disorders, suggesting that chronic inflammation could be an important driver of leukemogenesis and a potential target for intervention.
Collapse
Affiliation(s)
- Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Eric M Pietras
- Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Integrated Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
2
|
Tang D, Hu P, Zhu D, Luo Y, Chen M, Zhang G, Wang Y. C/EBPα is indispensable for PML/RARα-mediated suppression of long non-coding RNA NEAT1 in acute promyelocytic leukemia cells. Aging (Albany NY) 2021; 13:13179-13194. [PMID: 33901013 PMCID: PMC8148485 DOI: 10.18632/aging.203000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
Better understanding of the transcriptional regulatory network in acute promyelocytic leukemia (APL) cells is critical to illustrate the pathogenesis of other types of acute myeloid leukemia. Previous studies have primarily focused on the retinoic acid signaling pathway and how it is interfered with by promyelocytic leukemia/retinoic acid receptor-α (PML/RARα) fusion protein. However, this hardly explains how APL cells are blocked at the promyelocytic stage. Here, we demonstrated that C/EBPα bound and transactivated the promoter of long non-coding RNA NEAT1, an essential element for terminal differentiation of APL cells, through C/EBP binding sites. More importantly, PML/RARα repressed C/EBPα-mediated transactivation of NEAT1 through binding to NEAT1 promoter. Consistently, mutation of the C/EBP sites or deletion of retinoic acid responsive elements (RAREs) and RARE half motifs abrogated the PML/RARα-mediated repression. Moreover, silencing of C/EBPα attenuated ATRA-induced NEAT1 upregulation and APL cell differentiation. Finally, simultaneous knockdown of C/EBPα and C/EBPβ reduces ATRA-induced upregulation of C/EBPε and dramatically impaired NEAT1 activation and APL cell differentiation. In sum, C/EBPα binds and transactivates NEAT1 whereas PML/RARα represses this process. This study describes an essential role for C/EBPα in PML/RARα-mediated repression of NEAT1 and suggests that PML/RARα could contribute to the pathogenesis of APL through suppressing C/EBPα targets.
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Hunan Centre for Evidence-Based Medicine, Central South University, Changsha, Hunan, China
| | - Piao Hu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Dengqin Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | | | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Qi X, Zhang X, Liu X, Tang W, Dai J, Chen A, Lin Q, Zhu T, Li J. HDN-1 induces cell differentiation toward apoptosis in promyelocytic leukemia cells depending on its selective effect on client proteins of Hsp90. Toxicol Appl Pharmacol 2021; 417:115459. [PMID: 33609515 DOI: 10.1016/j.taap.2021.115459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Heat Shock Protein 90 (Hsp90) is frequently upregulated in many cancers, and its inhibition simultaneously blocks multiple signaling pathways, resulting in cell differentiation or apoptosis. However, the complexity of Hsp90 in differentiation and its relation with apoptosis have remained unsettled. In this study, we demonstrated that HDN-1, a C-terminal inhibitor of Hsp90, induced the differentiation of HL-60 cells toward apoptosis. HDN-1 induced the differentiation of cells containing mutant AML1-ETO into mature granulocytes, which was related to its selective effect on client proteins of Hsp90. HDN-1 destabilized AML1-ETO and preserved C/EBPβ at the same time, thereby induced a total increase in C/EBPβ levels because of AML1-ETO negative regulation to C/EBPβ expression. Neither HDN-1 nor 17-AAG (an N-terminal inhibitor of Hsp90) led to the differentiation of NB4 cells because mutant PML-RARα was not affected as a client protein of Hsp90; thus, no additional expression of C/EBPβ was induced. 17-AAG did not affect the differentiation of HL-60 cells due to decreased AML1-ETO and C/EBPβ levels. These results indicate that HDN-1 drives cell differentiation toward apoptosis depending on its selective influence on client proteins of Hsp90, establishing the relationship between differentiation and apoptosis and uncovering the mechanism of HDN-1 in promyelocytic leukemia cell differentiation. Moreover, HDN-1 is very promising for the development of anticancer agents with the induction of differentiation.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzoquinones/pharmacology
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Cell Differentiation/drug effects
- Cell Lineage
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Diketopiperazines/pharmacology
- Disulfides/pharmacology
- Gene Expression Regulation, Leukemic
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- HL-60 Cells
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Humans
- Lactams, Macrocyclic/pharmacology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xintong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Qian Lin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Open Studio for Druggability Research of Marine Natural Products, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Miller JB, Ward E, Staley LA, Stevens J, Teerlink CC, Tavana JP, Cloward M, Page M, Dayton L, Cannon-Albright LA, Kauwe JSK. Identification and genomic analysis of pedigrees with exceptional longevity identifies candidate rare variants. Neurobiol Dis 2020; 143:104972. [PMID: 32574725 PMCID: PMC7461696 DOI: 10.1016/j.nbd.2020.104972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Longevity as a phenotype entails living longer than average and typically includes living without chronic age-related diseases. Recently, several common genetic components to longevity have been identified. This study aims to identify additional genetic variants associated with longevity using unique and powerful analyses of pedigrees with a statistical excess of healthy elderly individuals identified in the Utah Population Database (UPDB). METHODS From an existing biorepository of Utah pedigrees, six independent cousin pairs were selected from four extended pedigrees that exhibited an excess of healthy elderly individuals; whole exome sequencing (WES) was performed on two elderly individuals from each pedigree who were either first cousins or first cousins once removed. Rare (<.01 population frequency) variants shared by at least one elderly cousin pair in a region likely to be identical by descent were identified as candidates. Ingenuity Variant Analysis was used to prioritize putative causal variants based on quality control, frequency, and gain or loss of function. The variant frequency was compared in healthy cohorts and in an Alzheimer's disease cohort. Remaining variants were filtered based on their presence in genes reported to have an effect on the aging process, aging of cells, or the longevity process. Validation of these candidate variants included tests of segregation on other elderly relatives. RESULTS Fifteen rare candidate genetic variants spanning 17 genes shared within cousins were identified as having passed prioritization criteria. Of those variants, six were present in genes that are known or predicted to affect the aging process: rs78408340 (PAM), rs112892337 (ZFAT), rs61737629 (ESPL1), rs141903485 (CEBPE), rs144369314 (UTP4), and rs61753103 (NUP88 and RABEP1). ESPL1 rs61737629 and CEBPE rs141903485 show additional evidence of segregation with longevity in expanded pedigree analyses (p-values = .001 and .0001, respectively). DISCUSSION This unique pedigree analysis efficiently identified several novel rare candidate variants that may affect the aging process and added support to seven genes that likely contribute to longevity. Further analyses showed evidence for segregation for two rare variants, ESPL1 rs61737629 and CEBPE rs141903485, in the original longevity pedigrees in which they were initially observed. These candidate genes and variants warrant further investigation.
Collapse
Affiliation(s)
- Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Elizabeth Ward
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lyndsay A Staley
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Justina P Tavana
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Cloward
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Madeline Page
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Louisa Dayton
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
5
|
Tan Y, Zheng L, Du Y, Zhong Q, Zhu Y, Liu Z, Liu S, Zhang Q. Identification of the hub genes and pathways involved in acute myeloid leukemia using bioinformatics analysis. Medicine (Baltimore) 2020; 99:e22047. [PMID: 32871963 PMCID: PMC7458232 DOI: 10.1097/md.0000000000022047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We identified the hub genes and pathways dysregulated in acute myeloid leukemia and the potential molecular mechanisms involved. METHODS We downloaded the GSE15061 gene expression dataset from the Gene Expression Omnibus database and used weighted gene co-expression network analysis to identify hub genes. Differential expression of the genes was evaluated using the limma package in R software. Subsequently, we built a protein-protein interaction network followed by functional enrichment analysis. Then, the prognostic significance of gene expression was explored in terms of overall survival. Finally, transcription factor-mRNA (ribonucleic acid) and microRNA-mRNA interaction analysis was also explored. RESULTS We identified 100 differentially expressed hub genes. Functional enrichment analysis indicated that the genes were principally involved in immune system regulation, host defense, and negative regulation of apoptosis and myeloid cell differentiation. We identified 4 hub genes, the expression of which was significantly correlated with overall survival. Finally, 26 key regulators for hub genes and 38 microRNA-mRNA interactions were identified. CONCLUSION We performed a comprehensive bioinformatics analysis of hub genes potentially involved in acute myeloid leukemia development. Further molecular biological experiments are required to confirm the roles played by these genes.
Collapse
|
6
|
Li J, Zhong L, Ye J, Xiong L, Yu L, Dan W, Zhong P, Yuan Z, Liu D, Yao J, Liu J, Liu B. NLS-RARα blocks cell differentiation by inhibiting the retinoic acid signalling pathway. Biochem Biophys Res Commun 2020; 528:276-284. [PMID: 32475642 DOI: 10.1016/j.bbrc.2020.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
A majority of acute promyelocytic leukaemia (APL) cases are characterized by the PML-RARα fusion gene. Previous studies have shown that neutrophil elastase (NE) can cleave PML-RARα and is important for the development of APL. Here, we demonstrate that one of the cleavage products of PML-RARα, NLS-RARα, can block cell differentiation by repressing the expression of the target genes within the retinoic acid signalling pathway. The results of reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis showed that NLS-RARα depressed the expression of the cell differentiation marker protein, CD11b and CEBPβ, as well as the retinoic acid signalling pathway target genes, RARβ and CEBPε. Studies have shown that NLS-RARα forms heterodimers with retinoid X receptor α(RXRα) and interacts with SMRT. When treated with all-trans retinoic acid (ATRA), NLS-RARα exhibits diminished transcriptional activity compared to RARα. Moreover, in the presence of high doses of ATRA, NLS-RARα could be degraded along with the consequent transactivation of retinoic acid signalling pathway target genes and cell differentiation induction in a dose- and time-dependent manner. Together, these results indicate that NLS-RARα blocks cell differentiation by inhibiting the retinoic acid signalling pathway.
Collapse
Affiliation(s)
- Jian Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiao Ye
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Xiong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Lihua Yu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Pengqiang Zhong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Juanjuan Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Junmei Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Pozzo AR, Faria FCCD, Carvalho LOD, Pinho MBD, Maia RC. DNA microarray expression profiling of a new t(8;13) AML case allows identification of possible leukemogenic transformation markers. Rev Bras Hematol Hemoter 2017; 39:368-371. [PMID: 29150113 PMCID: PMC5693272 DOI: 10.1016/j.bjhh.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
|
8
|
C/EBPα deregulation as a paradigm for leukemogenesis. Leukemia 2017; 31:2279-2285. [PMID: 28720765 DOI: 10.1038/leu.2017.229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Myeloid master regulator CCAAT enhancer-binding protein alpha (C/EBPα) is deregulated by multiple mechanisms in leukemia. Inhibition of C/EBPα function plays pivotal roles in leukemogenesis. While much is known about how C/EBPα orchestrates granulopoiesis, our understanding of molecular transformation events, the role(s) of cooperating mutations and clonal evolution during C/EBPα deregulation in leukemia remains elusive. In this review, we will summarize the latest research addressing these topics with special emphasis on CEBPA mutations. We conclude by describing emerging therapeutic strategies to restore C/EBPα function.
Collapse
|
9
|
Borutinskaitė V, Virkšaitė A, Gudelytė G, Navakauskienė R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leuk Lymphoma 2017. [PMID: 28641467 DOI: 10.1080/10428194.2017.1339881] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Green tea (Camellia sinensis) catechin epigallocatechin-3-gallate (EGCG) has been shown to possess diverse anti-cancerous properties. We demonstrated EGCG ability to inhibit acute promyelocytic leukemia (APL) cell proliferation and cause apoptosis. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) analysis revealed elevated expression of genes associated with cell cycle arrest and differentiation (p27, PCAF, C/EBPα, and C/EBPɛ). Furthermore, EGCG caused anti-cancerous epigenetic changes: downregulation of epigenetic modifiers DNMT1, HDAC1, HDAC2, and G9a was observed by RT-qPCR analysis. Reduced amount of H3K9me2 after treatment with EGCG confirmed G9a downregulation. Polycomb repressive complex 2 (PRC2) core components were also shown to be downregulated in gene and protein level. Chromatin immunoprecipitation (ChIP) analysis revealed that EGCG treatment enhanced hyperacetylated H4 and acetylated H3K14 histones binding to the promoter regions of p27, PCAF, C/EBPα, and C/EBPɛ and reduced binding effect to PRC2 core component genes EZH2, SUZ12, and EED. Our results indicate that EGCG, as cell proliferation inhibitor and epigenetic modifier, might be useful for APL treatment.
Collapse
Affiliation(s)
- Veronika Borutinskaitė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Aida Virkšaitė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Giedrė Gudelytė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| | - Rūta Navakauskienė
- a Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center , Vilnius University , Vilnius , Lithuania
| |
Collapse
|
10
|
Noack K, Mahendrarajah N, Hennig D, Schmidt L, Grebien F, Hildebrand D, Christmann M, Kaina B, Sellmer A, Mahboobi S, Kubatzky K, Heinzel T, Krämer OH. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Arch Toxicol 2016; 91:2191-2208. [PMID: 27807597 DOI: 10.1007/s00204-016-1878-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I-IV), critically control the development and progression of APL. We set out to clarify the parameters that determine the interaction between ATRA and histone deacetylase inhibitors (HDACi). Our assays included drugs against class I HDACs (MS-275, VPA, and FK228), pan-HDACi (LBH589, SAHA), and the novel HDAC6-selective compound Marbostat-100. We demonstrate that ATRA protects APL cells from cytotoxic effects of SAHA, MS-275, and Marbostat-100. However, LBH589 and FK228, which have a superior substrate-inhibitor dissociation constant (Ki) for the class I deacetylases HDAC1, 2, 3, are resistant against ATRA-dependent cytoprotective effects. We further show that HDACi evoke DNA damage, measured as induction of phosphorylated histone H2AX and by the comet assay. The ability of ATRA to protect APL cells from the induction of p-H2AX by HDACi is a readout for the cytoprotective effects of ATRA. Moreover, ATRA increases the fraction of cells in the G1 phase, together with an accumulation of the cyclin-dependent kinase inhibitor p21 and a reduced expression of thymidylate synthase (TdS). In contrast, the ATRA-dependent activation of the transcription factors STAT1, NF-κB, and C/EBP hardly influences the responses of APL cells to HDACi. We conclude that the affinity of HDACi for class I HDACs determines whether such drugs can kill naïve and maturated APL cells.
Collapse
Affiliation(s)
- Katrin Noack
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany.,Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Nisintha Mahendrarajah
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Dorle Hennig
- Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Luisa Schmidt
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090, Vienna, Austria
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Katharina Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| |
Collapse
|
11
|
Shi L, Weng XQ, Sheng Y, Wu J, Ding M, Cai X. Staurosporine enhances ATRA-induced granulocytic differentiation in human leukemia U937 cells via the MEK/ERK signaling pathway. Oncol Rep 2016; 36:3072-3080. [PMID: 27665842 DOI: 10.3892/or.2016.5123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Although all-trans retinoic acid (ATRA) is regarded as a prominent example of differentiation therapy, it is not effective for the treatment of other subtypes of acute myeloid leukemia (AML) beyond acute promyelocytic leukemia (APL). Therefore, new strategies need to be explored to extend the efficacy of ATRA-based therapy to non-APL AML patients. In the present study, staurosporine, a protein kinase C (PKC) pan-inhibitor, exhibited synergism with ATRA to promote granulocytic differentiation in poorly ATRA-sensitive U937 cells but not in ATRA unresponsive K562 and Kasumi cells. Staurosporine or the combined treatment did not affect PKC activity in U937 cells. Moreover, other selective PKC inhibitors, UCN-01, Go6976 or rottlerin failed to enhance ATRA‑induced granulocytic differentiation in U937 cells. Therefore, staurosporine-enhanced ATRA-induced granulocytic differentiation in U937 cells may be independent of PKC. Staurosporine activated mitogen‑activated protein kinase kinase (MEK) and extracellular signal‑regulated kinase (ERK). Meanwhile, staurosporine also enhanced ATRA-promoted upregulation of the protein level of CCAAT/enhancer‑binding protein β (C/EBPβ) and C/EBPε in U937 cells. Furthermore, blockade of MEK activation suppressed staurosporine‑enhanced differentiation as well as the elevated protein level of C/EBPs. Taken together, we concluded that staurosporine enhanced ATRA‑induced granulocytic differentiation in U937 cells via MEK/ERK-mediated modulation of the protein level of C/EBPs.
Collapse
Affiliation(s)
- Lei Shi
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yan Sheng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Wu
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ming Ding
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xun Cai
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
12
|
Zerrouki R, Benhassine T, Bensaada M, Lauzon P, Trabzi A. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia. Genet Mol Biol 2016; 39:7-13. [PMID: 27007892 PMCID: PMC4807378 DOI: 10.1590/s1415-475738420140368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/02/2015] [Indexed: 11/21/2022] Open
Abstract
Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE.
Collapse
Affiliation(s)
- Rachid Zerrouki
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et Technologies Houari Boumediene, Alger, Algeria
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et Technologies Houari Boumediene, Alger, Algeria
| | - Mustapha Bensaada
- Laboratoire de Cytogénétique, Clinique de Chirurgie et des Sciences de la Reproduction, Constantine, Algeria
| | - Patricia Lauzon
- Animal Health Unit, University of Calgary, Calgary, Alberta, Canada
| | - Anissa Trabzi
- Hôpital Mustapha Bacha, Service d'Onco-Hématologie, Centre Pierre et Marie-Curie, Alger, Algeria
| |
Collapse
|
13
|
Liu Q, Nguyen E, Døskeland S, Ségal-Bendirdjian É. cAMP-Dependent Protein Kinase A (PKA)–Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes. Mol Pharmacol 2015; 88:469-76. [DOI: 10.1124/mol.115.097915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
|
14
|
Brondfield S, Umesh S, Corella A, Zuber J, Rappaport AR, Gaillard C, Lowe SW, Goga A, Kogan SC. Direct and indirect targeting of MYC to treat acute myeloid leukemia. Cancer Chemother Pharmacol 2015; 76:35-46. [PMID: 25956709 PMCID: PMC4485702 DOI: 10.1007/s00280-015-2766-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
Purpose Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is often resistant to conventional therapies. The MYC oncogene is commonly overexpressed in AML but has remained an elusive target. We aimed to examine the consequences of targeting MYC both directly and indirectly in AML overexpressing MYC/Myc due to trisomy 8/15 (human/mouse), FLT3-ITD mutation, or gene amplification. Methods We performed in vivo knockdown of Myc (shRNAs) and both in vitro and in vivo experiments using four drugs with indirect anti-MYC activity: VX-680, GDC-0941, artemisinin, and JQ1. Results shRNA knockdown of Myc in mice prolonged survival, regardless of the mechanism underlying MYC overexpression. VX-680, an aurora kinase inhibitor, demonstrated in vitro efficacy against human MYC-overexpressing AMLs regardless of the mechanism of MYC overexpression, but was weakest against a MYC-amplified cell line. GDC-0941, a PI3-kinase inhibitor, demonstrated efficacy against several MYC-overexpressing AMLs, although only in vitro. Artemisinin, an antimalarial, did not demonstrate consistent efficacy against any of the human AMLs tested. JQ1, a bromodomain and extra-terminal bromodomain inhibitor, demonstrated both in vitro and in vivo efficacy against several MYC-overexpressing AMLs. We also confirmed a decrease in MYC levels at growth inhibitory doses for JQ1, and importantly, sensitivity of AML cell lines to JQ1 appeared independent of the mechanism of MYC overexpression. Conclusions Our data support growing evidence that JQ1 and related compounds may have clinical efficacy in AML treatment regardless of the genetic abnormalities underlying MYC deregulation. Electronic supplementary material The online version of this article (doi:10.1007/s00280-015-2766-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sam Brondfield
- Department of Laboratory Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 513 Parnassus Avenue, Room S-561, Box 0451, San Francisco, CA, 94143-0451, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
ATOH1 Can Regulate the Tumorigenicity of Gastric Cancer Cells by Inducing the Differentiation of Cancer Stem Cells. PLoS One 2015; 10:e0126085. [PMID: 25950549 PMCID: PMC4423924 DOI: 10.1371/journal.pone.0126085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) have been shown to mediate tumorigenicity, chemo-resistance, radio-resistance and metastasis, which suggest they be considered therapeutic targets. Because their differentiated daughter cells are no longer tumorigenic, to induce the differentiation of CSCs can be one of strategies which can eradicate CSCs. Here we show that ATOH1 can induce the differentiation of gastric cancer stem cells (GCSCs). Real time PCR and western blot analysis showed that ATOH1 was induced during the differentiation of GCSCs. Furthermore, the lentivirus-induced overexpression of ATOH1 in GCSCs and in gastric cancer cell lines significantly induced differentiation, reduced proliferation and sphere formation, and reduced in vivo tumor formation in the subcutaneous injection and liver metastasis xenograft models. These results suggest ATOH1 be considered for the development of a differentiation therapy for gastric cancer.
Collapse
|
16
|
Kagita S, Uppalapati S, Gundeti S, Digumarti R. Correlation of C/EBPα expression with response and resistance to imatinib in chronic myeloid leukaemia. Jpn J Clin Oncol 2015; 45:749-54. [PMID: 25920395 DOI: 10.1093/jjco/hyv064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/01/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Altered differentiation is a common feature of haematopoietic malignancies with poor prognosis. CAAT/enhancer binding protein alpha (C/EBPα) is a key transcription factor that regulates myeloid differentiation. This study is aimed to know the prognostic value of CAAT/enhancer binding protein alpha expression and correlate its expression with response to imatinib therapy. METHODS We quantified the expression of C/EBPα gene in 126 chronic myeloid leukaemia samples (82 from newly diagnosed and 44 from imatinib-resistant patients) and 20 control samples. C/EBPα mRNA level was measured by real-time quantitative polymerase chain reaction using the ΔΔCT method. RESULTS C/EBPα expression level was significantly lower in the imatinib-resistant group than in the pretreatment and control group (P = 0.0398). Low CAAT/enhancer binding protein alpha levels in the imatinib-resistant group were significantly associated with advanced phase (P = 0.04), with more peripheral blasts (P = 0.0001), high BCR-ABL levels (P = 0.018) and T315I and P-loop mutations (P = 0.0002). In the pretreatment group, low expression showed association with high EUTOS risk score (P = 0.03) and possible partial cytogenetic response (P = 0.010). CONCLUSIONS Our results suggest that low expression of CAAT/enhancer binding protein alpha might have a role in the response to imatinib and progression of disease in patients with chronic myeloid leukaemia.
Collapse
Affiliation(s)
- Sailaja Kagita
- Department of Medical Oncology, Nizams Institute of Medical Sciences, Hyderabad, Andhra Pradesh
| | - Srihari Uppalapati
- Department of Medical Oncology, Nizams Institute of Medical Sciences, Hyderabad, Andhra Pradesh
| | - Sadasivudu Gundeti
- Department of Medical Oncology, Nizams Institute of Medical Sciences, Hyderabad, Andhra Pradesh
| | - Raghunadharao Digumarti
- Department of Medical Oncology, Nizams Institute of Medical Sciences, Hyderabad, Andhra Pradesh Homi Bhabha Cancer Hospital and Research Centre, Visakapatnam, Andhra Pradesh, India
| |
Collapse
|
17
|
Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines. Sci Rep 2014; 4:4821. [PMID: 24769642 PMCID: PMC4001092 DOI: 10.1038/srep04821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines.
Collapse
|
18
|
Savickiene J, Treigyte G, Stirblyte I, Valiuliene G, Navakauskiene R. Euchromatic histone methyltransferase 2 inhibitor, BIX-01294, sensitizes human promyelocytic leukemia HL-60 and NB4 cells to growth inhibition and differentiation. Leuk Res 2014; 38:822-9. [PMID: 24832370 DOI: 10.1016/j.leukres.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/26/2022]
Abstract
The involvement of histone lysine methyltransferases (HMT) in carcinogenesis is not well understood. Here, we describe a dose-dependent growth and survival inhibitory effects of BIX-01294, a specific inhibitor of euchromatic HMT2, in promyelocytic leukemia HL-60 and NB4 cells. BIX-01294 combined with all-trans retinoic acid or together with histone deacetylase and DNA methyltransferase inhibitors enhanced cell differentiation to granulocytes and induced cell line-specific changes in the expression of cell cycle-, survival- and differentiation regulating genes and proteins in association with histone modification state. Our results suggest that targeting EHMT2 may be of therapeutical benefits in myeloid leukemia.
Collapse
Affiliation(s)
- Jurate Savickiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, LT 08662 Vilnius, Lithuania
| | - Grazina Treigyte
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, LT 08662 Vilnius, Lithuania
| | - Ieva Stirblyte
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, LT 08662 Vilnius, Lithuania
| | - Giedre Valiuliene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, LT 08662 Vilnius, Lithuania
| | - Ruta Navakauskiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Vilnius University, LT 08662 Vilnius, Lithuania.
| |
Collapse
|
19
|
Human α-defensin expression is not dependent on CCAAT/enhancer binding protein-ε in a murine model. PLoS One 2014; 9:e92471. [PMID: 24658030 PMCID: PMC3962403 DOI: 10.1371/journal.pone.0092471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Specific granule deficiency (SGD) is a rare congenital disorder characterized by recurrent infections. The disease is caused by inactivating mutations of the CCAAT/enhancer binding protein-ε (C/EBP-ε) gene. As a consequence, specific and gelatinase granules lack most matrix proteins. Furthermore, azurophil granules contain diminished amounts of their most abundant proteins, α-defensins, also known as human neutrophil peptides (HNPs). In accordance with this, in vitro models have demonstrated induction of HNPs by C/EBP-ε. Since mice do not express myeloid defensins, they cannot per se be used to characterize the role of C/EBP-ε in controlling HNP expression in vivo. We therefore crossed a transgenic HNP-1-expressing mouse with the Cebpe-/- mouse to study the in vivo significance of C/EBP-ε for HNP-1 transcription and expression. Surprisingly, neither expression nor processing of HNP-1 was affected by lack of C/EBP-ε in these mice. Transduction of C/EBP-ε into primary bone marrow cells from HNP-1 mice induced some HNP-1 expression, but not to levels comparable to expression human cells. Taken together, our data infer that the HNP-1 of the transgenic mouse does not show an expression pattern equivalent to endogenous secondary granule proteins. This limits the use of these transgenic mice as a model for human conditions.
Collapse
|
20
|
Runx1 deficiency permits granulocyte lineage commitment but impairs subsequent maturation. Oncogenesis 2013; 2:e78. [PMID: 24189977 PMCID: PMC3849692 DOI: 10.1038/oncsis.2013.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/25/2013] [Indexed: 01/03/2023] Open
Abstract
First-hits in the multi-hit process of leukemogenesis originate in germline or hematopoietic stem cells (HSCs), yet leukemia-initiating cells (LICs) usually have a lineage-committed phenotype. The molecular mechanisms underlying this compartment shift during leukemia evolution have not been a major focus of investigation and remain poorly understood. Here a mechanism underlying this shift was examined in the context of Runx1 deficiency, a frequent leukemia-initiating event. Lineage-negative cells isolated from the bone marrow of Runx1-haploinsufficient and wild-type control mice were cultured in granulocyte-colony-stimulating factor to force lineage commitment. Runx1-haploinsufficient cells demonstrated significantly greater and persistent exponential cell growth than wild-type controls. Not surprisingly, the Runx1-haploinsufficient cells were differentiation-impaired, by morphology and by flow-cytometric evaluation for granulocyte differentiation markers. Interestingly, however, this impaired differentiation was not because of decreased granulocyte lineage commitment, as RNA and protein upregulation of the master granulocyte lineage-commitment transcription factor Cebpa, and Hoxb4 repression, was similar in wild-type and Runx1-haploinsufficient cells. Instead, RNA and protein expression of Cebpe, a key driver of progressive maturation after lineage commitment, were significantly decreased in Runx1-haploinsufficient cells. Primary acute myeloid leukemia cells with normal cytogenetics and RUNX1 mutation also demonstrated this phenotype of very high CEBPA mRNA expression but paradoxically low expression of CEBPE, a CEBPA target gene. Chromatin-immunoprecipitation analyses suggested a molecular mechanism for this phenotype: in wild-type cells, Runx1 binding was substantially greater at the Cebpe than at the Cebpa enhancer. Furthermore, Runx1 deficiency substantially diminished high-level Runx1 binding at the Cebpe enhancer, but lower-level binding at the Cebpa enhancer was relatively preserved. Thus, Runx1-deficiency permits Cebpa upregulation and the exponential cell growth that accompanies lineage commitment, but by impairing activation of Cebpe, a key proliferation-terminating maturation gene, extends this exponential growth. These mechanisms facilitate germline cell or HSC of origin, yet evolution into LIC with lineage-committed phenotype.
Collapse
|
21
|
Kassem N, Fahmy AEG, Desoky M, Medhat N, Zawam HM. CCAAT/enhancer binding protein α gene expression in Egyptian patients with acute myeloid leukemia. J Egypt Natl Canc Inst 2013; 25:115-20. [DOI: 10.1016/j.jnci.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/17/2022] Open
|
22
|
Kimura S, Paiz J, Yoneda M, Kido T, Vinson C, Ward JM. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse. Mol Cancer 2012; 11:90. [PMID: 23234329 PMCID: PMC3548712 DOI: 10.1186/1476-4598-11-90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/10/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The CCAAT/enhancer binding proteins (C/EBPs) play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. METHODS A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP) gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. RESULTS A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. CONCLUSIONS The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Saunthararajah Y, Triozzi P, Rini B, Singh A, Radivoyevitch T, Sekeres M, Advani A, Tiu R, Reu F, Kalaycio M, Copelan E, Hsi E, Lichtin A, Bolwell B. p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol 2012; 39:97-108. [PMID: 22289496 PMCID: PMC3655437 DOI: 10.1053/j.seminoncol.2011.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary remissions, at the cost of significant toxicity and risk for death. One fundamental reason for treatment failure is that it is designed to activate apoptosis genes (eg, TP53) that may be unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-specifying transcription factors. Mutations in these transcription factors (eg, CEBPA) or their cofactors (eg., RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic network that mediates transcription repression) using the deoxycytidine analogue decitabine at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal hematopoietic stem cells, which do not express high levels of lineage-specifying transcription factors. The biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML also. Decitabine or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of action, as an alternative or complement to conventional apoptosis-based oncotherapy.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 2011; 25:1739-50. [PMID: 21701495 DOI: 10.1038/leu.2011.159] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Suppression of apoptosis by TP53 mutation contributes to resistance of acute myeloid leukemia (AML) to conventional cytotoxic treatment. Using differentiation to induce irreversible cell cycle exit in AML cells could be a p53-independent treatment alternative, however, this possibility requires evaluation. In vitro and in vivo regimens of the deoxycytidine analogue decitabine that deplete the chromatin-modifying enzyme DNA methyl-transferase 1 without phosphorylating p53 or inducing early apoptosis were determined. These decitabine regimens but not equimolar DNA-damaging cytarabine upregulated the key late differentiation factors CCAAT enhancer-binding protein ɛ and p27/cyclin dependent kinase inhibitor 1B (CDKN1B), induced cellular differentiation and terminated AML cell cycle, even in cytarabine-resistant p53- and p16/CDKN2A-null AML cells. Leukemia initiation by xenotransplanted AML cells was abrogated but normal hematopoietic stem cell engraftment was preserved. In vivo, the low toxicity allowed frequent drug administration to increase exposure, an important consideration for S phase specific decitabine therapy. In xenotransplant models of p53-null and relapsed/refractory AML, the non-cytotoxic regimen significantly extended survival compared with conventional cytotoxic cytarabine. Modifying in vivo dose and schedule to emphasize this pathway of decitabine action can bypass a mechanism of resistance to standard therapy.
Collapse
|
26
|
Sukhai MA, Thomas M, Hamadanizadeh SA, Xuan Y, Wells RA, Kamel-Reid S. Correlation among nuclear localization of NuMA-RARα, deregulation of gene expression and leukemic phenotype of hCG-NuMA-RARα transgenic mice. Leuk Res 2011; 35:670-6. [PMID: 21255834 DOI: 10.1016/j.leukres.2010.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 12/13/2010] [Accepted: 12/13/2010] [Indexed: 12/11/2022]
Abstract
Acute promyelocytic leukemia (APL) is a model system of aberrant transcription in cancer. We sought to elucidate the mechanism of action of the variant fusion NuMA-RARα in APL, using the hCG-NuMA-RARα transgenic model. We report that subcellular localization of NuMA-RARα in transgenic mice is dependent upon its protein expression and transgene dosage. Subcellular localization of the fusion is inversely correlated with extent of gene deregulation at the mRNA level for Cebpα, Cebpɛ and Pu.1. Finally, we report that phenotype onset is correlated with NuMA-RARα copy number; mice with higher copy number developing disease later than those with lower copy number.
Collapse
Affiliation(s)
- Mahadeo A Sukhai
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Molecular biology and anticancer drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [PMID: 21075327 DOI: 10.1016/b978-0-12-385071-3.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The profound impact of molecular biology on the philosophy of how one should seek new cancer therapeutics cannot be overstated. It has enabled the discovery of unique drugs as well as the identification of new drug targets and biomarkers and the creation of powerful animal models. Nevertheless, the process of cancer drug discovery remains inherently complex and inefficient. This is partially a consequence of the requirement of any successful therapy to show differential effects toward tumor cells relative to nonmalignant cells. The goal of this chapter is to outline the impact of molecular biology on modern approaches to anticancer drug discovery and to highlight the continuing challenges.
Collapse
|
28
|
Jones L, Wei G, Sevcikova S, Phan V, Jain S, Shieh A, Wong JCY, Li M, Dubansky J, Maunakea ML, Ochoa R, Zhu G, Tennant TR, Shannon KM, Lowe SW, Le Beau MM, Kogan SC. Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. ACTA ACUST UNITED AC 2010; 207:2581-94. [PMID: 21059853 PMCID: PMC2989761 DOI: 10.1084/jem.20091071] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The leukemogenic effects of Myc drive recurrent trisomy in a mouse model of acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia (AML). It has been hypothesized that gain of the MYC protooncogene is of central importance in trisomy 8, but the experimental data to support this are limited and controversial. In a mouse model of promyelocytic leukemia in which the MRP8 promoter drives expression of the PML-RARA fusion gene in myeloid cells, a Myc allele is gained in approximately two-thirds of cases as a result of trisomy for mouse chromosome 15. We used this model to test the idea that MYC underlies acquisition of trisomy in AML. We used a retroviral vector to drive expression of wild-type, hypermorphic, or hypomorphic MYC in bone marrow that expressed the PML-RARA transgene. MYC retroviruses cooperated in myeloid leukemogenesis and suppressed gain of chromosome 15. When the PML-RARA transgene was expressed in a Myc haploinsufficient background, we observed selection for increased copies of the wild-type Myc allele concomitant with leukemic transformation. In addition, we found that human myeloid leukemias with trisomy 8 have increased MYC. These data show that gain of MYC can contribute to the pathogenic effect of the most common trisomy of human AML.
Collapse
Affiliation(s)
- Letetia Jones
- Helen Diller Family Comprehensive Cancer Center and Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lin TC, Hou HA, Chou WC, Ou DL, Yu SL, Tien HF, Lin LI. CEBPA methylation as a prognostic biomarker in patients with de novo acute myeloid leukemia. Leukemia 2010; 25:32-40. [PMID: 20927134 DOI: 10.1038/leu.2010.222] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypermethylation of the distal CEBPA promoter region has been reported to result in the downregulation of CEBPA expression in several malignancies. However, the clinical implication of CEBPA hypermethylation in acute myeloid leukemia (AML) remains unclear. To investigate the correlation between CEBPA hypermethylation and clinical features in AML, quantitative MassARRAY analyses for CEBPA methylation status were performed on a cohort of 193 patients. High CEBPA methylation group (CEBPA(high-meth), n=28) and low methylation group (CEBPA(low-meth), n=165) were defined by using two-way hierarchical clustering. With a median follow-up of 48 months, among the 125 patients receiving standard induction therapy, CEBPA(high-meth) was associated with better treatment response (complete remission rate 93.3% versus 73.6%, P=0.116). In patients with normal karyotype and without CEBPA and NPM1 mutations, the CEBPA(high-meth) had longer overall survival (OS) than the CEBPA(low-meth) (P=0.028). Multivariate analysis further supported that the CEBPA methylation was an independent prognostic factor for disease free-survival (hazard ratio=0.416; 95% confidence interval, 0.223-0.777, P=0.006) and OS (hazard ratio=0.406; 95% confidence interval, 0.166-0.996, P=0.050). We conclude that CEBPA methylation status is a useful prognostic biomarker for AML patients.
Collapse
Affiliation(s)
- T-C Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Abstract
Introduction
The rational design of targeted therapies for acute myeloid leukemia (AML) requires the discovery of novel protein pathways in the systems biology of a specific AML subtype. We have shown that in the AML subtype with translocation t(8;21), the leukemic fusion protein AML1–ETO inhibits the function of transcription factors PU.1 and C/EBPα via direct protein–protein interaction. In addition, recently using proteomics, we have also shown that the AML subtypes differ in their proteome, interactome, and post-translational modifications.
Methods
We, therefore, hypothesized that the systematic identification of target proteins of AML1–ETO on a global proteome-wide level will lead to novel insights into the systems biology of t(8;21) AML on a post-genomic functional level. Thus, 6 h after inducible expression of AML1–ETO, protein expression changes were identified by two-dimensional gel electrophoresis and subsequent mass spectrometry analysis.
Results
Twenty-eight target proteins of AML1–ETO including prohibitin, NM23, HSP27, and Annexin1 were identified by MALDI-TOF mass spectrometry. AML1–ETO upregulated the differentiation inhibitory factor NM23 protein expression after 6 h, and the NM23 mRNA expression was also elevated in t(8;21) AML patient samples in comparison with normal bone marrow. AML1–ETO inhibited the ability of C/EBP transcription factors to downregulate the NM23 promoter. These data suggest a model in which AML1–ETO inhibits the C/EBP-induced downregulation of the NM23 promoter and thereby increases the protein level of differentiation inhibitory factor NM23.
Conclusions
Proteomic pathway discovery can identify novel functional pathways in AML, such as the AML1–ETO–C/EBP–NM23 pathway, as the main step towards a systems biology and therapy of AML.
Collapse
|
31
|
Reckzeh K, Cammenga J. Molecular mechanisms underlying deregulation of C/EBPalpha in acute myeloid leukemia. Int J Hematol 2010; 91:557-68. [PMID: 20422469 DOI: 10.1007/s12185-010-0573-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/19/2023]
Abstract
The CEBPA gene encodes a transcription factor protein that is crucial for granulocytic differentiation, regulation of myeloid gene expression and growth arrest. Mutations in one or both alleles of CEBPA are observed in about 10% of patients with acute myeloid leukemia (AML). Moreover, other genetic events associated with AML have been identified to deregulate C/EBPalpha expression and function at various levels. Recently developed mouse models that accurately mimic the genetic C/EBPalpha alterations in human AML demonstrate C/EBPalpha's gatekeeper function in the control of self-renewal and lineage commitment of hematopoietic stem cells (HSCs). Moreover, these studies indicate that CEBPA mutations affect HSCs in early leukemia development by inducing proliferation and limiting their lineage potential. However, the exact relationship between 'pre-leukemic' HCSs and those cells that finally initiate leukemia (leukemia-initiating cells) with disturbed differentiation and aberrant proliferation remains elusive. More research is needed to identify and characterize these functionally distinct populations and the exact role of the different genetic alterations in the process of leukemia initiation and maintenance.
Collapse
Affiliation(s)
- Kristian Reckzeh
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | |
Collapse
|
32
|
Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes. Mol Cell Biol 2010; 30:2293-304. [PMID: 20176812 DOI: 10.1128/mcb.01619-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.
Collapse
|
33
|
El-Sharnouby JA, Ahmed LMS, Taha AM, Okasha K. Prognostic Significance of CEBPA
Mutations and BAALC Expression in Acute
Myeloid Leukemia Patients with Normal
Karyotype. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2010. [DOI: 10.29333/ejgm/82788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 2009; 114:5415-25. [PMID: 19797526 DOI: 10.1182/blood-2008-10-182071] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15:17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer "stem" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), FcgammaRIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha) possibly through a methylation-dependent mechanism, indicating that C/EBPalpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease.
Collapse
|
35
|
Abstract
The transcription factor CCAAT enhancer binding protein alpha (CEBPA) is crucial for normal development of granulocytes. Various mechanisms have been identified how CEBPA function is dysregulated in patients with acute myeloid leukemia (AML). In particular, dominant-negative mutations located either at the N- or the C terminus of the CEBPA gene are observed in roughly 10% of AML patients, either in the combination on separate alleles or as sole mutation. Clinically significant complexity exists among AML with CEBPA mutations, and patients with double CEBPA mutations seem to have a more favorable course of the disease than patients with a single mutation. In addition, myeloid precursor cells of healthy carriers with a single germ-line CEBPA mutation evolve to overt AML by acquiring a second sporadic CEBPA mutation. This review summarizes recent reports on dysregulation of CEBPA function at various levels in human AML and therapeutic concepts targeting correction of CEBPA activity. The currently available data are persuasive evidence that impaired CEBPA function contributes directly to the development of AML, whereas restoring CEBPA function represents a promising target for novel therapeutic strategies in AML.
Collapse
Affiliation(s)
- Thomas Pabst
- Department of Oncology, University Hospital, Bern, Switzerland.
| | | |
Collapse
|
36
|
Evolution of Transcription Factor Binding Sites in Mammalian Gene Regulatory Regions: Handling Counterintuitive Results. J Mol Evol 2009; 68:654-64. [DOI: 10.1007/s00239-009-9238-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/30/2009] [Accepted: 04/15/2009] [Indexed: 01/26/2023]
|
37
|
2-(1-Hydroxethyl)-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (BTP-11) enhances the ATRA-induced differentiation in human leukemia HL-60 cells. Leuk Res 2009; 33:1664-9. [PMID: 19304325 DOI: 10.1016/j.leukres.2009.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/13/2009] [Accepted: 02/15/2009] [Indexed: 11/24/2022]
Abstract
2-(1-Hydroxethyl)-4,8-dihydrobenzo[1,2-b:5,4-b']dithiophene-4,8-dione (BTP-11) is a potent enhancer for all-trans retinoic acid (ATRA)-induced differentiation in HL-60 cells. Combination of BTP-11 and ATRA cut down the concentration of ATRA significantly, and that BTP-11 promoted the progression of ATRA-induced into the terminal granulocytic differentiation. Further, Western blot analysis revealed that combination of BTP-11 and ATRA decreased cyclin D/CDK4 and increased C/EBPvarepsilon protein expression to arrest the cells into G0/G1 phase leading to granulocytic maturation. These results confirmed that BTP-11 is a potent enhancer for ATRA-induced differentiation of HL-60 cells, and the great developmental potential of BTP-11 will be expected.
Collapse
|
38
|
Gao F, Tang Q, Yang P, Fang Y, Li W, Wu Y. Apoptosis inducing and differentiation enhancement effect of oridonin on the all-trans-retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells. Int J Lab Hematol 2009; 32:e114-22. [PMID: 19302235 DOI: 10.1111/j.1751-553x.2009.01147.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of oridonin (Ori), a diterpenoid isolated from Rabdosia rubescens, on apoptosis and differentiation of all-trans-retinoic acid (ATRA)-sensitive (NB4) and ATRA-resistant (NB4-R1) cells. The results showed that reactive oxygen species initiates Ori-induced apoptosis. In addition, we found that neither Ori nor ATRA (10 nM) alone induced marked cell differentiation, while co-treatment of these two compounds can induce differentiation of NB4 and NB4-R1 cells which was accompanied by increased RARalpha, C/EBPepsilon or C/EBPbeta. This is the first report to show that RARalpha could be accumulated by Ori which may be useful as a probe to investigate the mechanism of RARalpha catabolism. These results suggest that Ori is a potential candidate for acute promyelocytic leukemia cancer therapy.
Collapse
Affiliation(s)
- F Gao
- NO.3 People's Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
39
|
Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009; 27:619-28. [PMID: 19075268 PMCID: PMC2645860 DOI: 10.1200/jco.2008.17.9812] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 10/10/2008] [Indexed: 11/20/2022] Open
Abstract
While much is known about aberrant pathways affecting cell growth and apoptosis, our understanding of another critical step of neoplastic transformation, differentiation arrest, remains poor. The differentiation-inducing transcription factor CCAAT enhancer binding protein alpha (C/EBPalpha) is required for proper control of adipogenesis, glucose metabolism, granulocytic differentiation, and lung development. Studies investigating the function of this protein in hematopoietic malignancies as well as in lung and skin cancer have revealed numerous ways how tumor cells abrogate C/EBPalpha function. Genetic and global expression analysis of acute myeloid leukemia (AML) cases identifies C/EBPalpha-deficient AML as a separate entity yielding novel classification schemes. In patients with a dysfunctional C/EBPalpha pathway, targeted therapies may overcome the block in differentiation, and in combination with conventional chemotherapy, may lead to complete eradication of the malignant clone. Overall, a better understanding of the mechanisms of how C/EBPalpha dysregulation participates in the neoplastic process has opened new gateways for differentiation biology research.
Collapse
Affiliation(s)
- Steffen Koschmieder
- From the University of Münster, Münster, Germany; Case Western Reserve University, Cleveland, OH; Cancer Science Institute of Singapore, Singapore; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Balazs Halmos
- From the University of Münster, Münster, Germany; Case Western Reserve University, Cleveland, OH; Cancer Science Institute of Singapore, Singapore; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Elena Levantini
- From the University of Münster, Münster, Germany; Case Western Reserve University, Cleveland, OH; Cancer Science Institute of Singapore, Singapore; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Daniel G. Tenen
- From the University of Münster, Münster, Germany; Case Western Reserve University, Cleveland, OH; Cancer Science Institute of Singapore, Singapore; and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Abstract
Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Beatrice U Mueller
- Department of Internal Medicine, University Hospital, 3010, Bern, Switzerland.
| | | |
Collapse
|
41
|
Translocation (14;14)(q11;q32) with simultaneous involvement of the IGH and CEBPE genes in B-lineage acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2008; 187:125-9. [DOI: 10.1016/j.cancergencyto.2008.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 08/05/2008] [Indexed: 11/23/2022]
|
42
|
C/EBPalpha and C/EBPvarepsilon induce the monocytic differentiation of myelomonocytic cells with the MLL-chimeric fusion gene. Oncogene 2008; 27:6749-60. [PMID: 18776924 DOI: 10.1038/onc.2008.285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CCAAT/enhancer binding proteins (C/EBPs) have an important function in granulocytic differentiation, and are also involved in the leukemogenesis of acute myeloid leukemia (AML). Their involvement in myelomonocytic leukemia, however, is still unclear. Therefore, the expression and function of C/EBPs in myelomonocytic cells with MLL-fusion genes were investigated. Retinoic acid (RA) induced monocytic differentiation in the myelomonocytic cell lines with MLL-fusion genes, THP-1, MOLM-14 and HF-6 cells, accompanied by monocytic differentiation with the upregulation of C/EBPalpha and C/EBPepsilon. Monocytic differentiation by RA treatment was confirmed in primary AML cells using a clonogenic assay. When the activity of C/EBPalpha or C/EBPepsilon was introduced into HF-6 cells, their cellular growth was arrested through differentiation into monocytes with the concomitant marked downregulation of Myc. Cebpe mRNA was upregulated by the induction of C/EBPalpha-ER, but not vice versa, thus suggesting that C/EBPepsilon may have an important function in the differentiation process. Introduction of Myc isoforms into HF-6 cells partially antagonized the C/EBPs effects. These findings suggest that the ectopic expression of C/EBPepsilon, as well as C/EBPalpha, can induce the monocytic differentiation of myelomonocytic leukemic cells with MLL-fusion gene through the downregulation of Myc, thus providing insight into the development of novel therapeutic approaches.
Collapse
|
43
|
Carnicer MJ, Lasa A, Buschbeck M, Serrano E, Carricondo M, Brunet S, Aventin A, Sierra J, Croce LD, Nomdedeu JF. K313dup is a recurrent CEBPA mutation in de novo acute myeloid leukemia (AML). Ann Hematol 2008; 87:819-27. [DOI: 10.1007/s00277-008-0528-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 06/03/2008] [Indexed: 12/18/2022]
|
44
|
Evidence of functional interaction between NuMA-RARα and RXRα in an in vivo model of acute promyelocytic leukemia. Oncogene 2008; 27:4666-77. [DOI: 10.1038/onc.2008.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
The current paradigm on leukemogenesis indicates that leukemias are propagated by leukemic stem cells. The genomic events and pathways involved in the transformation of hematopoietic precursors into leukemic stem cells are increasingly understood. This concept is based on genomic mutations or functional dysregulation of transcription factors in malignant cells of patients with acute myeloid leukemia (AML). Loss of the CCAAT/enhancer binding protein-alpha (CEBPA) function in myeloid cells in vitro and in vivo leads to a differentiation block, similar to that observed in blasts from AML patients. CEBPA alterations in specific subgroups of AML comprise genomic mutations leading to dominant-negative mutant proteins, transcriptional suppression by leukemic fusion proteins, translational inhibition by activated RNA-binding proteins, and functional inhibition by phosphorylation or increased proteasomal-dependent degradation. The PU.1 gene can be mutated or its expression or function can be blocked by leukemogenic fusion proteins in AML. Point mutations in the RUNX1/AML1 gene are also observed in specific subtypes of AML, in addition to RUNX1 being the most frequent target for chromosomal translocation in AML. These data are persuasive evidence that impaired function of particular transcription factors contributes directly to the development of human AML, and restoring their function represents a promising target for novel therapeutic strategies in AML.
Collapse
|
46
|
The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 2007; 17:318-24. [PMID: 17658261 DOI: 10.1016/j.tcb.2007.07.004] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/30/2007] [Accepted: 07/04/2007] [Indexed: 01/31/2023]
Abstract
In recent years, a link between the transcriptional regulators of lineage-specific gene expression and progenitor proliferation control has emerged. A main exponent of this phenomenon is the CCAAT/enhancer binding protein (C/EBP) family of basic region-leucine zipper proteins. These transcription factors control the differentiation of a range of cell types, and have key roles in regulating cellular proliferation through interaction with cell cycle proteins. More recently, their position at the crossroads between proliferation and differentiation has made them strong candidate regulators of tumorigenesis, and C/EBPs have been described as both tumor promoters and tumor suppressors.
Collapse
|
47
|
Yoshida H, Ichikawa H, Tagata Y, Katsumoto T, Ohnishi K, Akao Y, Naoe T, Pandolfi PP, Kitabayashi I. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol Cell Biol 2007; 27:5819-34. [PMID: 17562868 PMCID: PMC1952121 DOI: 10.1128/mcb.02422-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML and PU.1 play important roles in myeloid differentiation. PML-deficient mice have an impaired capacity for terminal maturation of their myeloid precursor cells. This finding has been explained, at least in part, by the lack of PML action to modulate retinoic acid-differentiating activities. In this study, we found that C/EBPepsilon expression is reduced in PML-deficient mice. We showed that PU.1 directly activates the transcription of the C/EBPepsilon gene that is essential for granulocytic differentiation. The type IV isoform of PML interacted with PU.1, promoted its association with p300, and then enhanced PU.1-induced transcription and granulocytic differentiation. In contrast to PML IV, the leukemia-associated PML-retinoic acid receptor alpha fusion protein dissociated the PU.1/PML IV/p300 complex and inhibited PU.1-induced transcription. These results suggest a novel pathogenic mechanism of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Molecular Oncology Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-Chome, Chuo-Ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7:105-17. [PMID: 17259967 DOI: 10.1038/nri2024] [Citation(s) in RCA: 446] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent years, great progress has been made in elucidating the progenitor-cell hierarchy of the myeloid lineage. Transcription factors have been shown to be key determinants in the orchestration of myeloid identity and differentiation fates. Most transcription factors show cell-lineage-restricted and stage-restricted expression patterns, indicating the requirement for tight regulation of their activities. Moreover, if dysregulated or mutated, these transcription factors cause the differentiation block observed in many myeloid leukaemias. Consequently, therapies designed to restore defective transcription factor functions are an attractive option in the treatment of myeloid and other human cancers.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13092 Berlin, Germany.
| | | |
Collapse
|
49
|
Nervi C, Fazi F, Rosa A, Fatica A, Bozzoni I. Emerging role for microRNAs in acute promyelocytic leukemia. Curr Top Microbiol Immunol 2007; 313:73-84. [PMID: 17217039 DOI: 10.1007/978-3-540-34594-7_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hematopoiesis is highly controlled by lineage-specific transcription factors that, by interacting with specific DNA sequences, directly activate or repress specific gene expression. These transcription factors have been found mutated or altered by chromosomal translocations associated with leukemias, indicating their role in the pathogenesis of these malignancies. The post-genomic era, however, has shown that transcription factors are not the only key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, remodeling of nucleosomes, and expression of small regulatory RNAs all contribute to the regulation of gene expression and determination of cell and tissue specificity. Deregulation ofthese epigenetic mechanisms cooperates with genetic alterations to the establishment and progression of tumors. MicroRNAs (miRNAs) are negative regulators of the expression of genes involved in development, differentiation, proliferation, and apoptosis. Their expression appears to be tissue-specific and highly regulated according to the cell's developmental lineage and stage. Interestingly, miRNAs expressed in hematopoietic cells have been found mutated or altered by chromosomal translocations associated with leukemias. The expression levels of a specific miR-223 correlate with the differentiation fate of myeloid precursors. The activation of both pathways of transcriptional regulation by the myeloid lineage-specific transcription factor C/EBPalpha (CCAAT/enhancer-binding protein-alpha), and posttranscriptional regulation by miR-223 appears essential for granulocytic differentiation and clinical response of acute promyelocytic leukemia (APL) blasts to all-trans retinoic acid (ATRA). Together, this evidence underlies transcription factors, chromatin remodeling, and miRNAs as ultimate determinants for the correct organization of cell type-specific gene arrays and hematopoietic differentiation, therefore providing new targets for the diagnosis and treatment of leukemias.
Collapse
Affiliation(s)
- C Nervi
- Department of Histology and Medical Embryology, University of Rome "La Sapienza" and San Raffaele Bio-medical Park Foundation, Via di Castel Romano 100, 00128 Rome, Italy.
| | | | | | | | | |
Collapse
|
50
|
Lee YJ, Jones LC, Timchenko NA, Perrotti D, Tenen DG, Kogan SC. CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities. Blood 2006; 108:2416-9. [PMID: 16788101 PMCID: PMC1895555 DOI: 10.1182/blood-2006-02-003582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CCAAT/enhancer binding proteins (C/EBPs) play critical roles in myelopoiesis. Dysregulation of these proteins likely contributes to the pathogenesis of myeloid disorders characterized by a block in granulopoiesis. In one such disease, acute promyelocytic leukemia (APL), a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17) chromosomal translocation. Treatment of PML-RARalpha leukemic cells with all-trans retinoic acid (ATRA) causes them to differentiate into mature neutrophils, an effect thought to be mediated by C/EBPs. In this study, we assess the potential for cooperativity between increased C/EBP activity and ATRA therapy. We demonstrate that although both C/EBPalpha and C/EBPepsilon can significantly prolong survival in a mouse model of APL, they are not functionally equivalent in this capacity. We also show that forced expression of C/EBPalpha or C/EBPepsilon in combination with ATRA treatment has a synergistic effect on survival of leukemic mice compared with either therapy alone.
Collapse
Affiliation(s)
- Young-Jin Lee
- Dept of Laboratory Medicine, Box 0134, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|