1
|
Nguyen TTT, Tanaka Y, Sanada M, Hosaka M, Tamai M, Kagami K, Komatsu C, Somazu S, Harama D, Kasai S, Watanabe A, Akahane K, Goi K, Inukai T. CRISPR/Cas9-Mediated Induction of Relapse-Specific NT5C2 and PRPS1 Mutations Confers Thiopurine Resistance as a Relapsed Lymphoid Leukemia Model. Mol Pharmacol 2023; 103:199-210. [PMID: 36669880 DOI: 10.1124/molpharm.122.000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.
Collapse
Affiliation(s)
- Thao Thu Thi Nguyen
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Yoichi Tanaka
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Masashi Sanada
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Masumi Hosaka
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Minori Tamai
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Keiko Kagami
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Chiaki Komatsu
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Shinpei Somazu
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Daisuke Harama
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Shin Kasai
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Atsushi Watanabe
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Koushi Akahane
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Kumiko Goi
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Yamanashi, Japan (T.T.T.N., M.T., K.K., C.K., S.S., D.H., S.K., A.W., K.A., K.G., T.I.); Division of Medicinal Safety Science, National Institutes of Health Sciences, Kanagawa, Japan (Y.T.); and Advanced Diagnostic Research Department, Clinical Research Center, National Hospital Organization, Nagoya Medical Center, Japan (M.S., M.H.)
| |
Collapse
|
2
|
Nguyen TTT, Tamai M, Harama D, Kagami K, Kasai S, Watanabe A, Akahane K, Goi K, Inukai T. Introduction of the T315I gatekeeper mutation of BCR/ABL1 into a Philadelphia chromosome-positive lymphoid leukemia cell line using the CRISPR/Cas9 system. Int J Hematol 2022; 116:534-543. [PMID: 35524023 DOI: 10.1007/s12185-022-03369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Imatinib and second-generation tyrosine kinase inhibitors (TKIs) have dramatically improved the prognosis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, overcoming TKI resistance due to the T315I gatekeeper mutation of BCR/ABL1 is crucial for further improving the prognosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is appropriate for establishing a human model of Ph+ ALL with the T315I mutation, because it can induce specific mutations via homologous recombination (HR) repair in cells with intact endogenous HR pathway. Here we used CRISPR/Cas9 to introduce the T315I mutation into the Ph+ lymphoid leukemia cell line KOPN55bi, which appeared to have an active HR pathway based on its resistance to a poly (ADP-Ribose) polymerase-1 inhibitor. Single-guide RNA targeting at codon 315 and single-strand oligodeoxynucleotide containing ACT to ATT nucleotide transition at codon 315 were electroporated with recombinant Cas9 protein. Dasatinib-resistant sublines were obtained after one-month selection with the therapeutic concentration of dasatinib, leading to T315I mutation acquisition through HR. T315I-acquired sublines were highly resistant to imatinib and second-generation TKIs but moderately sensitive to the therapeutic concentration of ponatinib. This authentic human model is helpful for developing new therapeutic strategies overcoming TKI resistance in Ph+ ALL due to T315I mutation.
Collapse
Affiliation(s)
- Thao T T Nguyen
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
3
|
Branstrom A, Cao L, Furia B, Trotta C, Santaguida M, Graci JD, Colacino JM, Ray B, Li W, Sheedy J, Mollin A, Yeh S, Kong R, Sheridan R, Baird JD, O'Keefe K, Spiegel R, Goodwin E, Keating S, Weetall M. Emvododstat, a Potent Dihydroorotate Dehydrogenase Inhibitor, Is Effective in Preclinical Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:832816. [PMID: 35223511 PMCID: PMC8864546 DOI: 10.3389/fonc.2022.832816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.
Collapse
Affiliation(s)
- Arthur Branstrom
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Liangxian Cao
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Bansri Furia
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | | | - Jason D Graci
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Joseph M Colacino
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Balmiki Ray
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Wencheng Li
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Josephine Sheedy
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Anna Mollin
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Shirley Yeh
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Ronald Kong
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | - John D Baird
- Clinical, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Kylie O'Keefe
- Commercial, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Robert Spiegel
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Elizabeth Goodwin
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Suzanne Keating
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Marla Weetall
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| |
Collapse
|
4
|
Harama D, Yahata T, Kagami K, Abe M, Ando N, Kasai S, Tamai M, Akahane K, Inukai T, Kiyokawa N, Ibrahim AA, Ando K, Sugita K. IMiDs uniquely synergize with TKIs to upregulate apoptosis of Philadelphia chromosome-positive acute lymphoblastic leukemia cells expressing a dominant-negative IKZF1 isoform. Cell Death Discov 2021; 7:139. [PMID: 34117218 PMCID: PMC8195985 DOI: 10.1038/s41420-021-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
The long-term prognosis of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) is still unsatisfactory even after the emergence of tyrosine kinase inhibitors (TKIs) against chimeric BCR-ABL, and this is associated with the high incidence of genetic alterations of Ikaros family zinc finger 1 (IKZF1), most frequently the hemi-allelic loss of exons 4–7 expressing a dominant-negative isoform Ik6. We found that lenalidomide (LEN), a representative of immunomodulatory drugs (IMiDs), which have been long used for the treatment of multiple myeloma, specifically induced accumulation of Ik6 with the disappearance of functional isoforms within 24 h (i.e., abrupt and complete shut-down of the IKZF1 activity) in Ik6-positive Ph+ALL cells in a neddylation-dependent manner. The functional IKZF3 isoforms expression was also abruptly and markedly downregulated. The LEN treatment specifically suppressed proliferation of Ik6-positive-Ph+ALL cells by inducing cell cycle arrest via downregulation of cyclins D3 and E and CDK2, and of importance, markedly upregulated their apoptosis in synergy with the TKI imatinib (IM). Apoptosis of IM-resistant Ph+ALL cells with T315I mutation of BCR-ABL was also upregulated by LEN in the presence of the newly developed TKI ponatinib. Analyses of flow cytometry, western blot, and oligonucleotide array revealed that apoptosis was caspase-/p53-dependent and associated with upregulation of pro-apoptotic Bax/Bim, enhanced dephosphorylation of BCR-ABL/Akt, and downregulation of oncogenic helicase genes HILLS, CDC6, and MCMs4 and 8. Further, the synergism of LEN with IM was clearly documented as a significant prolongation of survival in the xenograft mice model. Because this synergism was further potentiated in vitro by dexamethasone, a key drug for ALL treatment, the strategy of repositioning IMiDs for the treatment of Ik6-positive Ph+ALL patients certainly shed new light on an outpatient-based treatment option for achieving their long-term durable remission and higher QOL, particularly for those who are not tolerable to intensified therapeutic approaches.
Collapse
Affiliation(s)
- Daisuke Harama
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takashi Yahata
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Kagami
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masako Abe
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Norie Ando
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shin Kasai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Minori Tamai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Abd Aziz Ibrahim
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kanji Sugita
- Department of Pediatrics, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
5
|
Epigenetic Modification of Death Receptor Genes for TRAIL and TRAIL Resistance in Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12060864. [PMID: 34198757 PMCID: PMC8229974 DOI: 10.3390/genes12060864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies specific for B-cell precursor acute lymphoblastic leukemia (BCP-ALL), such as anti-CD19 chimeric antigen receptor (CAR) T-cells and blinatumomab, have dramatically improved the therapeutic outcome in refractory cases. In the anti-leukemic activity of those immunotherapies, TNF-related apoptosis-inducing ligand (TRAIL) on cytotoxic T-cells plays an essential role by inducing apoptosis of the target leukemia cells through its death receptors (DR4 and DR5). Since there are CpG islands in the promoter regions, hypermethylation of the DR4 and DR5 genes may be involved in resistance of leukemia cells to immunotherapies due to TRAIL-resistance. We analyzed the DR4 and DR5 methylation status in 32 BCP-ALL cell lines by sequencing their bisulfite PCR products with a next-generation sequencer. The DR4 and DR5 methylation status was significantly associated with the gene and cell-surface expression levels and the TRAIL-sensitivities. In the clinical samples at diagnosis (459 cases in the NOPHO study), both DR4 and DR5 genes were unmethylated in the majority of cases, whereas methylated in several cases with dic(9;20), MLL-rearrangement, and hypodiploidy, suggesting that evaluation of methylation status of the DR4 and DR5 genes might be clinically informative to predict efficacy of immunotherapy in certain cases with such unfavorable karyotypes. These observations provide an epigenetic rational for clinical efficacy of immunotherapy in the vast majority of BCP-ALL cases.
Collapse
|
6
|
The role of XIAP in resistance to TNF-related apoptosis-inducing ligand (TRAIL) in Leukemia. Biomed Pharmacother 2018; 107:1010-1019. [PMID: 30257312 DOI: 10.1016/j.biopha.2018.08.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
The treatment for leukemic malignancies remains a challenge despite the wide use of conventional chemotherapies. Therefore, new therapeutic approaches are highly demanded. TNF-related apoptosis-inducing ligand (TRAIL) represents a targeted therapy against cancer because it induces apoptosis only in tumor cells. TRAIL is currently under investigation for the treatment of leukemia. Preclinical studies evaluated the potential therapeutic efficacy of TRAIL on cell lines and clinical samples and showed promising results. However, like most anti-cancer drugs, resistance to TRAIL-induced apoptosis may limit its clinical efficacy. It is critical to understand the molecular mechanisms of TRAIL. Therefore, rational therapeutic drug combinations for clinical trials of TRAIL-based therapies might be achieved. In a variety of leukemic cells, overexpression of X-linked inhibitor of apoptosis protein (XIAP), a negative regulator of apoptosis pathway, has been discovered. Implication of XIAP in the ineffective induction of cell death by TRAIL in leukemia has been explored in several resistant cell lines. XIAP inhibitors restored TRAIL sensitivity in resistant cells and primary leukemic blasts. Moreover, TRAIL resistance in leukemic cells could be overcome by the effects of several anti-leukemic agents via the mechanisms of XIAP downregulation. Here, we discuss targeting XIAP, a strategy to restore TRAIL sensitivity in leukemia to acquire more insights into the mechanisms of TRAIL resistance. The concluding remarks may lead to identify putative ways to resensitize tumors.
Collapse
|
7
|
Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, Kagawa K, Iwasa M, Endo I, Kondo T, Yoshida S, Aihara KI, Kurahashi K, Kuroda Y, Horikawa H, Tanaka E, Matsumoto T, Abe M. A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget 2018; 7:70447-70461. [PMID: 27626482 PMCID: PMC5342564 DOI: 10.18632/oncotarget.11927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023] Open
Abstract
Myeloma (MM) cells and osteoclasts are mutually interacted to enhance MM growth while creating acidic bone lesions. Here, we explored acid sensing of MM cells and its role in MM cell response to acidic conditions. Acidic conditions activated the PI3K-Akt signaling in MM cells while upregulating the pH sensor transient receptor potential cation channel subfamily V member 1 (TRPV1) in a manner inhibitable by PI3K inhibition. The acid-activated PI3K-Akt signaling facilitated the nuclear localization of the transcription factor Sp1 to trigger the expression of its target genes, including TRPV1 and HDAC1. Consistently, histone deacetylation was enhanced in MM cells in acidic conditions, while repressing a wide variety of genes, including DR4. Indeed, acidic conditions deacetylated histone H3K9 in a DR4 gene promoter and curtailed DR4 expression in MM cells. However, inhibition of HDAC as well as either Sp1 or PI3K was able to restore DR4 expression in MM cells suppressed in acidic conditions. These results collectively demonstrate that acid activates the TRPV1-PI3K-Akt-Sp1 signaling in MM cells while inducing HDAC-mediated gene repression, and suggest that a positive feedback loop between acid sensing and the PI3K-Akt signaling is formed in MM cells, leading to MM cell response to acidic bone lesions.
Collapse
Affiliation(s)
- Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineerings, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Histology and Oral Histology, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Derek Hanson
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Keiichiro Watanabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Division of Transfusion medicine and cell therapy, Tokushima University hospital, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiaki Kuroda
- Department of Hematology and Oncology, RIRBM, Hiroshima University, Hiroshima, Japan
| | - Hideaki Horikawa
- Support Center for Advanced Medical Sciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Fujii Memorial Institute for Medical Research Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
Takahashi K, Inukai T, Imamura T, Yano M, Tomoyasu C, Lucas DM, Nemoto A, Sato H, Huang M, Abe M, Kagami K, Shinohara T, Watanabe A, Somazu S, Oshiro H, Akahane K, Goi K, Kikuchi J, Furukawa Y, Goto H, Minegishi M, Iwamoto S, Sugita K. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines. PLoS One 2017; 12:e0188680. [PMID: 29236701 PMCID: PMC5728482 DOI: 10.1371/journal.pone.0188680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/11/2017] [Indexed: 11/19/2022] Open
Abstract
Prognosis of childhood acute lymphoblastic leukemia (ALL) has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ), a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+) ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin) in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ), a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19) ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19) ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19) ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good sensitivity to CFZ and BTZ, and that CFZ combination chemotherapy may be a new therapeutic option with higher anti-leukemic activity for refractory ALL that contain P-glycoprotein-negative leukemia cells.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
- * E-mail:
| | - Toshihiko Imamura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mio Yano
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihiro Tomoyasu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - David M. Lucas
- College of Pharmacy, The Ohio State University, Columbus, OH, United States of America
| | - Atsushi Nemoto
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroki Sato
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Meixian Huang
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinpei Somazu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Jiro Kikuchi
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Yusuke Furukawa
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Shimotsuke, Japan
| | - Hiroaki Goto
- Hematology/Oncology & Regenerative Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
9
|
Huang M, Inukai T, Kagami K, Abe M, Shinohara T, Watanabe A, Somazu S, Oshiro H, Goi K, Goto H, Minegishi M, Iwamoto S, Urayama KY, Sugita K. Splicing variant profiles and single nucleotide polymorphisms of the glucocorticoid receptor gene in relation to glucocorticoid sensitivity of B-cell precursor acute lymphoblastic leukaemia. Hematol Oncol 2017; 36:245-251. [PMID: 28850694 DOI: 10.1002/hon.2471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
Glucocorticoid (GC) shows antileukaemic activity via binding to the GC receptor (GR). The human GR gene has 4 splicing variants besides the functional isoform GRα, but their significance in GC sensitivity of acute lymphoblastic leukaemia (ALL) has been inconsistent. Additionally, several studies evaluated the relevance of GR gene single nucleotide polymorphisms (SNPs) in the GC sensitivity of ALL, but the current cumulative evidence appears inconclusive. Addressing limitations in previous studies, we used a large series of B-cell precursor ALL (BCP-ALL) cell lines established from Japanese patients to comprehensively examine all 5 splicing variants of the GR gene and candidate SNPs, and their association with GC-sensitivity. We performed real-time reverse transcription polymerase chain reaction (RT-PCR) analyses with 10 sets of primers that differentially quantify the 5 isoforms in different combinations, and the strongest correlations with GC sensitivity were observed for the real-time RT-PCR of exons 7 and 8 (prednisolone sensitivity; r = -0.534, R2 = 0.29, P = 1.4 × 10-6 ) and exons 8 and 9a (r = -0.583, R2 = 0.34, P = 7.6 × 10-8 ), both specific for GRα and GRγ isoforms. In contrast, the real-time RT-PCR of junction of exons 3g and 4 and exon 4, specific for GRγ isoform alone, did not show significant correlation with GC sensitivity (prednisolone sensitivity; r = -0.403, R2 = 0.16, P = 4.6 × 10-4 ). These observations are consistent with the notion that GRα plays a central role in the GC-mediated proapoptotic activity in BCP-ALL. In addition, a promoter region SNP genotype (rs72555796) showed a significant association with GC sensitivity (prednisolone sensitivity; P = .010) and tended to show an association with GR gene expression (RT-PCR of exons 7 and 8; P = .170). These findings indicate that isoform profiles and SNP genotypes of the GR gene may be useful indicators of GC sensitivity in BCP-ALL.
Collapse
Affiliation(s)
- Meixian Huang
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Masako Abe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Tamao Shinohara
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinpei Somazu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroko Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Hiroaki Goto
- Hematology/Oncology & Regenerative Medicine, Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kevin Y Urayama
- Center for Clinical Epidemiology, St Luke's International University, Tokyo, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
10
|
Hirai M, Yagasaki H, Fujimura J, Inoue M, Shimozawa K, Okuma H, Chin M, Takahashi S. Successful preemptive donor lymphocyte infusions from a haploidentical donor in a boy with E2A-HLF-positive ALL. Leuk Lymphoma 2017; 59:746-748. [PMID: 28728518 DOI: 10.1080/10428194.2017.1347927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maiko Hirai
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| | - Hiroshi Yagasaki
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| | - Junya Fujimura
- b Department of Pediatrics and Adolescent Medicine , Juntendo University School of Medicine , Tokyo , Japan
| | - Masami Inoue
- c Department of Hematology/Oncology , Osaka Medical Center and Research Institute for Maternal and Child Health , Osaka , Japan
| | - Katsuyoshi Shimozawa
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| | - Hirotsugu Okuma
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| | - Motoaki Chin
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| | - Shori Takahashi
- a Department of Pediatrics , Nihon University School of Medicine , Tokyo , Japan
| |
Collapse
|
11
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|
12
|
Rivoltini L, Chiodoni C, Squarcina P, Tortoreto M, Villa A, Vergani B, Bürdek M, Botti L, Arioli I, Cova A, Mauri G, Vergani E, Bianchi B, Della Mina P, Cantone L, Bollati V, Zaffaroni N, Gianni AM, Colombo MP, Huber V. TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clin Cancer Res 2016; 22:3499-512. [PMID: 26944067 DOI: 10.1158/1078-0432.ccr-15-2170] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Exosomes deliver signals to target cells and could thus be exploited as an innovative therapeutic tool. We investigated the ability of membrane TRAIL-armed exosomes to deliver proapoptotic signals to cancer cells and mediate growth inhibition in different tumor models. EXPERIMENTAL METHODS AND RESULTS K562 cells, transduced with lentiviral human membrane TRAIL, were used for the production of TRAIL(+) exosomes, which were studied by nanoparticle tracking analysis, cytofluorimetry, immunoelectronmicroscopy, Western blot, and ELISA. In vitro, TRAIL(+) exosomes induced more pronounced apoptosis (detected by Annexin V/propidium iodide and activated caspase-3) in TRAIL-death receptor (DR)5(+) cells (SUDHL4 lymphoma and INT12 melanoma), with respect to the DR5(-)DR4(+)KMS11 multiple myeloma. Intratumor injection of TRAIL(+) exosomes, but not mock exosomes, induced growth inhibition of SUDHL4 (68%) and INT12 (51%), and necrosis in KMS11 tumors. After rapid blood clearance, systemically administered TRAIL(+) exosomes accumulated in the liver, lungs, and spleen and homed to the tumor site, leading to a significant reduction of tumor growth (58%) in SUDHL4-bearing mice. The treatment of INT12-bearing animals promoted tumor necrosis and a not statistically significant tumor volume reduction. In KMS11-bearing mice, despite massive perivascular necrosis, no significant tumor growth inhibition was detected. CONCLUSIONS TRAIL-armed exosomes can induce apoptosis in cancer cells and control tumor progression in vivo Therapeutic efficacy was particularly evident in intratumor setting, while depended on tumor model upon systemic administration. Thanks to their ability to deliver multiple signals, exosomes thus represent a promising therapeutic tool in cancer. Clin Cancer Res; 22(14); 3499-512. ©2016 AACR.
Collapse
Affiliation(s)
- Licia Rivoltini
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Squarcina
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Department of Experimental Oncology and Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Villa
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Barbara Vergani
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Maja Bürdek
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ivano Arioli
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Mauri
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Bianchi
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pamela Della Mina
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Laura Cantone
- Department of Clinical Sciences and Community Health, EPIGET, Epidemiology, Epigenetics, and Toxicology Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, EPIGET, Epidemiology, Epigenetics, and Toxicology Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Mario Paolo Colombo
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
13
|
Nemoto A, Saida S, Kato I, Kikuchi J, Furukawa Y, Maeda Y, Akahane K, Honna-Oshiro H, Goi K, Kagami K, Kimura S, Sato Y, Okabe S, Niwa A, Watanabe K, Nakahata T, Heike T, Sugita K, Inukai T. Specific Antileukemic Activity of PD0332991, a CDK4/6 Inhibitor, against Philadelphia Chromosome-Positive Lymphoid Leukemia. Mol Cancer Ther 2015; 15:94-105. [PMID: 26637365 DOI: 10.1158/1535-7163.mct-14-1065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/29/2015] [Indexed: 11/16/2022]
Abstract
S-phase progression of the cell cycle is accelerated in tumors through various genetic abnormalities, and, thus, pharmacologic inhibition of altered cell-cycle progression would be an effective strategy to control tumors. In the current study, we analyzed the antileukemic activity of three available small molecules targeting CDK4/CDK6 against lymphoid crisis of chronic myeloid leukemia (CML-LC) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL), and found that all three molecules showed specific activities against leukemic cell lines derived from CML-LC and Ph(+) ALL. In particular, PD0332991 exhibited extremely high antileukemic activity against CML-LC and Ph(+) ALL cell lines in the nanomolar range by the induction of G0-G1 arrest and partially cell death through dephosphorylation of pRb and downregulation of the genes that are involved in S-phase transition. As an underlying mechanism for favorable sensitivity to the small molecules targeting CDK4/CDK6, cell-cycle progression of Ph(+) lymphoid leukemia cells was regulated by transcriptional and posttranscriptional modulation of CDK4 as well as Cyclin D2 gene expression under the control of BCR-ABL probably through the PI3K pathway. Consistently, the gene expression level of Cyclin D2 in Ph(+) lymphoid leukemia cells was significantly higher than that in Ph(-) lymphoid leukemia cells. Of note, three Ph(+) ALL cell lines having the T315I mutation also showed sensitivity to PD0332991. In a xenograft model, PD0332991, but not imatinib, suppressed dissemination of Ph(+) ALL having the T315I mutation and prolonged survival, demonstrating that this reagent would be a new therapeutic modality for relapsed CML-LC and Ph(+) ALL patients after treatment with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Atsushi Nemoto
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Kikuchi
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | - Yusuke Furukawa
- Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Tochigi, Japan
| | - Yasuhiro Maeda
- Department of Hematology, National Hospital Organization, Osaka Minami Medical Center, Osaka, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroko Honna-Oshiro
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuko Sato
- Adult Nursing, The Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kenichiro Watanabe
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
14
|
Wu Z, Eguchi-Ishimae M, Yagi C, Iwabuki H, Gao W, Tauchi H, Inukai T, Sugita K, Ishii E, Eguchi M. HMGA2 as a potential molecular target in KMT2A-AFF1-positive infant acute lymphoblastic leukaemia. Br J Haematol 2015; 171:818-29. [PMID: 26403224 DOI: 10.1111/bjh.13763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) in infants is an intractable cancer in childhood. Although recent intensive chemotherapy progress has considerably improved ALL treatment outcome, disease cure is often accompanied by undesirable long-term side effects, and efficient, less toxic molecular targeting therapies have been anticipated. In infant ALL cells with KMT2A (MLL) fusion, the microRNA let-7b (MIRLET7B) is significantly downregulated by DNA hypermethylation of its promoter region. We show here that the expression of HMGA2, one of the oncogenes repressed by MIRLET7B, is reversely upregulated in infant ALL leukaemic cells, particularly in KMT2A-AFF1 (MLL-AF4) positive ALL. In addition to the suppression of MIRLET7B, KMT2A fusion proteins positively regulate the expression of HMGA2. HMGA2 is one of the negative regulators of CDKN2A gene, which encodes the cyclin-dependent kinase inhibitor p16(INK4A) . The HMGA2 inhibitor netropsin, when combined with demethylating agent 5-azacytidine, upregulated and sustained the expression of CDKN2A, which resulted in growth suppression of KMT2A-AFF1-expressing cell lines. This effect was more apparent compared to treatment with 5-azacytidine alone. These results indicate that the MIRLET7B-HMGA2-CDKN2A axis plays an important role in cell proliferation of leukaemic cells and could be a possible molecular target for the therapy of infant ALL with KMT2A-AFF1.
Collapse
Affiliation(s)
- Zhouying Wu
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | - Chihiro Yagi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hidehiko Iwabuki
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wenming Gao
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hisamichi Tauchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takeshi Inukai
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kanji Sugita
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiichi Ishii
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mariko Eguchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
15
|
Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: Consequences for human disease. Autophagy 2015. [PMID: 26222012 PMCID: PMC4836004 DOI: 10.1080/15548627.2015.1071759] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autophagy and inflammation are 2 fundamental biological processes involved in both physiological and pathological conditions. Through its crucial role in maintaining cellular homeostasis, autophagy is involved in modulation of cell metabolism, cell survival, and host defense. Defective autophagy is associated with pathological conditions such as cancer, autoimmune disease, neurodegenerative disease, and senescence. Inflammation represents a crucial line of defense against microorganisms and other pathogens, and there is increasing evidence that autophagy has important effects on the induction and modulation of the inflammatory reaction; understanding the balance between these 2 processes may point to important possibilities for therapeutic targeting. This review focuses on the crosstalk between autophagy and inflammation as an emerging field with major implications for understanding the host defense on the one hand, and for the pathogenesis and treatment of immune-mediated diseases on the other hand.
Collapse
Affiliation(s)
- Romana T Netea-Maier
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Division of Endocrinology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theo S Plantinga
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Frank L van de Veerdonk
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,c Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Johannes W Smit
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,b Division of Endocrinology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Mihai G Netea
- a Department of Internal Medicine , Radboud University Medical Center , Nijmegen , The Netherlands.,c Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
16
|
Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Cytotherapy 2015; 16:1257-69. [PMID: 25108652 DOI: 10.1016/j.jcyt.2014.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/25/2014] [Accepted: 05/30/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND AIMS To develop a treatment option for Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+)ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR). METHODS A CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15-containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph(+)ALL cell lines including three TKI-resistant (T315I-mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines. RESULTS We obtained ∼1.3 × 10(8) CAR T cells (CD4(+), 25.4%; CD8(+), 71.3%), co-expressing CD45RA and CCR7 up to ∼80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CAR T cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor-related apoptosis-inducing ligand and interleukin-2. CONCLUSIONS We generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph(+)ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph(+)ALL.
Collapse
|
17
|
Prognostic significance of ligands belonging to tumour necrosis factor superfamily in acute lymphoblastic leukaemia. Leuk Res 2015; 39:290-5. [PMID: 25582383 DOI: 10.1016/j.leukres.2014.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
Altered activities of ligands belonging to tumour necrosis factor (TNF) superfamily, namely B-cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute lymphoblastic leukaemia (ALL). BAFF, APRIL and TRAIL provide crucial survival signals to immature, naive and activated B cells. These ligands are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. BAFF and APRIL, which can directly activate the NF-κB pathway, have been identified as crucial survival factors for ALL cells. Here, we have analyzed serum BAFF, APRIL and TRAIL concentrations in 48 patients with newly diagnosed ALL and 44 healthy volunteers. The levels of APRIL and BAFF were significantly higher in ALL patients as compared to healthy volunteers. In contrast, concentrations of TRAIL were significantly lower in ALL patients. Moreover, following induction, the levels of APRIL, but not BAFF or TRAIL, were significantly lower in a group of patients with complete remission (CR) as compared to non-respondent (NR) ALL patients. Furthermore, we demonstrated statistically significant differences in concentrations of APRIL between CR MRD-negative and CR, MRD-positive ALL patients. Notably detection of higher concentrations of APRIL was associated with shorter leukaemia-free survival and overall survival. Altogether, our data indicate that APRIL can play an important role in the pathogenesis of ALL and the measurement of APRIL levels can improve prognostication in ALL patients.
Collapse
|
18
|
Bolkun L, Lemancewicz D, Jablonska E, Szumowska A, Bolkun-Skornicka U, Ratajczak-Wrona W, Dzieciol J, Kloczko J. The impact of TNF superfamily molecules on overall survival in acute myeloid leukaemia: correlation with biological and clinical features. Ann Hematol 2014; 94:35-43. [PMID: 25085377 PMCID: PMC4281378 DOI: 10.1007/s00277-014-2178-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/26/2014] [Indexed: 12/24/2022]
Abstract
B cell-activating factor (BAFF), a proliferation-inducing ligand (APRIL) and apoptosis-inducing ligand (TRAIL) were demonstrated in several haematological diseases including acute myeloid leukemia (AML). Those cytokines are capable of activating a broad spectrum of intracellular signalling cascades that can either induce apoptosis or protect from programmed cell death. We have analysed BAFF, APRIL and TRAIL serum concentrations in 76 patients with newly diagnosed AML and 40 healthy volunteers. The values were significantly higher for APRIL and BAFF but lower for TRAIL compared to healthy volunteers. Induction therapy significantly reduced the values for BAFF and increased them for TRAIL. Moreover, the concentration of BAFF and APRIL was significantly lower and the concentration of TRAIL higher in a group of patients with complete remission compared to non-respondent AML patients. In addition, higher concentrations of BAFF and lower of TRAIL predicted a shorter overall survival, suggesting thereby an important prognostic marker and possible therapeutic target in AML.
Collapse
Affiliation(s)
- L Bolkun
- Department of Haematology, Medical University of Bialystok, 24a Sklodowskiej-Curie, Bialystok, 15-276, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu J, Edagawa M, Goshima H, Inoue M, Yagita H, Liu Z, Kitajima S. Role of ATF3 in synergistic cancer cell killing by a combination of HDAC inhibitors and agonistic anti-DR5 antibody through ER stress in human colon cancer cells. Biochem Biophys Res Commun 2014; 445:320-6. [PMID: 24530917 DOI: 10.1016/j.bbrc.2014.01.184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/17/2023]
Abstract
Histone deacetylase inhibitors (HDACIs) are promising agents for cancer therapy. However, the mechanism(s) responsible for the efficacy of HDACIs have not yet to be fully elucidated. Death receptor 5 (DR5) is a transmembrane receptor containing death domain that triggers cell death upon binding to TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) or agonistic anti-DR5 monoclonal antibody, and the combination of TRAIL/agonistic anti-DR5 monoclonal antibody and agents that increase the expression of DR5 is expected as a novel anticancer therapeutic strategy. Here we report that six different HDACIs activated endoplasmic reticulum (ER) stress sensor PERK and eIF2α and induced the ATF4/ATF3/CHOP pathway in p53-deficient human colon cancer cells. This resulted in an increased expression of DR5 on the cell surface and sensitized cells to apoptosis by agonistic anti-DR5 monoclonal antibody. Stress response gene ATF3 was required for efficient DR5 induction by HDACIs, and DR5 reporter assay showed that ATF3 play crucial role for the HDACIs-induced activation of DR5 gene transcription. These provide important mechanistic insight into how HDACIs exhibit pro-apoptotic activity in clinical anti-cancer treatments when they are used in combination with other therapeutic strategies.
Collapse
Affiliation(s)
- Jia Liu
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China; Department of Thyroid Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Makoto Edagawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroto Goshima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Makoto Inoue
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Zhonghui Liu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, China.
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.
| |
Collapse
|
20
|
Chen S, Liu Y, Sun H, Sun L, Ma J, Wan D, Jiang Z, Zhang Q, Li T. Regulation of Tumor Necrosis Factor-related Apoptosis-inducing Ligand Expression in Primary Acute Leukemic Cells by Chemotherapeutics. Turk J Haematol 2014; 30:263-8. [PMID: 24385805 PMCID: PMC3878528 DOI: 10.4274/tjh.2013.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/29/2013] [Indexed: 12/01/2022] Open
Abstract
Objective: The expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein and its regulation by chemotherapeutics were analyzed in primary acute leukemic cells. Materials and Methods: Peripheral blood was collected from 16 patients with acute leukemia on days 0, 1, 3, and 5 of chemotherapy. The mononuclear cells were separated from the peripheral blood, and TRAIL expression was assessed by flow cytometry. The bone marrow mononuclear cells of patients with acute leukemia were separated before chemotherapy and cultured in vitro with VP-16 and/or interferon (IFN). The TRAIL expression level was detected after the cell culture. Results: TRAIL expression in the mononuclear cells of peripheral blood was significantly upregulated on day 1 (p<0.05) and then significantly decreased on day 5 after chemotherapy (p<0.05). Results from the in vitro culture revealed that VP-16 upregulated TRAIL expression in the bone marrow mononuclear cells of patients with acute leukemia, but the binding of VP-16 to IFN did not enhance TRAIL expression as compared with VP-16 alone (p>0.05). onclusion: OA single chemotherapy mechanism for leukemia may suffice to induce TRAIL expression and promote the apoptosis of leukemic cells. Conflict of interest:None declared.
Collapse
Affiliation(s)
- Shengmei Chen
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Yanfang Liu
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Hui Sun
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Ling Sun
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Jie Ma
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Dingming Wan
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Zhongxing Jiang
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Qiutang Zhang
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Tao Li
- Key Observation Laboratory in Henan Medical University, Department of Hematology First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
21
|
Kikuchi J, Shibayama N, Yamada S, Wada T, Nobuyoshi M, Izumi T, Akutsu M, Kano Y, Sugiyama K, Ohki M, Park SY, Furukawa Y. Homopiperazine derivatives as a novel class of proteasome inhibitors with a unique mode of proteasome binding. PLoS One 2013; 8:e60649. [PMID: 23593271 PMCID: PMC3623906 DOI: 10.1371/journal.pone.0060649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/01/2013] [Indexed: 12/21/2022] Open
Abstract
The proteasome is a proteolytic machinery that executes the degradation of polyubiquitinated proteins to maintain cellular homeostasis. Proteasome inhibition is a unique and effective way to kill cancer cells because they are sensitive to proteotoxic stress. Indeed, the proteasome inhibitor bortezomib is now indispensable for the treatment of multiple myeloma and other intractable malignancies, but is associated with patient inconvenience due to intravenous injection and emerging drug resistance. To resolve these problems, we attempted to develop orally bioavailable proteasome inhibitors with distinct mechanisms of action and identified homopiperazine derivatives (HPDs) as promising candidates. Biochemical and crystallographic studies revealed that some HPDs inhibit all three catalytic subunits (ß 1, ß 2 and ß 5) of the proteasome by direct binding, whereas bortezomib and other proteasome inhibitors mainly act on the ß5 subunit. Proteasome-inhibitory HPDs exhibited cytotoxic effects on cell lines from various hematological malignancies including myeloma. Furthermore, K-7174, one of the HPDs, was able to inhibit the growth of bortezomib-resistant myeloma cells carrying a ß5-subunit mutation. Finally, K-7174 had additive effects with bortezomib on proteasome inhibition and apoptosis induction in myeloma cells. Taken together, HPDs could be a new class of proteasome inhibitors, which compensate for the weak points of conventional ones and overcome the resistance to bortezomib.
Collapse
Affiliation(s)
- Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Satoshi Yamada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Taeko Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masaharu Nobuyoshi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tohru Izumi
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Miyuki Akutsu
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Yasuhiko Kano
- Division of Hematology, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Kanako Sugiyama
- Protein Design Laboratory, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Mio Ohki
- Protein Design Laboratory, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail:
| |
Collapse
|
22
|
Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M. While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 2012; 61:59-74. [PMID: 23229677 DOI: 10.1007/s00005-012-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
It is a well-acclaimed fact that proteins expressed as a consequence of oncogenic fusions, mutations or amplifications can facilitate ectopic protein-protein interactions that re-wire signal dissemination pathways, in a manner that escalates malignancy. BCR-ABL-mediated signal transduction cascades in leukemic cells are assembled and modulated by a finely controlled network of protein-protein interactions, mediated by characteristic signaling domains and their respective binding motifs. BCR-ABL functions in a cell context-specific and cell type-specific manner to integrate signals that affect uncontrolled cellular proliferation. In this review, we draw attention to the recent progress made in outlining resistance against TRAIL-mediated apoptosis and diametrically opposed roles of miRNAs in BCR-ABL-positive leukemic cells. BCR-ABL governs carcinogenesis through well-organized web of antiapoptotic proteins and over-expressed oncomirs which target death receptors and pro-apoptotic genes. Set of oncomirs which inversely correlate with expression of TRAIL via suppression of SMAD is an important dimension which is gradually gaining attention of the researchers. Contrary to this, some current findings show a new role of BCR-ABL in nucleus with spotlight on apoptosis. It seems obvious that genetic heterogeneity of leukemias poses therapeutic challenges, and pharmacological agents that target components of the cancer promoting nano-machinery still need broad experimental validation to be considered competent as a component of the therapeutic arsenal for this group of diseases. Rapidly developing technologies are empowering us to explain the molecular "nature" of a patient and/or tumor and with this integration of personalized medicine, with maximized efficacy, cost effectiveness will hopefully improve survival chances of the patient.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
23
|
Song NM, Jun S, Zang DY, Kim SG, Park HR, Kang D. Differential susceptibility of gastric cancer cells to TRAIL-induced apoptosis. Oncol Rep 2012; 29:1224-30. [PMID: 23233033 DOI: 10.3892/or.2012.2183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/23/2012] [Indexed: 11/05/2022] Open
Abstract
Understanding the molecular basis of the differential sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis is required to predict therapeutic outcomes and to improve the effectiveness of TRAIL-based therapy. This study aimed to compare the responsiveness of gastric cancer cells to TRAIL treatment and to investigate the molecular basis of the differential TRAIL sensitivity of four gastric cancer cell lines. The TRAIL sensitivity of the four cell lines was ranked in the following order: SNU-16 ≈ SNU-620 > SNU-5 >> SNU-1. The level of Annexin V binding and the activation profile of caspase-3, -8 and -9 corroborated the differential TRAIL susceptibility of the cell lines. To determine the molecular basis of the differential sensitivity to TRAIL, we examined the expression of signaling components involved in TRAIL-mediated apoptosis. The mRNA level and surface expression of death receptor 4 (DR4) were significantly decreased in the SNU-1 cells compared to the other cell lines. Bid cleavage and X-linked inhibitor of apoptosis (XIAP) degradation were significantly increased in the SNU-16 and SNU-620 cells compared to the SNU-5 and SNU-1 cells, although Bid and XIAP were expressed at similar levels across the four cell lines. The expression and degradation of FLICE-inhibitory protein (FLIP) upon TRAIL treatment was independent of TRAIL sensitivity. In conclusion, the differential susceptibility of the four gastric cancer cells to TRAIL may be ascribed to the differential expression of DR4 and the proper augmentation of the death signal by the truncation of Bid and degradation of XIAP.
Collapse
Affiliation(s)
- Nak-Mi Song
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyonggi-do 431-060, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Diverse underlying proliferation response to growth factors in imatinib-treated Philadelphia chromosome-positive leukemias. Leuk Res 2012; 37:93-101. [PMID: 23099235 DOI: 10.1016/j.leukres.2012.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/04/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022]
Abstract
Since BCR-ABL plays an essential role in the growth factor-independent proliferation of Philadelphia chromosome (Ph)+ leukemia cells, imatinib treatment of Ph+ leukemia cells inactivates signaling pathways of BCR-ABL, and subsequent addition of growth factors (GFs) could restore the signaling pathways without reactivating BCR-ABL. Here we demonstrated that non-lymphoid Ph+ leukemia cell lines responded to diverse GFs depending on their immunophenotype and gene expression of transcription factors and GF receptors, while lymphoid Ph+ leukemia cell lines restrictively responded to flit3 ligand and interleukin-7, suggesting that GF sensitivity of imatinib-treated Ph+ leukemia cells could be powerful for specifying their distinctive lineage.
Collapse
|
25
|
BCR-ABL regulates death receptor expression for TNF-related apoptosis-inducing ligand (TRAIL) in Philadelphia chromosome-positive leukemia. Oncogene 2012; 32:1670-81. [PMID: 22665066 DOI: 10.1038/onc.2012.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) is a potentially curative therapy for chronic myeloid leukemia and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia, and the graft-vs-leukemia (GVL) effect can eradicate residual leukemia after allo-SCT. Ph(+) leukemia cells frequently express death-inducing receptors (DR4 and DR5) for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is one of the cytotoxic ligands expressed on cytotoxic T cells and natural killer cells mediating the GVL effect. Here we demonstrate that imatinib specifically downregulated DR4 and DR5 expression in cell lines and clinical samples of Ph(+) leukemia. Second-generation tyrosine kinase inhibitors (dasatinib and nilotinib) and short hairpin RNA against bcr-abl also downregulated DR4 and DR5 expression in Ph(+) leukemia cells, and transfection of bcr-abl into a Ph(-) leukemia cell line induced DR4 and DR5 expression, which was abrogated by imatinib treatment. Accordingly, Ph(+) leukemia cells that had been pretreated with imatinib showed resistance to the pro-apoptotic activity of recombinant human soluble TRAIL. These observations demonstrate that BCR-ABL is critically involved in the leukemia-specific expression of DR4 and DR5 and in the susceptibility of Ph(+) leukemia to TRAIL-mediated anti-leukemic activity, providing new insight into the mechanisms of the tumor-specific cytotoxic activities of TRAIL.
Collapse
|
26
|
Oncogenic fusion E2A-HLF sensitizes t(17;19)-positive acute lymphoblastic leukemia to TRAIL-mediated apoptosis by upregulating the expression of death receptors. Leukemia 2012; 26:2483-93. [PMID: 22743623 DOI: 10.1038/leu.2012.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
t(17;19)-acute lymphoblastic leukemia (ALL) shows extremely poor prognosis. E2A-HLF derived from t(17;19) blocks apoptosis induced by the intrinsic mitochondrial pathway and has a central role in leukemogenesis and chemoresistance. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed on cytotoxic T cells and natural killer cells and binds with death receptors (DR4/DR5), inducing apoptosis by dual activation of intrinsic and extrinsic pathways, and TRAIL mediates the graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT). We found that cell lines and patients' samples of t(17;19)-ALL expressed death receptors for TRAIL, and recombinant soluble TRAIL immediately induced apoptosis into t(17;19)-ALL cell lines. E2A-HLF induced gene expression of DR4/DR5, which was dependent on the DNA-binding and transactivation activities of E2A-HLF through the 5' upstream region of the start site at least in the DR4 gene. Introduction of E2A-HLF into non-t(17;19)-ALL cell line upregulated DR4 and DR5 expression, and sensitized to proapoptotic activity of recombinant soluble TRAIL. Finally, a newly diagnosed t(17;19)-ALL patient underwent allo-SCT immediately after induction of first complete remission, and the patient has survived without relapse for over 3-1/2 years after allo-SCT. These findings suggest that E2A-HLF sensitizes t(17;19)-ALL to the GVL effect by upregulating death receptors for TRAIL.
Collapse
|
27
|
Huang DY, Chao Y, Tai MH, Yu YH, Lin WW. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death. J Biomed Sci 2012; 19:35. [PMID: 22462553 PMCID: PMC3348077 DOI: 10.1186/1423-0127-19-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/30/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells. METHODS Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate. RESULTS We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571. CONCLUSIONS All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Zhang X, Inukai T, Akahane K, Hirose K, Kuroda I, Honna H, Goi K, Kagami K, Tauchi T, Yagita H, Sugita K. Endoplasmic reticulum stress inducers, but not imatinib, sensitize Philadelphia chromosome-positive leukemia cells to TRAIL-mediated apoptosis. Leuk Res 2011; 35:940-9. [DOI: 10.1016/j.leukres.2011.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/14/2011] [Accepted: 03/11/2011] [Indexed: 11/24/2022]
|
29
|
Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 2011; 153:568-81. [DOI: 10.1111/j.1365-2141.2011.08683.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
De Carvalho DD, Binato R, Pereira WO, Leroy JMG, Colassanti MD, Proto-Siqueira R, Bueno-Da-Silva AEB, Zago MA, Zanichelli MA, Abdelhay E, Castro FA, Jacysyn JF, Amarante-Mendes GP. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene 2010; 30:223-33. [PMID: 20838376 DOI: 10.1038/onc.2010.409] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-α family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML.
Collapse
Affiliation(s)
- D D De Carvalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Akahane K, Inukai T, Zhang X, Hirose K, Kuroda I, Goi K, Honna H, Kagami K, Nakazawa S, Endo K, Kubota T, Yagita H, Koyama-Okazaki T, Sugita K. Resistance of T-cell acute lymphoblastic leukemia to tumor necrosis factor--related apoptosis-inducing ligand-mediated apoptosis. Exp Hematol 2010; 38:885-95. [PMID: 20670671 DOI: 10.1016/j.exphem.2010.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Cytotoxic ligands are involved in tumor immunity and graft-vs.-leukemia effect after allogeneic stem cell transplantation for leukemia. To clarify the susceptibility of T-cell acute lymphoblastic leukemia (T-ALL) to tumor immunity, sensitivity to recombinant human soluble Fas ligand (rhsFasL) and tumor necrosis factor-related apoptosis-inducing ligand (rhsTRAIL) was determined. MATERIALS AND METHODS Sensitivity to rhsFasL and rhsTRAIL and cell surface expression of their receptors were tested in T-ALL cell lines (n = 7) and patients' samples (n = 17) and compared with those in B-precursor ALL cell lines (n = 30). Expression of components of the death-inducing signaling complex and the TRAIL receptor genes (DR4/DR5), and the methylation status and promoter activity of the DR4/DR5 gene were tested in T-ALL cell lines. RESULTS T-ALL cell lines showed higher level of Fas expression and higher sensitivity to rhsFasL than did B-precursor ALL cell lines. Despite comparable expression of components of death-inducing signaling complex, cell lines and patients' samples of T-ALL showed TRAIL-resistance associated with low cell surface expression of DR4/DR5. Gene expression of DR4/DR5 in T-ALL cell lines was significantly lower than that in B-precursor ALL cell lines, and the methylation status of the gene promoter in T-ALL cell lines was associated with the gene expression level at least for DR4. The demethylating agent, 5-aza 2'deoxycytidine, upregulated the gene expression of DR4/DR5, but was insufficient for their surface expression due to low basal promoter activity. CONCLUSIONS In contrast to higher sensitivity to FasL, T-ALL showed resistance to TRAIL, which might be responsible for resistance to TRAIL-mediated cellular immunity.
Collapse
Affiliation(s)
- Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inukai T, Zhang X, Kameyama T, Suzuki Y, Yoshikawa K, Kuroda I, Nemoto A, Akahane K, Sato H, Goi K, Nakamoto K, Hamada J, Tada M, Moriuchi T, Sugita K. A specific linkage between the incidence of TP53 mutations and type of chromosomal translocations in B-precursor acute lymphoblastic leukemia cell lines. Am J Hematol 2010; 85:535-7. [PMID: 20575032 PMCID: PMC7159455 DOI: 10.1002/ajh.21738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Xiuru Zhang
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Kameyama
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukiko Suzuki
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhito Yoshikawa
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Itaru Kuroda
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsushi Nemoto
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroki Sato
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazunori Nakamoto
- Bioinformatics Support Section, Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Jun‐ichi Hamada
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuhiro Tada
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tetsuya Moriuchi
- Division of Cancer‐Related Genes, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
33
|
Laurin D, Marin V, Biagi E, Pizzitola I, Agostoni V, Gallot G, Vié H, Jacob MC, Chaperot L, Aspord C, Plumas J. Exploration of the lysis mechanisms of leukaemic blasts by chimaeric T-cells. J Biomed Biotechnol 2010; 2010:234540. [PMID: 20617141 PMCID: PMC2896659 DOI: 10.1155/2010/234540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/18/2010] [Indexed: 11/28/2022] Open
Abstract
Adoptive transfer of specific cytotoxic T lymphocytes (CTL) and Cytokine Induced Killer Cells (CIK) following genetic engineering of T-cell receptor zeta hold promising perspective in immunotherapy. In the present work we focused on the mechanisms of anti-tumor action of effectors transduced with an anti-CD19 chimaeric receptor in the context of B-lineage acute lymphoblastic leukemia (B-ALL). Primary B-ALL blasts were efficiently killed by both z-CD19 CTL and z-CD19 CIK effectors. The use of death receptor mediated apoptosis of target cells was excluded since agonists molecules of Fas and TRAIL-receptors failed to induce cell death. Perforin/granzyme pathway was found to be the mechanism of chimaeric effectors mediated killing. Indeed, cytolytic effector molecules perforin as well as granzymes were highly expressed by CTL and CIK. CD19 specific stimulation of transduced effectors was associated with degranulation as attested by CD107 membrane expression and high IFN-gamma and TNF-alpha release. Moreover inhibitors of the perforin-based cytotoxic pathway, Ca(2+)-chelating agent EGTA and Concanamycin A, almost completely abrogated B-ALL blast killing. In conclusion we show that the cytolysis response of z-CD19 chimaeric effectors is predominantly mediated via perforin/granzyme pathway and is independent of death receptors signaling in primary B-ALL.
Collapse
Affiliation(s)
- David Laurin
- Etablissement Français du Sang, 38701 La Tronche, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood 2010; 116:962-70. [PMID: 20519628 DOI: 10.1182/blood-2009-09-244673] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LMO2, a critical transcription regulator of hematopoiesis, is involved in human T-cell leukemia. The binding site of proline and acidic amino acid-rich protein (PAR) transcription factors in the promoter of the LMO2 gene plays a central role in hematopoietic-specific expression. E2A-HLF fusion derived from t(17;19) in B-precursor acute lymphoblastic leukemia (ALL) has the transactivation domain of E2A and the basic region/leucine zipper domain of HLF, which is a PAR transcription factor, raising the possibility that E2A-HLF aberrantly induces LMO2 expression. We here demonstrate that cell lines and a primary sample of t(17;19)-ALL expressed LMO2 at significantly higher levels than other B-precursor ALLs did. Transfection of E2A-HLF into a non-t(17;19) B-precursor ALL cell line induced LMO2 gene expression that was dependent on the DNA-binding and transactivation activities of E2A-HLF. The PAR site in the LMO2 gene promoter was critical for E2A-HLF-induced LMO2 expression. Gene silencing of LMO2 in a t(17;19)-ALL cell line by short hairpin RNA induced apoptotic cell death. These observations indicated that E2A-HLF promotes cell survival of t(17;19)-ALL cells by aberrantly up-regulating LMO2 expression. LMO2 could be a target for a new therapeutic modality for extremely chemo-resistant t(17;19)-ALL.
Collapse
|
35
|
|
36
|
Corallini F, Milani D, Nicolin V, Secchiero P. TRAIL, caspases and maturation of normal and leukemic myeloid precursors. Leuk Lymphoma 2009; 47:1459-68. [PMID: 16966254 DOI: 10.1080/10428190500513611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). Members of this family share diverse biological effects, including induction of apoptosis and/or promotion of cell survival. Identification of TRAIL has generated considerable enthusiasm for its ability to induce apoptotic cell death in a variety of tumor cells, by engaging the death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, while sparing most normal cells. Beside its anticancer activity, several studies have suggested a role for endogenously expressed TRAIL in hemopoiesis. In this review, we summarize the knowledge about the different lineage-specific roles of TRAIL and its receptors in hemopoiesis regulation. Moreover, the complex interplay among the signaling pathways triggered by TRAIL/TRAIL-receptors in myeloid cells is discussed in some detail.
Collapse
Affiliation(s)
- Federica Corallini
- Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara 66, 44100, Ferrara, Italy
| | | | | | | |
Collapse
|
37
|
Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3. Cell Res 2009; 19:1079-89. [PMID: 19564891 DOI: 10.1038/cr.2009.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability of death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively kill a variety of cancer cells has been largely described, but one of the major concerns with the treatment is the occurrence of drug resistance and possible toxic side effects. Here, we report that TRAIL induces apoptosis in Jurkat and SUPT1 T cell lines and in human T-ALL blasts but not in healthy subject-derived peripheral blood mononuclear cells. In parallel, the treatment with TRAIL and Tyrphostin (AG-490), a selective Janus kinase 2 inhibitor, produces an evident enhancement of cytotoxicity, characterized by a significant inhibition of Stat3 phosphorylation compared to controls or to TRAIL alone-treated samples, and associated with a dramatic decrease of both cIAP-1 and cIAP-2 mRNA levels. Downregulation of cIAP-1 and cIAP-2 by specific small interference RNAs significantly amplifies TRAIL-reduced cytotoxicity. All together, these findings strongly indicate that cIAP-1 and cIAP-2 downregulation is a fundamental step in the signaling pathways mediating the combinatorial effect of TRAIL and AG-490 on T cell leukemia. These findings may help to open new routes for the development of less toxic pharmacological strategies in the treatment of patients affected by TRAIL-sensitive leukemias.
Collapse
|
38
|
Jin J, Liu H, Yang C, Li G, Liu X, Qian Q, Qian W. Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther 2009; 8:1387-97. [PMID: 19417152 DOI: 10.1158/1535-7163.mct-08-0962] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conditionally replicating adenoviruses (CRAd) have been under extensive investigations as anticancer agents. Previously, we found that ZD55, an adenovirus serotype 5-based CRAd, infected and killed the leukemia cells expressing coxsackie adenovirus receptor (CAR). However, majority of leukemic cells lack CAR expression on their cell surface, resulting in resistance to CRAd infection. In this study, we showed that SG235, a novel fiber chimeric CRAd that has Ad35 tropism, permitted CAR-independent cell entry, and this in turn produced selective cytopathic effects in a variety of human leukemic cells in vitro and in vivo. Moreover, SG235 expressing exogenous tumor necrosis factor-related apoptosis-inducing ligand (SG235-TRAIL) effectively induced apoptosis of leukemic cells via the activation of extrinsic and intrinsic apoptotic pathway and elicited a superior antileukemia activity compared with SG235. In addition, normal hematopoietic progenitors were resistant to the inhibitory activity of SG235 and SG235-TRAIL. Our data suggest that these novel oncolytic agents may serve as useful tools for the treatment of leukemia.
Collapse
Affiliation(s)
- Jie Jin
- Key Lab of Combined Multi-Organ Transplantation, Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Ministry of Public Health, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Sensitization of imatinib-resistant CML cells to TRAIL-induced apoptosis is mediated through down-regulation of Bcr-Abl as well as c-FLIP. Biochem J 2009; 420:73-81. [PMID: 19203346 DOI: 10.1042/bj20082131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Resistance to imatinib is commonly associated with reactivation of Bcr-Abl signalling. However, Bcr-Abl-independent signalling pathways may be activated and contributed to imatinib resistance in some CML (chronic myelogenous leukaemia) patients. We had isolated three imatinib-resistant K562/R1, R2 and R3 variants with gradual loss of Bcr-Abl from K562 cells to develop effective therapeutic strategies for imatinib-resistant CML. Interestingly, we found that these cells became highly sensitive to TRAIL (tumour necrosis factor-related apoptosis-inducing factor) in comparison with K562 cells showing high resistance to TRAIL. Treatment of K562/R3 cells with TRAIL resulted in activation of TRAIL receptor pathway by including caspase 8 activation, Bid cleavage, cytochrome c release and caspase 3 activation. These results were accompanied by down-regulation of c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-inhibitory protein} in imatinib-resistant K562 variants compared with K562 cells. Overexpression of c-FLIP in K562/R3 cells acquired TRAIL resistance and conversely, c-FLIP-silenced K562 cells became sensitive to TRAIL. Moreover, Bcr-Abl-silenced K562 cells showed down-regulation of c-FLIP and the subsequent overcome of TRAIL resistance. Taken together, our results demonstrated for the first time that the loss of Bcr-Abl in imatinib-resistant cells led to the down-regulation of c-FLIP and subsequent increase of TRAIL sensitivity, suggesting that TRAIL could be an effective strategy for the treatment of imatinib-resistant CML with loss of Bcr-Abl.
Collapse
|
40
|
Primitive quiescent CD34+ cells in chronic myeloid leukemia are targeted by in vitro expanded natural killer cells, which are functionally enhanced by bortezomib. Blood 2008; 113:875-82. [PMID: 18922853 DOI: 10.1182/blood-2008-05-158253] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Primitive quiescent CD34(+) chronic myeloid leukemia (CML) cells are more biologically resistant to tyrosine kinase inhibitors than their cycling counterparts; however, graft-versus-leukemia (GVL) effects after allogeneic stem cell transplantation (SCT) probably eliminate even these quiescent cells in long-term surviving CML transplant recipients. We studied the progeny of CD34(+) cells from CML patients before SCT, which were cultured 4 days in serum-free media with hematopoietic growth factors. BCR-ABL expression was similar in both cycling and quiescent noncycling CD34(+) populations. Quiescent CD34(+) cells from CML patients were less susceptible than their cycling CD34(+) and CD34(-) counterparts to lysis by natural killer (NK) cells from their HLA-identical sibling donors. Compared with cycling populations, quiescent CD34(+) CML cells had higher surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5. Bortezomib up-regulated TRAIL receptor expression on quiescent CD34(+) CML cells, and further enhanced their susceptibility to cytotoxicity by in vitro expanded donor NK cells. These results suggest that donor-derived NK cell-mediated GVL effects may be improved by sensitizing residual quiescent CML cells to NK-cell cytotoxicity after SCT. Such treatment, as an adjunct to donor lymphocyte infusions and pharmacologic therapy, may reduce the risk of relapse in CML patients who require treatment by SCT.
Collapse
|
41
|
Han H, Shin SW, Seo CY, Kwon HC, Han JY, Kim IH, Kwak JY, Park JI. 15-Deoxy-delta 12,14-prostaglandin J2 (15d-PGJ 2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis 2007; 12:2101-14. [PMID: 17786557 DOI: 10.1007/s10495-007-0124-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising new agent for the treatment of cancer, resistance to TRAIL remains a therapeutic challenge. Identifying agents to use in combination with TRAIL to enhance apoptosis in leukemia cells would increase the potential utility of this agent as a therapy for leukemia. Here, we show that 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), a natural ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can sensitize TRAIL-resistant leukemic HL-60 cells to TRAIL-induced apoptosis. The sensitization to TRAIL-induced apoptosis by 15d-PGJ2 was not blocked by a PPARgamma inhibitor (GW9662), suggesting a PPARgamma-independent mechanism. This process was accompanied by activation of caspase-8, caspase-9, and caspase-3 and was concomitant with Bid and PARP cleavage. We observed significant decreases in XIAP, Bcl-2, and c-FLIP after cotreatment with 15d-PGJ2 and TRAIL. We also observed the inhibition of Akt expression and phosphorylation by cotreatment with 15d-PGJ2 and TRAIL. Furthermore, inactivation of Akt by Akt inhibitor IV sensitized human leukemic HL-60 cells to TRAIL, indicating a key role for Akt inhibition in these events. Taken together, these findings indicate that 15d-PGJ2 may augment TRAIL-induced apoptosis in human leukemia cells by down-regulating the expression and phosphorylation of Akt.
Collapse
Affiliation(s)
- Hoon Han
- Department of Biochemistry, Dong-A University College of Medicine, 3 Ga 1, Dongdaesin-Dong, Seo-Gu, Busan 602-714, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Drosopoulos K, Pintzas A. Multifaceted targeting in cancer: the recent cell death players meet the usual oncogene suspects. Expert Opin Ther Targets 2007; 11:641-59. [PMID: 17465723 DOI: 10.1517/14728222.11.5.641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent complicated advances towards the blueprinting of the altered molecular networks that lie behind cancer development have paved the way for targeted therapy in cancer. This directed a significant part of the research community to the development of specialized targeted agents, many of which are already available or in clinical trials. The prospect of patient-tailored therapeutic strategies, although very close to becoming a reality also raises the level of complexity of the therapeutic approach. This review summarizes the functions, in vivo expression patterns and aberrations of factors presently targeted or representing potential targets by therapeutic agents, focusing on those implicated in death receptor-induced apoptosis. The authors overview the regulation of these factors and death receptor-induced apoptosis by classical oncogenes (e.g., RAS, MYC, HER2) and their effectors/regulators, most of which are also being targeted. In addition, the importance of orthologic systemic approaches in future patient-tailored therapies are discussed.
Collapse
Affiliation(s)
- Konstantinos Drosopoulos
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | |
Collapse
|
43
|
Tanaka H, Ito T, Kyo T, Kimura A. Treatment with IFNalpha in vivo up-regulates serum-soluble TNF-related apoptosis inducing ligand (sTRAIL) levels and TRAIL mRNA expressions in neutrophils in chronic myelogenous leukemia patients. Eur J Haematol 2007; 78:389-98. [PMID: 17432976 DOI: 10.1111/j.1600-0609.2007.00834.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an interferon alpha (IFNalpha)-induced, apoptosis-inducing molecule. TRAIL could be one of the reagents for therapeutic use in combination with imatinib in chronic myeloid leukemia (CML). Here we examined serum-soluble TRAIL (sTRAIL) levels in CML patients either before or during therapies with IFNalpha or imatinib. In untreated CML patients, serum sTRAIL was detectable and the levels were substantially comparable with those in healthy donors. sTRAIL levels significantly increased in patients during IFNalpha therapy, but not at all in patients during imatinib therapy. TRAIL mRNA expressions in neutrophils in CML patients undergoing IFNalpha therapy was significantly elevated when compared with those in patients prior to therapy. TRAIL mRNA expressions were also detectable in CD34-positive cells in bone marrow, and the levels increased in patients during IFNalpha therapy. In vitro IFNalpha stimulation of CML neutrophils increased intracellular TRAIL rather than cell-surface TRAIL, and the secretion of sTRAIL in the culture supernatant was observed. This sTRAIL secretion was augmented with lipopolysaccharide (LPS) stimulation only in IFNalpha-primed neutrophils, whereas LPS alone had no effect. Taken together, in vivo IFNalpha treatment provokes the release of sTRAIL when administered systematically in CML patients. The main source of the IFNalpha-induced serum sTRAIL may be neutrophils in CML, and sTRAIL may be one of the mechanisms of the anti-proliferative action of IFNalpha on CML. These findings give another rationale for the use of IFNalpha or recombinant sTRAIL in CML, and also implicate the potential importance of neutrophils in tumor immunosurveillance.
Collapse
Affiliation(s)
- Hideo Tanaka
- Department of Hematology and Oncology, Division of Clinical and Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | |
Collapse
|
44
|
Inukai T, Zhang X, Goto M, Hirose K, Uno K, Akahane K, Nemoto A, Goi K, Sato H, Takahashi K, Honna H, Kagami K, Nakamoto K, Yagita H, Okumura K, Koyama-Okazaki T, Nakazawa S, Sugita K. Resistance of infant leukemia with MLL rearrangement to tumor necrosis factor-related apoptosis-inducing ligand: a possible mechanism for poor sensitivity to antitumor immunity. Leukemia 2006; 20:2119-29. [PMID: 17066095 DOI: 10.1038/sj.leu.2404429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant cells generally acquire some immune escape mechanisms for clonal expansion. Immune escape mechanisms also contribute to the failure of graft-versus-leukemia (GVL) effect after allogeneic hematopoietic stem cell transplantation (allo-SCT). Infant leukemias with mixed-lineage leukemia (MLL) rearrangement have a remarkably short latency, and GVL effect after allo-SCT has not been clearly evidenced in these leukemias. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and FasL-mediated cytotoxic pathways play important roles in cytotoxic T-lymphocyte- and natural killer cell-mediated antitumor immunity and optimal GVL activity. We investigated the in vitro sensitivity of MLL-rearranged acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML) cells to TRAIL- and FasL-mediated cytotoxicity. Most of cell lines and primary leukemia cells were highly resistant to TRAIL primarily owing to low cell-surface expression of death receptors in ALL and simultaneous expression of decoy receptors in AML. Nearly half of cell lines and majority of primary leukemia cells showed low sensitivity to FasL. These results suggest that resistance to death-inducing ligands, particularly to TRAIL, could be one of the mechanisms for a rapid clonal expansion and a poor sensitivity to the GVL effect in infant leukemias with MLL rearrangement.
Collapse
Affiliation(s)
- T Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Saha A, Chatterjee SK, Foon KA, Bhattacharya-Chatterjee M. Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen. Immunology 2006; 118:483-96. [PMID: 16895556 PMCID: PMC1782317 DOI: 10.1111/j.1365-2567.2006.02391.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
Collapse
Affiliation(s)
- Asim Saha
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH45267, USA
| | | | | | | |
Collapse
|
46
|
Hara K, Okamoto M, Aki T, Yagita H, Tanaka H, Mizukami Y, Nakamura H, Tomoda A, Hamasaki N, Kang D. Synergistic enhancement of TRAIL- and tumor necrosis factor alpha-induced cell death by a phenoxazine derivative. Mol Cancer Ther 2005; 4:1121-7. [PMID: 16020670 DOI: 10.1158/1535-7163.mct-05-0067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Amino-4,4alpha-dihydro-4alpha,7-dimethyl-3H-phenoxazine-3-one (Phx-1) has been developed as a novel phenoxazine derivative having an anticancer activity on a variety of cancer cell lines as well as transplanted tumors in mice with minimal toxicity to normal cells. We examined the effects of Phx-1 on Jurkat cells, a human T cell line. Phx-1 inhibited proliferation of the cells in a dose-dependent manner but hardly induced cell death, suggesting that Phx-1 acts primarily as an antiproliferative reagent but not as a cytocidal drug. Phx-1 enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic cell death about 100-fold. Tumor necrosis factor alpha, which alone does not induce cell death of Jurkat cells, caused apoptosis in combination with Phx-1. These enhancements of cell death were not due to up-regulation of the death receptors. Phx-1 decreased serum-induced phosphorylation of Akt, a kinase involved in cell proliferation and survival, and inhibited complex III of mitochondrial respiratory chain. Considering that both TRAIL and Phx-1 have only marginal cytotoxicity to most normal cells, Phx-1 may provide an ideal combination for cancer therapy with TRAIL.
Collapse
Affiliation(s)
- Keiichi Hara
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Schetelig J, Kiani A, Schmitz M, Ehninger G, Bornhäuser M. T cell-mediated graft-versus-leukemia reactions after allogeneic stem cell transplantation. Cancer Immunol Immunother 2005; 54:1043-58. [PMID: 15887014 PMCID: PMC11032795 DOI: 10.1007/s00262-005-0681-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation represents the only curative approach for many hematological malignancies. During the last years the impact of the conditioning regimen has been re-assessed. With the advent of reduced-intensity conditioning the paradigm has changed from cytoreduction executed by high-dose radio-chemotherapy to immunological surveillance of leukemia by donor cells. Distinct subsets of T cells and NK cells contribute to graft-versus-leukemia reactions. So far, cytotoxic T lymphocytes are the mainstay of allogeneic immunotherapy. Here, we summarise the current knowledge of T cell-mediated graft-versus-leukemia reactions and present results from pre-clinical and clinical studies of T cell-based adoptive immunotherapy. We address the issues of feasibility and specificity of adoptive immunotransfer from a clinical point of view and discuss the prerequisites for successful clinical applications. Finally, the prospects for immunological research that have evolved with the increasing use of reduced-intensity conditioning and allogeneic stem cell transplantation are highlighted.
Collapse
Affiliation(s)
- Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
48
|
Morley SJ, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Differ 2005; 12:571-84. [PMID: 15900314 DOI: 10.1038/sj.cdd.4401591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have identified several mechanistic links between the regulation of translation and the process of apoptosis. Rates of protein synthesis are controlled by a wide range of agents that induce cell death, and in many instances, the changes that occur to the translational machinery precede overt apoptosis and loss of cell viability. The two principal ways in which factors required for translational activity are modified prior to and during apoptosis involve (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. In this review, we summarise the principal targets for such regulation, with particular emphasis on polypeptide chain initiation factors eIF2 and eIF4G and the eIF4E-binding proteins. We indicate how the functions of these factors and of other proteins with which they interact may be altered as a result of activation of apoptosis and we discuss the potential significance of such changes for translational control and cell growth regulation.
Collapse
Affiliation(s)
- S J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
49
|
Abstract
The treatment of chronic myeloid leukemia has changed dramatically in the last few years. Stem-cell transplantation and the use of interferon alfa had already offered the possibility of complete and durable cytogenetic responses, improving the survival over that expected with conventional chemotherapy. The introduction of imatinib mesylate has started the era of molecular therapy with remarkable results including complete cytogenetic responses in up to 90% of patients and major molecular responses in most. However, some patients, particularly those treated in the advanced stages, may develop resistance to imatinib. Thus there has been interest in developing new agents that would not only help patients for whom imatinib is ineffective or intolerable, but that could also be combined with the intention of eliminating all evidence of disease. Several approaches are being pursued. These include new and more potent tyrosine kinase inhibitors that may not be affected by the most common mutations seen in the clinic. Some of these agents also inhibit Src-related kinases that may play a role in the development of resistance to imatinib. Other agents are directed at downstream or alternative pathways in leukemic cells, exploring potential synergy with imatinib. Another approach is to pursue an immune modulation that might eliminate small amounts of residual disease. Many of these agents are already showing promising results in the clinic. This manuscript reviews some of these agents, particularly those for which clinical data are already available.
Collapse
MESH Headings
- Benzamides
- Cancer Vaccines/administration & dosage
- Clinical Trials as Topic
- Combined Modality Therapy
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Delivery Systems
- Drug Therapy, Combination
- Female
- Hematopoietic Stem Cell Transplantation/methods
- Humans
- Imatinib Mesylate
- Interferon-alpha/administration & dosage
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Piperazines/administration & dosage
- Prognosis
- Pyrimidines/administration & dosage
- Sensitivity and Specificity
- Severity of Illness Index
- Survival Analysis
Collapse
Affiliation(s)
- Jorge Cortes
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Liu LG, Tanaka H, Ito K, Ito T, Sultana TA, Kyo T, Kimura A. Absence of gene mutation in TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2) in chronic myelogenous leukemia and myelodysplastic syndrome, and analysis of mRNA Expressions of TRAIL and TRAIL-related genes in chronic myelogenous leukemia. Acta Haematol 2005; 113:113-23. [PMID: 15802890 DOI: 10.1159/000083449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/26/2004] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an interferon (IFN)-induced molecule with apoptotic activity. We examined gene mutations in the death domains of TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2), and in the TRAIL gene promoter in 46 chronic myelogenous leukemia (CML) patients. In 23 of the 46 patients, all the coding regions of TRAIL-R2 were also examined. However, no mutation or loss of heterozygosity was found. Furthermore, no mutation in the death domains of TRAIL-R1 and TRAIL-R2 genes, which causes amino acid change, was found in 18 myelodysplastic syndrome (MDS) patients. Ribonuclease protection assay (RPA) and real-time quantitative polymerase chain reaction using polymorphonuclear neutrophils of five new CML patients showed that the TRAIL mRNA expression was very low before in vitro IFN-alpha stimulation and markedly upregulated after IFN-alpha stimulation. FAS mRNA was also upregulated with IFN-alpha stimulation but the fold induction was far lower than that of TRAIL mRNA. In addition, RPA revealed that the ratio of (TRAIL-R1 plus TRAIL-R2) to TRAIL-R3 was also increased after IFN-alpha stimulation. Taken together, gene mutations of TRAIL-R1, TRAIL-R2 are infrequent in patients with CML and MDS. And so is the TRAIL promoter for CML. These mutations seem unrelated to tumorigenesis, disease progression, and response to IFN-alpha therapy in CML. A markedly high induction of TRAIL mRNA by IFN-alpha may have some relevance to IFN-alpha action in CML patients.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Apoptosis Regulatory Proteins
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Loss of Heterozygosity/genetics
- Male
- Membrane Glycoproteins/genetics
- Middle Aged
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Open Reading Frames/genetics
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary/genetics
- RNA, Messenger/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Li-Gen Liu
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|