1
|
Wang Y, Liu Q, Liang S, Yao M, Zheng H, Hu D, Wang Y. Genetically predicted telomere length and the risk of 11 hematological diseases: a Mendelian randomization study. Aging (Albany NY) 2024; 16:4270-4281. [PMID: 38393686 PMCID: PMC10968687 DOI: 10.18632/aging.205583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shibing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Dratwa M, Łacina P, Butrym A, Porzuczek D, Mazur G, Bogunia-Kubik K. Telomere length and hTERT genetic variants as potential prognostic markers in multiple myeloma. Sci Rep 2023; 13:15792. [PMID: 37737335 PMCID: PMC10517131 DOI: 10.1038/s41598-023-43141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
Telomere dysfunction is a notable event observed in many cancers contributing to their genomic instability. A major factor controlling telomere stability is the human telomerase reverse transcriptase catalytic subunit (hTERT). Telomere shortening has been observed in multiple myeloma (MM), a plasma cell malignancy with a complex and heterogeneous genetic background. In the present study, we aimed to analyse telomere length and hTERT genetic variants as potential markers of risk and survival in 251 MM patients. We found that telomere length was significantly shorter in MM patients than in healthy individuals, and patients with more advanced disease (stage III according to the International Staging System) had shorter telomeres than patients with less advanced disease. MM patients with hTERT allele rs2736100 T were characterized with significantly shorter progression-free survival (PFS). Moreover, allele rs2736100 T was also found to be less common in patients with disease progression in response to treatment. hTERT rs2853690 T was associated with higher haemoglobin blood levels and lower C-reactive protein. In conclusion, our results suggest that telomere length and hTERT genetic variability may affect MM development and can be potential prognostic markers in this disease.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, Wrocław, Poland
| | - Diana Porzuczek
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
3
|
Roy Choudhury S, Ashby C, Zhan F, van Rhee F. Epigenetic Deregulation of Telomere-Related Genes in Newly Diagnosed Multiple Myeloma Patients. Cancers (Basel) 2021; 13:cancers13246348. [PMID: 34944968 PMCID: PMC8699806 DOI: 10.3390/cancers13246348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/27/2022] Open
Abstract
High-risk Multiple Myeloma (MM) patients were found to maintain telomere length (TL), below the margin of short critical length, consistent with proactive overexpression of telomerase. Previously, DNA methylation has been shown as a determinant of telomere-related gene (TRG) expression and TL to assess risk in different types of cancer. We mapped genome-wide DNA methylation in a cohort of newly diagnosed MM (NDMM; n = 53) patients of major molecular subgroups, compared to age-matched healthy donors (n = 4). Differential methylation and expression at TRG-loci were analyzed in combination with overlapping chromatin marks and underlying DNA-sequences. We observed a strong correlation (R2 ≥ 0.5) between DNA methylation and expression amongst selective TRGs, such that demethylation at the promoters of DDX1 and TERF1 were associated to their oncogenic upregulation, while demethylation at the bodies of two key tumor suppressors ZNF208 and RAP1A led to downregulation of the genes. We demonstrated that TRG expression may be controlled by DNA methylation alone or in cooperation with chromatin modifications or CCCTC-binding factor at the regulatory regions. Additionally, we showed that hypomethylated DMRs of TRGs in NDMM are stabilized with G-quadruplex forming sequences, suggesting a crucial role of these epigenetically vulnerable loci in MM pathogenesis. We have identified a panel of five TRGs, which are epigenetically deregulated in NDMM patients and may serve as early detection biomarkers or therapeutic targets in the disease.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Pediatric Hematology-Oncology, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Correspondence: ; Tel.: +1-(501)-364-7531 or +1-(501)-364-2873
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (F.Z.); (F.v.R.)
| | - Frits van Rhee
- Myeloma Center, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (F.Z.); (F.v.R.)
| |
Collapse
|
4
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081969. [PMID: 33921898 PMCID: PMC8073772 DOI: 10.3390/cancers13081969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Multiple myeloma (MM) remains an incurable blood cancer. One of the current challenges in patient management is the risk assessment and subsequent treatment management for each patient with MM. Patients with an identical diagnosis may present very different disease courses and outcomes. This challenge of MM is a current focus of the scientific and medical communities. In our research, we have used an imaging approach to determine the risk of MM patients to progressive/aggressive disease. Using three-dimensional (3D) imaging of telomeres, the ends of chromosomes, we report that specific telomeric profiles are associated with aggressive disease. Abstract The prognosis of multiple myeloma (MM), an incurable B-cell malignancy, has significantly improved through the introduction of novel therapeutic modalities. Myeloma prognosis is essentially determined by cytogenetics, both at diagnosis and at disease progression. However, for a large cohort of patients, cytogenetic analysis is not always available. In addition, myeloma patients with favorable cytogenetics can display an aggressive clinical course. Therefore, it is necessary to develop additional prognostic and predictive markers for this disease to allow for patient risk stratification and personalized clinical decision-making. Genomic instability is a prominent characteristic in MM, and we have previously shown that the three-dimensional (3D) nuclear organization of telomeres is a marker of both genomic instability and genetic heterogeneity in myeloma. In this study, we compared in a longitudinal prospective study blindly the 3D telomeric profiles from bone marrow samples of 214 initially treatment-naïve patients with either monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or MM, with a minimum follow-up of 5 years. Here, we report distinctive 3D telomeric profiles correlating with disease aggressiveness and patient response to treatment in MM patients, and also distinctive 3D telomeric profiles for disease progression in smoldering multiple myeloma patients. In particular, lower average intensity (telomere length, below 13,500 arbitrary units) and increased number of telomere aggregates are associated with shorter survival and could be used as a prognostic factor to identify high-risk SMM and MM patients.
Collapse
|
6
|
Fragkiadaki P, Nikitovic D, Kalliantasi K, Sarandi E, Thanasoula M, Stivaktakis PD, Nepka C, Spandidos DA, Tosounidis T, Tsatsakis A. Telomere length and telomerase activity in osteoporosis and osteoarthritis. Exp Ther Med 2019; 19:1626-1632. [PMID: 32104213 PMCID: PMC7027092 DOI: 10.3892/etm.2019.8370] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are associated skeletal pathologies and have as a distinct feature the abnormal reconstruction of the subchondral bone. OA and OP have been characterized as age-related diseases and have been associated with telomere shortening and altered telomerase activity (TA). This review discusses the role of telomeres and telomerase in OA and OP pathologies and focuses on the usability of telomere length (TL) and the rate of telomere shortening as potential disease biomarkers. A number of studies have demonstrated that telomere shortening may contribute to OA and OP as an epigenetic factor. Therefore, it has been claimed that the measurement of TL of chondrocytes and/or peripheral blood cells may be an appropriate marker for the evaluation of the progression of these diseases. However, there is a need to be perform further studies with larger cohorts, with the aim of obtaining objective results and a better understanding of the association between TL, inflammation and aging, in order to provide further insight into the pathophysiology of degenerative joint diseases.
Collapse
Affiliation(s)
- Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.,Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Evangelia Sarandi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.,Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Maria Thanasoula
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Polychronis D Stivaktakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.,Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Charitini Nepka
- Department of Cytopathology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Theodoros Tosounidis
- Department of Orthopedics, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.,Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| |
Collapse
|
7
|
Aref S, Al Saeed A, El Menshawy N, Abdalla D, El Ashery M. Prognostic relevance of telomere length and telomerase reverse transcriptase variant (rs2242652) on the multiple myeloma patients. J Clin Lab Anal 2019; 34:e23133. [PMID: 31814184 PMCID: PMC7171320 DOI: 10.1002/jcla.23133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The search for enhancement of multiple myeloma prognostic tools is an area of current research. This study aimed to assess the clinicopathological impact of telomere length and telomerase reverse transcriptase (TERT) polymorphic variant, rs2242652, on multiple myeloma (MM) patients. METHODS Fifty MM patients and 50 healthy controls were included. Relative telomere length (RTL) and rs2242652 genotype polymorphic variants of TERT were analyzed using real-time polymerase chain reaction (PCR). The MM patients' group was categorized into stage I (n = 16); stage II (n = 12), and stage III (n = 22). RESULTS The median telomere length was significantly longer in MM patients' group (0.78) as compared to controls (0.43) (P = .001). Multivariate regression analysis revealed that MM patients with RTL < 0.5 had significant poor response for induction remission therapy with odds ratio 26.45. On the other hand, TERT genotyping analysis of rs2242652 revealed insignificant difference between cases and controls (P = .234), regarding to induction remission response. Survival analysis using Kaplan-Meier curve revealed that patients with shorter telomere length and those with TERT genotype GA had shorter overall survival. CONCLUSION Telomere length and TERT rs2242652 genotype polymorphism could be used for refining risk stratification of MM patients.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Mansoura, Egypt
| | - Alshaimaa Al Saeed
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Mansoura, Egypt
| | - Nadia El Menshawy
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Mansoura, Egypt
| | - Doaa Abdalla
- Hematology Unit, Mansoura University Oncology Center, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
8
|
Distinct Nuclear Organization of Telomeresand Centromeres in Monoclonal Gammopathyof Undetermined Significance and Multiple Myeloma. Cells 2019; 8:cells8070723. [PMID: 31311193 PMCID: PMC6678424 DOI: 10.3390/cells8070723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Both multiple myeloma (MM) and its precursor state of monoclonal gammopathy of undetermined significance (MGUS) are characterized by an infiltration of plasma cells into the bone marrow, but the mechanisms underlying the disease progression remain poorly understood. Previous research has indicated that 3D nuclear telomeric and centromeric organization may represent important structural indicators for numerous malignancies. Here we corroborate with previously noted differences in the 3D telomeric architecture and report that modifications in the nuclear distribution of centromeres may serve as a novel structural marker with potential to distinguish MM from MGUS. Our findings improve the current characterization of the two disease stages, providing two structural indicators that may become altered in the progression of MGUS to MM.
Collapse
|
9
|
Olbertova H, Plevova K, Stranska K, Pospisilova S. Telomere dynamics in adult hematological malignancies. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:1-7. [PMID: 30631211 DOI: 10.5507/bp.2018.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Telomeres are repetitive DNA sequences protecting physical ends of linear chromosomes against degradation and end-to-end chromosomal fusion. Telomeres shorten with each cell division, which regulates the cellular lifespan in somatic cells and limits their renewal capacity. Cancer cells are often able to overcome this physiological barrier and become immortal with unlimited replicative capacity. In this review, we present current knowledge on the role of telomeres in human aging with a focus on their behavior in hematological malignancies of adults. Associations of telomere length to age-related diseases and to the prevention of telomere shortening are also discussed.
Collapse
Affiliation(s)
- Helena Olbertova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Stranska
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Eskandari E, Hashemi M, Naderi M, Bahari G, Safdari V, Taheri M. Leukocyte Telomere Length Shortening, hTERT Genetic Polymorphisms and Risk of Childhood Acute Lymphoblastic Leukemia. Asian Pac J Cancer Prev 2018; 19:1515-1521. [PMID: 29936725 PMCID: PMC6103564 DOI: 10.22034/apjcp.2018.19.6.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Telomeres are involved in chromosomal stability, cellular immortality and tumorigenesis. Human
telomerase reverse transcriptase (TERT) is essential for the maintenance of telomere DNA length. Recently, a variable
tandem-repeats polymorphism, MNS16A, located in the downstream region of the TERT gene, was reported to have
an effect on TERT expression and telomerase activity. Previous studies have linked both relative telomere length
(RTL) and TERT variants with cancer. Therefore, we evaluated associations between RTL, TERT gene polymorphisms
(hTERT, rs2735940 C/T and MNS16A Ins/Del) and risk of childhood acute lymphoblastic leukemia (ALL) in an Iranian
population. Methods: RTL was determined by a multiplex quantitative PCR-based method, and variants of the hTERT,
rs2735940 C/T and MNS16A Ins/Del, were genotyped by amplification refractory mutation system PCR (ARMS-PCR),
and PCR, respectively. Results: Our results indicated that RTL was shorter in ALL patients (1.53±0.12) compared to
the control group (2.04±0.19) (P=0.029). However, no associations between hTERT gene variants or haplotypes and
the risk of childhood ALL were observed (P>0.05). Also hTERT polymorphisms were not associated with RTL or
patient clinicopathological characteristics, including age (P=0.304), sex (P=0.061) organomegally (P=0.212) CSF
involvement (P=0.966) or response to treatment (P=0.58). Conclusions: We found that telomere attrition may be
related to the pathogenesis of childhood ALL, irrespective to TERT variants.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | | | | | | | |
Collapse
|
11
|
Houshmand M, Yazdi N, Kazemi A, Atashi A, Hamidieh AA, Anjam Najemdini A, Mohammadi Pour M, Nikougoftar Zarif M. Long non-coding RNA PVT1 as a novel candidate for targeted therapy in hematologic malignancies. Int J Biochem Cell Biol 2018; 98:54-64. [PMID: 29510227 DOI: 10.1016/j.biocel.2018.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Cancerous cells show resistance to various forms of therapy, so applying up to the minute targeted therapy is crucial. For this purpose, long non-coding RNA PVT1 as shown by recent studies is an important oncogene that interacts with vital cellular signaling pathways and different proteins such as c-Myc, NOP2 and LATS2. Due to the enormous role of long non-coding RNAs in development of leukemias, we aimed to show the role of PVT1 knock-down on fate of different hematologic cell lines. owing to this matter, various experiments such as Real-time PCR, cell cycle analysis and apoptosis assay were performed. Meanwhile, proliferation rate by CFSE, protein expression of c-Myc and hTERT by western blot and flow cytometry analysis were investigated. Our results demonstrated that PVT1 knock-down results in c-Myc degradation, proliferation down-regulation, induction of apoptosis and G0/G1 arrest. Simultaneously, for the first time, we posited the relation between this oncogene with hTERT that reduced after PVT1 knock-down. Considering these results, long non-coding RNA PVT1 may be a potential option for targeted therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Mohammad Houshmand
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Narjes Yazdi
- Department of Molecular Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Kazemi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Anjam Najemdini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mohammadi Pour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
12
|
Abstract
Many risk factors have been firmly established for pancreatic cancer (PC), but the molecular processes by which known risk factors influence susceptibility to PC are not clear. There has been a recent upsurge of interest in the role of telomere length (TL), the protective DNA sequence repeats at chromosome ends, in pancreatic carcinogenesis. Given this heightened interest, we performed an in-depth, focused, and up-to-date review of the epidemiological evidence linking leukocyte TL (LTL) with PC risk. We searched MEDLINE, Embase, and the Cochrane Library databases for all published studies on LTL and PC risk, up to May 2017. Five studies were identified for review: 4 nested case-control studies and 1 retrospective case-control study. Two studies found opposite associations between LTL and PC risk: 1 found a dose-response positive association and the other found a dose-response inverse association. Two studies also found a "U-shaped" association, whereas another reported a weak nonlinear relationship. We offer potential reasons for the conflicting findings including variation in study design, biospecimen characteristics, and differences in interlaboratory measurements of TL. Future studies should carefully control for risk factors of PC that are associated also with telomere attrition and investigate the role of genetic variation in TL maintenance.
Collapse
|
13
|
Kumar R, Khan R, Gupta N, Seth T, Sharma A, Kalaivani M, Sharma A. Identifying the biomarker potential of telomerase activity and shelterin complex molecule, telomeric repeat binding factor 2 (TERF2), in multiple myeloma. Leuk Lymphoma 2017; 59:1677-1689. [PMID: 29043869 DOI: 10.1080/10428194.2017.1387915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomere length (TL) is maintained by telomere capping protein complex called shelterin complex. We studied the possible involvement and biomarker potential of shelterin complex molecules in naive multiple myeloma (MM) patients and controls. TL, relative telomerase activity (RTA), real-time PCR and Western blotting were performed in bonemarrow sample of 70 study subjects (patients = 50; controls = 20). Significantly lowered mean TL, increased RTA and higher mRNA expression of shelterin molecules were observed in patients, while PIN2/TERF1 interacting telomerase inhibitor 1 (PINX1) showed lower mRNA expression. Significantly increased protein expression of telomeric repeat binding factor 2 (TERF2), protection of telomeres 1, adrenocortical dysplasia homolog, Tankyrase 1 and telomere reverse transcriptase were observed in MM patients. Significant correlation was observed among genes and of genes with clinical parameters. In conclusion, our findings showed alteration of these molecules at mRNA and protein levels suggested their involvement in disease progression. Optimal sensitivity and specificity of TERF2 and RTA on receiver operating characteristics curve analysis and univariate analysis demonstrated their biomarkers potential in better prediction of disease course.
Collapse
Affiliation(s)
- Raman Kumar
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Rehan Khan
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Nidhi Gupta
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Tulika Seth
- b Department of Hematology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Atul Sharma
- c Department of Medical Oncology , BRA-IRCH, All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Mani Kalaivani
- d Department of Biostatistics , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Alpana Sharma
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| |
Collapse
|
14
|
Hyatt S, Jones RE, Heppel NH, Grimstead JW, Fegan C, Jackson GH, Hills R, Allan JM, Pratt G, Pepper C, Baird DM. Telomere length is a critical determinant for survival in multiple myeloma. Br J Haematol 2017; 178:94-98. [PMID: 28342200 DOI: 10.1111/bjh.14643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/31/2016] [Indexed: 01/25/2023]
Abstract
The variable clinical outcomes of Multiple Myeloma (MM) patients are incompletely defined by current prognostication tools. We examined the clinical utility of high-resolution telomere length analysis as a prognostic marker in MM. Cohort stratification, using a previously determined length threshold for telomere dysfunction, revealed that patients with short telomeres had a significantly shorter overall survival (P < 0·0001; HR = 3·4). Multivariate modelling using forward selection identified International Staging System (ISS) stage as the most important prognostic factor, followed by age and telomere length. Importantly, each ISS prognostic subset could be further risk-stratified according to telomere length, supporting the inclusion of this parameter as a refinement of the ISS.
Collapse
Affiliation(s)
- Sam Hyatt
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Rhiannon E Jones
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nicole H Heppel
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Julia W Grimstead
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Chris Fegan
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Graham H Jackson
- Department of Haematology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Robert Hills
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - James M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Guy Pratt
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Chris Pepper
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Duncan M Baird
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
16
|
Hwang SM, Kim SY, Kim JA, Park HS, Park SN, Im K, Kim K, Kim SM, Lee DS. Short telomere length and its correlation with gene mutations in myelodysplastic syndrome. J Hematol Oncol 2016; 9:62. [PMID: 27465399 PMCID: PMC4964031 DOI: 10.1186/s13045-016-0287-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
Background Telomere erosion can lead to genomic instability and cancer progression. It has been suggested that the shortest telomere, not the average telomere length (TL), is critical for cell viability. Some studies have shown shorter TL in myelodysplastic syndrome (MDS) patients but the critically short telomeres, the variability of TL within individual patient has not been evaluated. Thus, we aimed to investigate the TL of MDS patients and assessed the association of TL with recurrent genetic mutations in MDS. Methods We measured the TL of bone marrow nucleated cells for diagnostic samples at a single-cell level by quantitative fluorescence in situ hybridization (Q-FISH) for 58 MDS patients and analyzed the minimum, median, average, standard deviation, average of the 0th to 10th percentile TL within a patient, and the proportion of cells with TL that is shorter than the lowest 10th percentile of the normal control (NC). The correlations of TL to clinical parameters, cytogenetic results, and genetic mutations were assessed. Results MDS patients showed eroded telomeres and narrow distribution compared to the NC (P < 0.001, P = 0.018, respectively). Patients with mutation showed significantly lesser cells with short TL, below the lowest 10th percentile of the NC (P = 0.017), but no differences in TL were found according to mutations/cytogenetic abnormalities except for CSF3R mutation. However, those patients with a high percentage (≥80 %) of cells with short TL showed poorer overall survival (P = 0.021), and this was an independent prognostic factor, along with TP53, U2AF1 mutation, and high BM blast count (P = 0.044, 0.001, 0.004, 0.012, respectively). Conclusions The shortest TL, which determines the fate of the cell, was significantly shorter, and higher burden of cells with short TL were found in MDS, which correlated with poor survival, suggesting the need to measure TL in single cells by Q-FISH. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0287-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jung Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee-Sue Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwantae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med 2016; 10:191-203. [PMID: 27185042 DOI: 10.1007/s11684-016-0450-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
The relationship between telomere length and cancer survival has been widely studied. To gain a deeper insight, we reviewed the published studies. A total of 29 studies evaluated telomere length in the peripheral blood; 22 studies evaluated telomere length in the tumor tissue. First, in the peripheral blood studies, for solid tumor patients with shortened telomere length, the combined hazard ratios (HRs) for mortality and tumor progression were 1.21 (95%CI, 1.10-1.32) and 1.71 (95%CI, 1.37-2.13), respectively. Meanwhile, in hematology malignancy, the combined HRs for mortality and tumor progression were 2.83 (95%CI, 2.14-3.74) and 2.65 (95%CI, 2.18-3.22), respectively. Second, in the studies that use tumor tissue, for patients with shortened telomeres, the combined HRs for mortality and tumor progression were 1.26 (95%CI, 0.95-1.66) and 1.65 (95%CI, 1.26-2.15), respectively. In the studies that calculate the telomere length ratios of tumor tissue to adjacent normal mucosa, for patients with lower telomere length ratios, the combined HRs were 0.66 (95%CI, 0.53-0.83) and 0.74 (95%CI, 0.41-1.32) for mortality and tumor progression, respectively. In conclusion, shortened telomere in peripheral blood and tumor tissue might indicate poor survival for cancer patients. However, by calculating the telomere length ratios of tumor tissue to adjacent normal mucosa, the lower ratio might indicate better survival.
Collapse
Affiliation(s)
- Xinsen Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing Pang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhixin Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanyan Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
18
|
Piscuoglio S, Ng CKY, Murray M, Burke KA, Edelweiss M, Geyer FC, Macedo GS, Inagaki A, Papanastasiou AD, Martelotto LG, Marchio C, Lim RS, Ioris RA, Nahar PK, De Bruijn I, Smyth L, Akram M, Ross D, Petrini JH, Norton L, Solit DB, Baselga J, Brogi E, Ladanyi M, Weigelt B, Reis-Filho JS. Massively parallel sequencing of phyllodes tumours of the breast reveals actionable mutations, and TERT promoter hotspot mutations and TERT gene amplification as likely drivers of progression. J Pathol 2016; 238:508-18. [PMID: 26832993 PMCID: PMC4962788 DOI: 10.1002/path.4672] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
Phyllodes tumours (PTs) are breast fibroepithelial lesions that are graded based on histological criteria as benign, borderline or malignant. PTs may recur locally. Borderline PTs and malignant PTs may metastasize to distant sites. Breast fibroepithelial lesions, including PTs and fibroadenomas, are characterized by recurrent MED12 exon 2 somatic mutations. We sought to define the repertoire of somatic genetic alterations in PTs and whether these may assist in the differential diagnosis of these lesions. We collected 100 fibroadenomas, 40 benign PTs, 14 borderline PTs and 22 malignant PTs; six, six and 13 benign, borderline and malignant PTs, respectively, and their matched normal tissue, were subjected to targeted massively parallel sequencing (MPS) using the MSK-IMPACT sequencing assay. Recurrent MED12 mutations were found in 56% of PTs; in addition, mutations affecting cancer genes (eg TP53, RB1, SETD2 and EGFR) were exclusively detected in borderline and malignant PTs. We found a novel recurrent clonal hotspot mutation in the TERT promoter (-124 C>T) in 52% and TERT gene amplification in 4% of PTs. Laser capture microdissection revealed that these mutations were restricted to the mesenchymal component of PTs. Sequencing analysis of the entire cohort revealed that the frequency of TERT alterations increased from benign (18%) to borderline (57%) and to malignant PTs (68%; p < 0.01), and TERT alterations were associated with increased levels of TERT mRNA (p < 0.001). No TERT alterations were observed in fibroadenomas. An analysis of TERT promoter sequencing and gene amplification distinguished PTs from fibroadenomas with a sensitivity and a positive predictive value of 100% (CI 95.38-100%) and 100% (CI 85.86-100%), respectively, and a sensitivity and a negative predictive value of 39% (CI 28.65-51.36%) and 68% (CI 60.21-75.78%), respectively. Our results suggest that TERT alterations may drive the progression of PTs, and may assist in the differential diagnosis between PTs and fibroadenomas. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa Murray
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathleen A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe C Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Gabriel S Macedo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akiko Inagaki
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasios D Papanastasiou
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Patras General Hospital, Patras, Greece
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caterina Marchio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rafael A Ioris
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pooja K Nahar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ino De Bruijn
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lillian Smyth
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Muzaffar Akram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Petrini
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Baselga
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Abstract
Multiple myeloma (MM) cell lines and primary tumor cells are addicted to the MYC oncoprotein for survival. Little is known, however, about how MYC expression is upregulated in MM cells. The mucin 1 C-terminal subunit (MUC1-C) is an oncogenic transmembrane protein that is aberrantly expressed in MM cell lines and primary tumor samples. The present studies demonstrate that targeting MUC1-C with silencing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 editing or with the GO-203 inhibitor is associated with downregulation of MYC messenger RNA and protein. The results show that MUC1-C occupies the MYC promoter and thereby activates the MYC gene by a β-catenin/transcription factor 4 (TCF4)-mediated mechanism. In this way, MUC1-C (1) increases β-catenin occupancy on the MYC promoter, (2) forms a complex with β-catenin and TCF4, and, in turn, (3) drives MYC transcription. Analysis of MM cells using quantitative real-time reverse transcription polymerase chain reaction arrays further demonstrated that silencing MUC1-C is associated with downregulation of MYC target genes, including CCND2, hTERT, and GCLC Analysis of microarray data sets further demonstrated that MUC1 levels positively correlate with MYC expression in MM progression and in primary cells from over 800 MM patients. These findings collectively provide convincing evidence that MUC1-C drives MYC expression in MM.
Collapse
|
20
|
Arons E, Zhou H, Edelman DC, Gomez A, Steinberg SM, Petersen D, Wang Y, Meltzer PS, Kreitman RJ. Impact of telomere length on survival in classic and variant hairy cell leukemia. Leuk Res 2015; 39:1360-6. [PMID: 26520623 DOI: 10.1016/j.leukres.2015.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 11/19/2022]
Abstract
Telomeres, which protect the ends of chromosomes, are shortened in several hematologic malignancies, often with adverse prognostic implications, but their effect on prognosis of classic and variant hairy cell leukemia (HCL and HCLv) has not been reported. HCL/HCLv genomic DNA from 46 patients was studied by PCR to determine the ratio of telomere to single copy gene number (T/S). T/S was unrelated to diagnosis of HCL or HCLv (p=0.27), but shorter T/S was associated with unmutated immunoglobulin rearrangements (p=0.033) and age above the median at diagnosis (p=0.017). Low T/S was associated with shorter overall survival from diagnosis (OS), particularly T/S <0.655 (p=0.0064, adjusted p=0.019). Shorter OS was also associated with presence of unmutated (p<0.0001) or IGHV4-34+ (p<0.0001) rearrangements, or increasing age (p=0.0002). Multivariable analysis with Cox modeling showed that short T/S along with either unmutated or IGHV4-34+ rearrangements remained associated with reduced OS (p=0.0071, p=0.0024, respectively) after age adjustment. While T/S is relatively long in HCL and the disease usually indolent with excellent survival, shortened telomeres in HCL/HCLv are associated with decreased survival. Shortened T/S could represent a risk factor needing further investigation/intervention to determine if non-chemotherapy treatment options, in addition to or instead of chemotherapy, might be particularly useful.
Collapse
MESH Headings
- Age Factors
- Antimetabolites, Antineoplastic/therapeutic use
- Combined Modality Therapy
- DNA, Neoplasm/genetics
- Drug Resistance, Neoplasm
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunophenotyping
- Kaplan-Meier Estimate
- Leukemia, Hairy Cell/classification
- Leukemia, Hairy Cell/drug therapy
- Leukemia, Hairy Cell/genetics
- Leukemia, Hairy Cell/mortality
- Leukemia, Hairy Cell/surgery
- Leukocyte Count
- Male
- Middle Aged
- Prognosis
- Proportional Hazards Models
- Risk Factors
- Splenectomy
- Telomere/ultrastructure
- Telomere Homeostasis
- Telomere Shortening
Collapse
Affiliation(s)
- Evgeny Arons
- Laboratory of Molecular Biology, National Cancer Institute (NCI), NIH, United States
| | - Hong Zhou
- Laboratory of Molecular Biology, National Cancer Institute (NCI), NIH, United States
| | | | | | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, 37/5124b, Bethesda, MD 20892-4255, United States
| | | | | | | | - Robert J Kreitman
- Laboratory of Molecular Biology, National Cancer Institute (NCI), NIH, United States.
| |
Collapse
|
21
|
Panero J, Stella F, Schutz N, Fantl DB, Slavutsky I. Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders. PLoS One 2015; 10:e0137972. [PMID: 26366868 PMCID: PMC4569359 DOI: 10.1371/journal.pone.0137972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022] Open
Abstract
Telomerase, shelterin proteins and various interacting factors, named non-shelterin proteins, are involved in the regulation of telomere length (TL). Altered expression of any of these telomere-associated genes can lead to telomere dysfunction, causing genomic instability and disease development. In this study, we investigated the expression profile of a set of non-shelterin genes involved in essential processes such as replication (RPA1), DNA damage repair pathways (MRE11-RAD50-NBS1) and stabilization of telomerase complex (DKC1), in 35 patients with monoclonal gammopathy of undetermined significance (MGUS) and 40 cases with multiple myeloma (MM). Results were correlated with hTERT expression, TL and clinical parameters. Overall, a significant increase in DKC1, RAD50, MRE11, NBS1 and RPA1 expression along with an upregulation of hTERT in MM compared with MGUS was observed (p≤0.032). Interestingly, in both entities high mRNA levels of non-shelterin genes were associated with short TLs and increased hTERT expression. Significant differences were observed for DKC1 in MM (p ≤0.026), suggesting an important role for this gene in the maintenance of short telomeres by telomerase in myeloma plasma cells. With regard to clinical associations, we observed a significant increase in DKC1, RAD50, MRE11 and RPA1 expression in MM cases with high bone marrow infiltration (p≤0.03) and a tendency towards cases with advanced ISS stage, providing the first evidence of non-shelterin genes associated to risk factors in MM. Taken together, our findings bring new insights into the intricate mechanisms by which telomere-associated proteins collaborate in the maintenance of plasma cells immortalization and suggest a role for the upregulation of these genes in the progression of the disease.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
- * E-mail:
| | - Flavia Stella
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Natalia Schutz
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
22
|
Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia. Tumour Biol 2015; 36:8317-24. [DOI: 10.1007/s13277-015-3556-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
|
23
|
Hosnijeh FS, Matullo G, Russo A, Guarrera S, Modica F, Nieters A, Overvad K, Guldberg P, Tjønneland A, Canzian F, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Trichopoulos D, Tagliabue G, Tumino R, Panico S, Palli D, Olsen KS, Weiderpass E, Dorronsoro M, Ardanaz E, Chirlaque MD, Sánchez MJ, Quirós JR, Venceslá A, Melin B, Johansson AS, Nilsson P, Borgquist S, Peeters PH, Onland-Moret NC, Bueno-de-Mesquita HB, Travis RC, Khaw KT, Wareham N, Brennan P, Ferrari P, Gunter MJ, Vineis P, Vermeulen R. Prediagnostic telomere length and risk of B-cell lymphoma-Results from the EPIC cohort study. Int J Cancer 2014; 135:2910-7. [PMID: 24771230 DOI: 10.1002/ijc.28934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/27/2014] [Indexed: 11/08/2022]
Abstract
Recent epidemiological investigations have reported on the association between telomere length (TL) and a number of malignancies, including B-cell lymphoma (BCL). The reported results for BCLs are however inconsistent. We carried out a nested case-control study to determine whether TL is associated with future risk of BCL. Using quantitative polymerase chain reaction, the relative TL (i.e. the ratio of telomere repeat copy number to single gene copy number) was measured in mononuclear cell DNA of prediagnostic peripheral blood samples of 464 lymphoma cases and 464 matched controls (median time between blood collection and diagnosis, 4.6 years). Conditional logistic regression was used to analyze the association between TL and the risk of developing lymphoma and histologic subtypes. TL was significantly longer in cases compared to controls (p = 0.01). Multivariable models showed a significantly increased risk of BCL [odds ratio (OR) = 1.66, 1.80 and 3.20 for quartiles 2-4, respectively, p-trend = 0.001], diffuse large B-cell lymphoma (DLBCL) (OR = 1.20, 2.48 and 2.36 for quartiles 2-4, respectively, p-trend = 0.03) and follicular lymphoma (FL) (OR = 1.39, 1.90 and 2.69 for quartiles 2-4, respectively, p-trend = 0.02) with increasing TL. This study suggests an association between longer leucocyte TL and increased risk of BCL which was most pronounced for DLBCL and FL.
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands; Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A retrospective examination of mean relative telomere length in the Tasmanian Familial Hematological Malignancies Study. Oncol Rep 2014; 33:25-32. [PMID: 25351806 PMCID: PMC4254675 DOI: 10.3892/or.2014.3568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/02/2014] [Indexed: 12/27/2022] Open
Abstract
Telomere length has a biological link to cancer, with excessive telomere shortening leading to genetic instability and resultant malignant transformation. Telomere length is heritable and genetic variants determining telomere length have been identified. Telomere biology has been implicated in the development of hematological malignancies (HMs), therefore, closer examination of telomere length in HMs may provide further insight into genetic etiology of disease development and support for telomere length as a prognostic factor in HMs. We retrospectively examined mean relative telomere length in the Tasmanian Familial Hematological Malignancies Study using a quantitative PCR method on genomic DNA from peripheral blood samples. Fifty-five familial HM cases, 191 unaffected relatives of familial HM cases and 75 non-familial HM cases were compared with 758 population controls. Variance components modeling was employed to identify factors influencing variation in telomere length. Overall, HM cases had shorter mean relative telomere length (P=2.9×10−6) and this was observed across both familial and non-familial HM cases (P=2.2×10−4 and 2.2×10−5, respectively) as well as additional subgroupings of HM cases according to broad subtypes. Mean relative telomere length was also significantly heritable (62.6%; P=4.7×10−5) in the HM families in the present study. We present new evidence of significantly shorter mean relative telomere length in both familial and non-familial HM cases from the same population adding further support to the potential use of telomere length as a prognostic factor in HMs. Whether telomere shortening is the cause of or the result of HMs is yet to be determined, but as telomere length was found to be highly heritable in our HM families this suggests that genetics driving the variation in telomere length is related to HM disease risk.
Collapse
|
25
|
Absolute qPCR for Measuring Telomere Length in Bone Marrow Samples of Plasma Cell Disorders. Mol Biotechnol 2014; 57:155-9. [DOI: 10.1007/s12033-014-9811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Russo A, Modica F, Guarrera S, Fiorito G, Pardini B, Viberti C, Allione A, Critelli R, Bosio A, Casetta G, Cucchiarale G, Destefanis P, Gontero P, Rolle L, Zitella A, Fontana D, Frea B, Vineis P, Sacerdote C, Matullo G. Shorter Leukocyte Telomere Length Is Independently Associated with Poor Survival in Patients with Bladder Cancer. Cancer Epidemiol Biomarkers Prev 2014; 23:2439-46. [DOI: 10.1158/1055-9965.epi-14-0228] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Petkova R, Chicheva Z, Chakarov S. Measuring Telomere Length—From Ends to Means. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Díaz de la Guardia R, Catalina P, Panero J, Elosua C, Pulgarin A, López MB, Ayllón V, Ligero G, Slavutsky I, Leone PE. Expression profile of telomere-associated genes in multiple myeloma. J Cell Mol Med 2014; 16:3009-21. [PMID: 22947336 PMCID: PMC4393729 DOI: 10.1111/j.1582-4934.2012.01628.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
To further contribute to the understanding of multiple myeloma, we have focused our research interests on the mechanisms by which tumour plasma cells have a higher survival rate than normal plasma cells. In this article, we study the expression profile of genes involved in the regulation and protection of telomere length, telomerase activity and apoptosis in samples from patients with monoclonal gammopathy of undetermined significance, smouldering multiple myeloma, multiple myeloma (MM) and plasma cell leukaemia (PCL), as well as several human myeloma cell lines (HMCLs). Using conventional cytogenetic and fluorescence in situ hybridization studies, we identified a high number of telomeric associations (TAs). Moreover, telomere length measurements by terminal restriction fragment (TRF) assay showed a shorter mean TRF peak value, with a consistent correlation with the number of TAs. Using gene expression arrays and quantitative PCR we identified the hTERT gene together with 16 other genes directly involved in telomere length maintenance: HSPA9, KRAS, RB1, members of the Small nucleolar ribonucleoproteins family, A/B subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins, and 14-3-3 family. The expression levels of these genes were even higher than those in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), which have unlimited proliferation capacity. In conclusion, the gene signature suggests that MM tumour cells are able to maintain stable short telomere lengths without exceeding the short critical length, allowing cell divisions to continue. We propose that this could be a mechanism contributing to MM tumour cells expansion in the bone marrow (BM).
Collapse
Affiliation(s)
- Rafael Díaz de la Guardia
- Andalusian Public Health System Biobank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim M, Oh B, Kim TY, Yoon SS, Kim SY, Hwang SM, Lee DS. Elevated telomerase activity in essential thrombocythemia with extreme thrombocytosis. Clin Biochem 2014; 47:389-92. [PMID: 24440836 DOI: 10.1016/j.clinbiochem.2014.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/12/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We performed a comparative analysis of telomerase activity (TA) in patients with myeloproliferative neoplasm (MPN) and myelodysplastic syndrome (MDS). The relationships between TA and known prognostic factors were also analyzed. MATERIALS AND METHODS A telomeric repeat amplification protocol was performed with bone marrow hematopoietic cells from 96 normal controls, 44 MPNs, and 40 MDSs. RESULT TA (measured as molecules/reaction) showed no correlation with age in the control group (R(2)=0.0057, p=0.464). MPN showed elevated TA compared with controls (15,537.57 vs. 7775.44, p=0.020). Patients with essential thrombocythemia showed markedly elevated TA (22,688.56, p=0.030), particularly in cases with extreme thrombocytosis versus those without extreme thrombocytosis (34,522.19 vs. 9375.71, p=0.041). MDS patients showed a TA value of 7578.50. CONCLUSION There was no association between age and TA in bone marrow hematopoietic cells. TA was elevated in MPN but borderline in MDS, probably because of differences in the nature of the diseases. Elevated TA in patients with essential thrombocythemia, especially those with extreme thrombocytosis, suggests that an anti-telomerase strategy could be beneficial in the prevention of thrombotic complications.
Collapse
Affiliation(s)
- Miyoung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, China
| | - Bora Oh
- Department of Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Tae Young Kim
- Department of Tumor Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Soon Lee
- Department of Tumor Biology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Panero J, Stanganelli C, Arbelbide J, Fantl DB, Kohan D, García Rivello H, Rabinovich GA, Slavutsky I. Expression profile of shelterin components in plasma cell disorders. Clinical significance of POT1 overexpression. Blood Cells Mol Dis 2013; 52:134-9. [PMID: 24239198 DOI: 10.1016/j.bcmd.2013.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 02/08/2023]
Abstract
The core complex of telomere-associated proteins, named the shelterin complex, plays a critical role in telomere protection and telomere length (TL) homeostasis. In this study, we have explored changes in the expression of telomere-associated genes POT1, TIN2, RAP1 and TPP1, in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). A total of 154 patients: 70 with MGUS and 84 with MM were studied. Real-time quantitative PCR was used to quantify gene expression. TL was evaluated by Terminal Restriction Fragments. Our data showed increased expression of POT1, TPP1, TIN2 and RAP1 in MM with respect to MGUS patients, with significant differences for POT1 gene (p=0.002). In MM, the correlation of gene expression profiles with clinical characteristics highlighted POT1 for its significant association with advanced clinical stages, high calcium and β2-microglobulin levels (p=0.02) and bone lesions (p=0.009). In multivariate analysis, POT1 expression (p=0.04) was a significant independent prognostic factor for overall survival as well as the staging system (ISS) (p<0.02). Our findings suggest for the first time the participation of POT1 in the transformation process from MGUS to MM, and provide evidence of this gene as a useful prognostic factor in MM as well as a possible molecular target to design new therapeutic strategies.
Collapse
Affiliation(s)
- Julieta Panero
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jorge Arbelbide
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dorotea Beatriz Fantl
- Departamento de Clínica Médica, Sección Hematología, Hospital Italiano de Buenos Aires, Argentina
| | - Dana Kohan
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Argentina
| | | | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Pallis AG, Hatse S, Brouwers B, Pawelec G, Falandry C, Wedding U, Lago LD, Repetto L, Ring A, Wildiers H. Evaluating the physiological reserves of older patients with cancer: the value of potential biomarkers of aging? J Geriatr Oncol 2013; 5:204-18. [PMID: 24495695 DOI: 10.1016/j.jgo.2013.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/19/2022]
Abstract
Aging of an individual entails a progressive decline of functional reserves and loss of homeostasis that eventually lead to mortality. This process is highly individualized and is influenced by multiple genetic, epigenetic and environmental factors. This individualization and the diversity of factors influencing aging result in a significant heterogeneity among people with the same chronological age, representing a major challenge in daily oncology practice. Thus, many factors other than mere chronological age will contribute to treatment tolerance and outcome in the older patients with cancer. Clinical/comprehensive geriatric assessment can provide information on the general health status of individuals, but is far from perfect as a prognostic/predictive tool for individual patients. On the other hand, aging can also be assessed in terms of biological changes in certain tissues like the blood compartment which result from adaptive alterations due to past history of exposures, as well as intrinsic aging processes. There are major signs of 'aging' in lymphocytes (e.g. lymphocyte subset distribution, telomere length, p16INK4A expression), and also in (inflammatory) cytokine expression and gene expression patterns. These result from a combination of the above two processes, overlaying genetic predispositions which contribute significantly to the aging phenotype. These potential "aging biomarkers" might provide additional prognostic/predictive information supplementing clinical evaluation. The purpose of the current paper is to describe the most relevant potential "aging biomarkers" (markers that indicate the biological functional age of patients) which focus on the biological background, the (limited) available clinical data, and technical challenges. Despite their great potential interest, there is a need for much more (validated) clinical data before these biomarkers could be used in a routine clinical setting. This manuscript tries to provide a guideline on how these markers can be integrated in future research aimed at providing such data.
Collapse
Affiliation(s)
- Athanasios G Pallis
- European Organization for Research and Treatment of Cancer Elderly Task Force, Brussels, Belgium.
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Barbara Brouwers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Graham Pawelec
- Center for Medical Research, ZMF, University of Tübingen Medical School, Waldhörnlestr. 22, D-72072 Tübingen, Germany
| | - Claire Falandry
- Geriatrics Unit, Lyon Sud University Hospital, Pierre-Benite, France; Laboratoire de Biologie Moléculaire de la Cellule, Lyon Sud Medicine Faculty, Lyon University, Lyon, France
| | - Ulrich Wedding
- Jena University Hospital, Department of Internal Medicine, Erlanger Allee 101, 07747 Jena, Germany
| | - Lissandra Dal Lago
- Medicine Department, Institut Jules Bordet, Université Libre de Bruxelles, Belgium
| | - Lazzaro Repetto
- Dipartimento Oncologia, Ospedale di Sanremo, Via G Borea, 56, 18038 Sanremo, Italy
| | | | - Hans Wildiers
- European Organization for Research and Treatment of Cancer Elderly Task Force, Brussels, Belgium; Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
32
|
Allogeneic Stem Cell Transplantation and Targeted Immunotherapy for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13 Suppl 2:S330-48. [DOI: 10.1016/j.clml.2013.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022]
|
33
|
Svenson U, Grönlund E, Söderström I, Sitaram RT, Ljungberg B, Roos G. Telomere length in relation to immunological parameters in patients with renal cell carcinoma. PLoS One 2013; 8:e55543. [PMID: 23383336 PMCID: PMC3562315 DOI: 10.1371/journal.pone.0055543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/28/2012] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, telomere length (TL) has gained attention as a potential biomarker in cancer disease. We previously reported that long blood TL was associated with a poorer outcome in patients with breast cancer and renal cell carcinoma. Based on these findings, we hypothesized that certain immunological components may have an impact on TL dynamics in cancer patients. One aim of the present study was to investigate a possible association between serum cytokines and TL of peripheral blood cells, tumors and corresponding kidney cortex, in patients with clear cell renal cell carcinoma. For this purpose, a multiplex cytokine assay was used. Correlation analysis revealed significant positive correlations between tumor TL and peripheral levels of three cytokines (IL-7, IL-8 and IL-10). In a parallel patient group with various kidney tumors, TL was investigated in whole blood and in immune cell subsets in relation to peripheral levels of regulatory T cells (Tregs). A significant positive association was found between whole blood TL and Treg levels. However, the strongest correlation was found between Tregs and TL of the T lymphocyte fraction. Thus, patients with higher Treg levels displayed longer T cell telomeres, which might reflect a suppressed immune system with fewer cell divisions and hence less telomere shortening. These results are in line with our earlier observation that long blood TL is an unfavorable prognostic factor for cancer-specific survival. In summary, we here show that immunological components are associated with TL in patients with renal cell carcinoma, providing further insight into the field of telomere biology in cancer.
Collapse
Affiliation(s)
- Ulrika Svenson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Ingegerd Söderström
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Raviprakash T. Sitaram
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
34
|
Weiss C, Uziel O, Wolach O, Nordenberg J, Beery E, Bulvick S, Kanfer G, Cohen O, Ram R, Bakhanashvili M, Magen-Nativ H, Shilo N, Lahav M. Differential downregulation of telomerase activity by bortezomib in multiple myeloma cells-multiple regulatory pathways in vitro and ex vivo. Br J Cancer 2012; 107:1844-52. [PMID: 23169337 PMCID: PMC3504947 DOI: 10.1038/bjc.2012.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The importance of telomerase in multiple myeloma (MM) is well established; however, its response to bortezomib has not been addressed. METHODS The effect of bortezomib on telomerase activity and cell proliferation was evaluated in four MM cell lines and in myeloma cells obtained from eight patients. The mechanism of telomerase regulation on epigenetic, transcriptional, and post-translational levels was further assessed in two selected cell lines: ARP-1 and CAG. Clinical data were correlated with the laboratory findings. RESULTS Bortezomib downregulated telomerase activity and decreased proliferation in all cell lines and cells obtained from patients, albeit in two different patterns of kinetics. ARP-1 cells demonstrated higher and earlier sensitivity than CAG cells due to differential phosphorylation of hTERT by PKCα. Methylation of hTERT promoter was not affected. Transcription of hTERT was similarly inhibited in both lines by decreased binding of SP-1 and not of C-Myc and NFκB. The ex vivo results confirmed the in vitro findings and suggested existence of clinical relevance. CONCLUSION Bortezomib downregulates telomerase activity in MM cells both transcriptionally and post-translationally. MM cells, both in vitro and in patients, exhibit different sensitivity to the drug due to different post-translational response. The effect of bortezomib on telomerase activity may correlate with resistance to bortezomib in patients, suggesting its potential utility as a pre-treatment assessment.
Collapse
Affiliation(s)
- C Weiss
- Laniado Medical Center, Netanya, Israel
| | - O Uziel
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Wolach
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - J Nordenberg
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - E Beery
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - S Bulvick
- Laniado Medical Center, Netanya, Israel
| | - G Kanfer
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - O Cohen
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - R Ram
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Bakhanashvili
- Division of Infectious Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - H Magen-Nativ
- Institute of Hematology, Davidoff Cancer Center, Davidoff, Israel
| | - N Shilo
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| | - M Lahav
- Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
- Internal Department A, Beilinson Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Peetah-Tikva 49100, Israel
| |
Collapse
|
35
|
Novel strategies for immunotherapy in multiple myeloma: previous experience and future directions. Clin Dev Immunol 2012; 2012:753407. [PMID: 22649466 PMCID: PMC3357929 DOI: 10.1155/2012/753407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a life-threatening haematological malignancy for which standard therapy is inadequate. Autologous stem cell transplantation is a relatively effective treatment, but residual malignant sites may cause relapse. Allogeneic transplantation may result in durable responses due to antitumour immunity mediated by donor lymphocytes. However, morbidity and mortality related to graft-versus-host disease remain a challenge. Recent advances in understanding the interaction between the immune system of the patient and the malignant cells are influencing the design of clinically more efficient study protocols for MM.
Cellular immunotherapy using specific antigen-presenting cells (APCs), to overcome aspects of immune incompetence in MM patients, has received great attention, and numerous clinical trials have evaluated the potential for dendritic cell (DC) vaccines as a novel immunotherapeutic approach. This paper will summarize the data investigating aspects of immunity concerning MM, immunotherapy for patients with MM, and strategies, on the way, to target the plasma cell more selectively. We also include the MM antigens and their specific antibodies that are of potential use for MM humoral immunotherapy, because they have demonstrated the most promising preclinical results.
Collapse
|
36
|
Abstract
Observations in human tumours, as well as mouse models, have indicated that telomere dysfunction may be a key event driving genomic instability and disease progression in many solid tumour types. In this scenario, telomere shortening ultimately results in telomere dysfunction, fusion and genomic instability, creating the large-scale rearrangements that are characteristic of these tumours. It is now becoming apparent that this paradigm may also apply to haematological malignancies; indeed these conditions have provided some of the most convincing evidence of telomere dysfunction in any malignancy. Telomere length has been shown in several malignancies to provide clinically useful prognostic information, implicating telomere dysfunction in disease progression. In these malignancies extreme telomere shortening, telomere dysfunction and fusion have all been documented and correlate with the emergence of increased genomic complexity. Telomeres may therefore represent both a clinically useful prognostic tool and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Ceri H Jones
- Department of Haematology,School of Medicine, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
37
|
hTERT promoter methylation and telomere length in childhood acute lymphoblastic leukemia: associations with immunophenotype and cytogenetic subgroup. Exp Hematol 2011; 39:1144-51. [PMID: 21914494 DOI: 10.1016/j.exphem.2011.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 01/11/2023]
Abstract
Telomere maintenance, important for long-term cell survival and malignant transformation, is directed by a multitude of factors, including epigenetic mechanisms, and has been implicated in outcomes for patients with leukemia. In the present study, the objective was to investigate the biological and clinical significance of telomere length and promoter methylation of the human telomerase reverse transcriptase gene in childhood acute lymphoblastic leukemia. A cohort of 169 childhood acute lymphoblastic leukemias was investigated for telomere length, human telomerase reverse transcriptase gene promoter methylation status, genomic aberrations, immunophenotype, and clinical outcomes. Methylation of the core promoter of the human telomerase reverse transcriptase (hTERT) gene was demonstrated in 24% of diagnostic samples, with a significant difference between B-cell precursor (n = 130) and T-cell acute lymphoblastic leukemia (ALL) (n = 17) cases (18% and 72%, respectively; p < 0.001). No remission sample demonstrated hTERT promoter methylation (n = 40). Within the B-cell precursor group, t(12;21)(p13;q22) [ETV6/RUNX1] cases (n = 19) showed a much higher frequency of hTERT methylation than high-hyperdiploid (51-61 chromosomes) ALL (n = 44) (63% and 7%, respectively; p < 0.001). hTERT messenger RNA levels were negatively associated with methylation status and, in the t(12;21) group, methylated cases had shorter telomeres (p = 0.017). In low-risk B-cell precursor patients (n = 101), long telomeres indicated a worse prognosis. The collected data from the present study indicate that the telomere biology in childhood ALL has clinical implications and reflects molecular differences between diverse ALL subgroups.
Collapse
|
38
|
Hiyama E, Hiyama K. Telomerase detection in the diagnosis and prognosis of cancer. Cytotechnology 2011; 45:61-74. [PMID: 19003244 DOI: 10.1007/s10616-004-5126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/21/2004] [Indexed: 01/27/2023] Open
Abstract
Telomerase, a critical enzyme responsible 'for cellular immortality, is usually repressed in somatic cells except for lymphocytes and self-renewal cells, but is activated in approximately 85% of human cancer tissues. The human telomerase reverse transcriptase (hTERT) is the catalytic component of human telomerase. In cancers in which telomerase activation occurs at the early stages of the disease, telomerase activity and hTERT expression are useful markers for the detection of cancer cells. In other cancers in which telomerase becomes upregulated upon tumor progression, they are useful as prognostic indicators. However, careful attention should be paid to false-negative results caused by the instability of telomerase and of the hTERT mRNA and the presence of PCR inhibitors, as well as to false-positive results caused by the presence of alternatively spliced hTERT mRNA and normal cells with telomerase activity. Recently, methods for the in situ detection of the hTERT mRNA and protein have been developed. These methods should facilitate the unequivocal detection of cancer cells, even in tissues containing a background of normal telomerase-positive cells.
Collapse
Affiliation(s)
- Eiso Hiyama
- Natural Science Center for Basic Research and Development, RIRBM, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan,
| | | |
Collapse
|
39
|
Spanoudakis E, Bazdiara I, Pantelidou D, Kotsianidis I, Papadopoulos V, Margaritis D, Xanthopoulidis G, Moustakidis E, Mantzourani S, Bourikas G, Tsatalas C. Dynamics of telomere's length and telomerase activity in Philadelphia chromosome negative myeloproliferative neoplasms. Leuk Res 2011; 35:459-64. [PMID: 20828816 DOI: 10.1016/j.leukres.2010.07.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 11/25/2022]
Abstract
Telomere exhaustion and increased telomerase activity are associated with the acquisition of aggressive molecular events in a variety of haematological malignancies. In Philadelphia chromosome negative myeloproliferative neoplasms (Ph(neg)MPN's), telomere dynamics during clonal evolution of these diseases have not yet been fully elucidated. Herein we demonstrated that telomere shortening is a global phenomenon in Ph(neg)MPN's, irrespective of disease phenotype, treatment administration and JAK2V617F mutational status but the presence of additional cytogenetic abnormalities further affects them. Consistent with the above finding, TA was upregulated in CD34+ haemopoietic progenitors from almost all Ph(neg)MPN subgroups compared to healthy donors. Moreover, TL below the cut-off value of 27% could predict disease progression in Ph(neg)MPN patients (PFS at 5 years 39% vs 81%). Thus, TL emerges as a new prognostic marker in Ph(neg)MPN, reflecting probably the genetic instability of highly proliferating MPN clones.
Collapse
|
40
|
Lobetti-Bodoni C, Bernocco E, Genuardi E, Boccadoro M, Ladetto M. Telomeres and telomerase in normal and malignant B-cells. Hematol Oncol 2011; 28:157-67. [PMID: 20213664 DOI: 10.1002/hon.937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The telomeric checkpoint is emerging as a critical sensor of cellular damage, playing a major role in human aging and cancer development. In the meantime, telomere biology is rapidly evolving from a basic discipline to a translational branch, capable of providing major hints for biomarker development, risk assessment and targeted treatment of cancer. These advances have a number of implications in the biology of lymphoid tumours. Moreover, there is considerable interest in the potential role of telomeric dysfunction in the wide array of immunological abnormalities, grouped under the definition of 'immunosenescence'. This review will summarize the impact of recent advances in telomere biology on the physiology and pathology of the B lymphocyte, with special interest in immunosenescence and lymphomagenesis.
Collapse
Affiliation(s)
- Chiara Lobetti-Bodoni
- Department of Experimental Oncology, Division of Hematology, University of Torino, Italy
| | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVE To address the question of whether childhood abuse and other adversities have lasting, detectable consequences for inflammation and cell aging late in life, and whether the effects are large enough to be discernible beyond that of a major chronic stressor, dementia family caregiving. Previous research on the physical health consequences of childhood abuse and other adversities has been based on data from young or middle-aged adults. METHOD In this community sample of 132 healthy older adults (mean age = 69.70 years; standard deviation = 10.14), including 58 dementia family caregivers and 74 non-caregivers, blood samples were analyzed for interleukin (IL)-6, tumor necrosis factor (TNF)-α, and telomere length, a measure of cell aging. Depressive symptoms were assessed by the Center for Epidemiological Studies Depression Scale. RESULTS After controlling for age, caregiving status, gender, body mass index, exercise, and sleep, the presence of multiple childhood adversities was related to both heightened IL-6 (0.37 ± 0.03 log10 pg/mL versus 0.44 ± 0.03 log10 pg/mL) and shorter telomeres (6.51 ± 0.17 Kb versus 5.87 ± 0.20 Kb), compared with the absence of adversity; the telomere difference could translate into a 7- to 15-year difference in life span. Abuse was associated with heightened IL-6 and TNF-α levels; for TNF-α, this relationship was magnified in caregivers compared with controls. Moreover, abuse and caregiving status were associated significantly and independently with higher levels of depressive symptoms. CONCLUSIONS Adverse childhood events are related to continued vulnerability among older adults, enhancing the impact of chronic stressors. Childhood adversities cast a very long shadow.
Collapse
|
42
|
Klewes L, Höbsch C, Katzir N, Rourke D, Garini Y, Mai S. Novel automated three-dimensional genome scanning based on the nuclear architecture of telomeres. Cytometry A 2010; 79:159-66. [PMID: 21265009 DOI: 10.1002/cyto.a.21012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 01/14/2023]
Abstract
Telomeres, the end of chromosomes, are organized in a nonoverlapping fashion and form microterritories in nuclei of normal cells. Previous studies have shown that normal and tumor cell nuclei differ in their 3D telomeric organization. The differences include a change in the spatial organization of the telomeres, in telomere numbers and sizes and in the presence of telomeric aggregates. Previous attempts to identify the above parameters of 3D telomere organization were semi-automated. Here we describe the automation of 3D scanning for telomere signatures in interphase nuclei based on three-dimensional fluorescent in situ hybridization (3D-FISH) and, for the first time, define its sensitivity in tumor cell detection. The data were acquired with a high-throughput scanning/acquisition system that allows to measure cells and acquire 3D images of nuclei at high resolution with 40 × or 60 × oil and at a speed of 10,000-15,000 cells h(-1) , depending on the cell density on the slides. The automated scanning, TeloScan, is suitable for large series of samples and sample sizes. We define the sensitivity of this automation for tumor cell detection. The data output includes 3D telomere positions, numbers of telomeric aggregates, telomere numbers, and telomere signal intensities. We were able to detect one aberrant cell in 1,000 normal cells. In conclusions, we are able to detect tumor cells based on 3D architectural profiles of the genome. This new tool could, in the future, assist in patient diagnosis, in the detection of minimal residual disease, in the analysis of treatment response and in treatment decisions.
Collapse
Affiliation(s)
- Ludger Klewes
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 2010; 117:788-97. [PMID: 21030558 DOI: 10.1182/blood-2010-08-299396] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a phase 1/2 two-arm trial, 54 patients with myeloma received autografts followed by ex vivo anti-CD3/anti-CD28 costimulated autologous T cells at day 2 after transplantation. Study patients positive for human leukocyte antigen A2 (arm A, n = 28) also received pneumococcal conjugate vaccine immunizations before and after transplantation and a multipeptide tumor antigen vaccine derived from the human telomerase reverse transcriptase and the antiapoptotic protein survivin. Patients negative for human leukocyte antigen A2 (arm B, n = 26) received the pneumococcal conjugate vaccine only. Patients exhibited robust T-cell recoveries by day 14 with supraphysiologic T-cell counts accompanied by a sustained reduction in regulatory T cells. The median event-free survival (EFS) for all patients is 20 months (95% confidence interval, 14.6-24.7 months); the projected 3-year overall survival is 83%. A subset of patients in arm A (36%) developed immune responses to the tumor antigen vaccine by tetramer assays, but this cohort did not exhibit better EFS. Higher posttransplantation CD4(+) T-cell counts and a lower percentage of FOXP3(+) T cells were associated with improved EFS. Patients exhibited accelerated polyclonal immunoglobulin recovery compared with patients without T-cell transfers. Adoptive transfer of tumor antigen vaccine-primed and costimulated T cells leads to augmented and accelerated cellular and humoral immune reconstitution, including antitumor immunity, after autologous stem cell transplantation for myeloma. This study was registered at www.clinicaltrials.gov as NCT00499577.
Collapse
|
44
|
Brennan SK, Wang Q, Tressler R, Harley C, Go N, Bassett E, Huff CA, Jones RJ, Matsui W. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS One 2010; 5. [PMID: 20824134 PMCID: PMC2931698 DOI: 10.1371/journal.pone.0012487] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 08/09/2010] [Indexed: 12/28/2022] Open
Abstract
Background Plasma cells constitute the majority of tumor cells in multiple myeloma (MM) but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC). These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities. Methodology/Principal Findings Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1) as revealed by quantitative real-time PCR. Conclusions Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Sarah K. Brennan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qiuju Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert Tressler
- Geron Corporation, Menlo Park, California, United States of America
| | - Calvin Harley
- Geron Corporation, Menlo Park, California, United States of America
| | - Ning Go
- Geron Corporation, Menlo Park, California, United States of America
| | | | - Carol Ann Huff
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Jones
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Matsui
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Maritz MF, Napier CE, Wen VW, MacKenzie KL. Targeting telomerase in hematologic malignancy. Future Oncol 2010; 6:769-89. [PMID: 20465390 DOI: 10.2217/fon.10.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past two decades, it has become increasingly apparent that telomerase-mediated telomere maintenance plays a crucial role in hematopoiesis. Supporting evidence is underscored by recent findings of mutations in genes involved in telomerase-mediated telomere maintenance that contribute to the pathogenesis of bone marrow failure syndromes. More recently described telomere-independent functions of telomerase are also likely to contribute to both normal hematopoiesis and hematologic diseases. The high levels of telomerase detected in aggressive leukemias have fueled fervent investigation into diverse approaches to targeting telomerase in hematologic malignancies. Successful preclinical investigations that employed genetic strategies, oligonucleotides, small-molecule inhibitors and immunotherapy have resulted in a rapid translation to clinical trials. Further investigation of telomere-independent functions of telomerase and detailed preclinical studies of telomerase inhibition in both normal and malignant hematopoiesis will be invaluable for refining treatments to effectively and safely exploit telomerase as a therapeutic target in hematologic malignancies.
Collapse
Affiliation(s)
- Michelle F Maritz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, New South Wales, Australia
| | | | | | | |
Collapse
|
46
|
Panero J, Arbelbide J, Fantl DB, Rivello HG, Kohan D, Slavutsky I. Altered mRNA expression of telomere-associated genes in monoclonal gammopathy of undetermined significance and multiple myeloma. Mol Med 2010; 16:471-8. [PMID: 20644899 DOI: 10.2119/molmed.2010.00057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/13/2010] [Indexed: 11/06/2022] Open
Abstract
In this study, we explored changes in the expression of the telomere maintenance genes, TRF1, TRF2 and TANK1 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Results were correlated with human telomerase reverse transcriptase (hTERT ) expression, telomere length (TL) and clinicopathological characteristics. Bone marrow (BM) samples from 132 patients, 64 with MGUS and 68 with MM, were studied. Real-time quantitative reverse transcription-polymerase chain reaction was used to quantify gene expression. TL was evaluated by terminal restriction fragment length analysis. MGUS patients showed increased TRF1 levels (P = 0.006) and lower expression of TRF2 (P = 0.005) and TANK1 (P = 0.003) compared with MM patients. For hTERT analysis, patients were divided into three groups by use of receiver operating characteristics: low (group I [GI]), intermediate (group II [GII]) and high (group III [GIII]) expression. We observed increasing expression of TRF2 and TANK1 from GI to GIII in MGUS and MM, with differences for both genes in MM (P < 0.01) and for TRF2 in MGUS (P < 0.01). GIII patients with the highest telomerase expression had the shortest TL. In both entities, a positive association between TRF2-TANK1, TRF2-hTERT and TANK1-hTERT (P ≤ 0.01) was observed. In MM, the percentage of BM infiltration and Ki-67 index were positively associated with TRF2, TANK1 and hTERT expression (P ≤ 0.03) and negatively with TL (P = 0.02), whereas lactate dehydrogenase was significantly correlated with TRF2 mRNA (P = 0.008). Our findings provide the first evidence of a modification in the expression of telomeric proteins in plasma cell disorders, and suggest that mechanisms other than telomerase activation are involved in TL maintenance in these pathologies.
Collapse
Affiliation(s)
- Julieta Panero
- Departamento de Genética, Instituto de Investigaciones Hematológicas "Mariano R. Castex," Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Pooley KA, Sandhu MS, Tyrer J, Shah M, Driver KE, Luben RN, Bingham SA, Ponder BA, Pharoah PD, Khaw KT, Easton DF, Dunning AM. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 2010; 70:3170-6. [PMID: 20395204 PMCID: PMC2855947 DOI: 10.1158/0008-5472.can-09-4595] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have reported that shorter mean telomere length in lymphocytes was associated with increased susceptibility to common diseases of aging, and may be predictive of cancer risk. However, most analyses have examined retrospectively collected case-control studies. Mean telomere length was measured using high-throughput quantitative real-time PCR. Blood for DNA extraction was collected after cancer diagnosis in the East Anglian SEARCH Breast (2,243 cases and 2,181 controls) and SEARCH Colorectal (2,249 cases and 2,161 controls) studies. Prospective case-control studies were conducted for breast cancer (199 cases) and colorectal cancer (185 cases), nested within the EPIC-Norfolk cohort. Blood was collected at least 6 months prior to diagnosis, and was matched to DNA from two cancer-free controls per case. In the retrospective SEARCH studies, the age-adjusted odds ratios for shortest (Q4) versus longest (Q1) quartile of mean telomere length was 15.5 [95% confidence intervals (CI), 11.6-20.8; p-het = 5.7 x 10(-75)], with a "per quartile" P-trend = 2.1 x 10(-80) for breast cancer; and 2.14 (95% CI, 1.77-2.59; p-het = 7.3 x 10(-15)), with a per quartile P-trend = 1.8 x 10(-13) for colorectal cancer. In the prospective EPIC study, the comparable odds ratios (Q4 versus Q1) were 1.58 (95% CI, 0.75-3.31; p-het = 0.23) for breast cancer and 1.13 (95% CI, 0.54-2.36; p-het = 0.75) for colorectal cancer risk. Mean telomere length was shorter in retrospectively collected cases than in controls but the equivalent association was markedly weaker in the prospective studies. This suggests that telomere shortening largely occurs after diagnosis, and therefore, might not be of value in cancer prediction.
Collapse
Affiliation(s)
- Karen A. Pooley
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Manjinder S. Sandhu
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
- Genetic Epidemiology, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Jonathan Tyrer
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Mitul Shah
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Kristy E. Driver
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Robert N. Luben
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Sheila A. Bingham
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Bruce A.J. Ponder
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Paul D.P. Pharoah
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Douglas F. Easton
- Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| | - Alison M. Dunning
- Department of Oncology, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
48
|
Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors. J Mol Med (Berl) 2010; 88:785-94. [PMID: 20383691 PMCID: PMC2900586 DOI: 10.1007/s00109-010-0624-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/25/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
Abstract
Shorter telomeres have been reported in premature myocardial infarction (MI) patients. Our work aimed at confirming the association of shorter telomere with MI in two case–control studies and in familial hypercholesterolemia (FH) patients with coronary heart disease (CHD). The HIFMECH study compared 598 white male patients (<60 years) who survived a first MI and 653 age-matched controls from North and South Europe. Additionally, from the UK, 413 coronary artery bypass graft (CABG) patients and two groups of 367 and 94 FH patients, of whom 145 and 17 respectively had premature CHD, were recruited. Leukocyte telomere length (LTL) was measured using a real-time polymerase chain reaction-based method. In HIFMECH, LTL was significantly shorter in subjects from the North (7.99 kb, SD 4.51) compared to the South (8.27 kb, SD 4.14; p = 0.02) and in cases (7.85 kb, SD 4.01) compared to controls (8.04 kb, SD 4.46; p = 0.04). In the CABG study, LTL was significantly shorter (6.89 kb, SD 4.14) compared to the HIFMECH UK controls (7.53, SD 5.29; p = 0.007). In both samples of FH patients, LTL was shorter in those with CHD (overall 8.68 kb, SD 4.65) compared to the non-CHD subjects (9.23 kb, SD 4.83; p = 0.012). Apart from a consistent negative correlation with age, LTL was not associated across studies with any measured CHD risk factors. The present data confirms that subjects with CHD have shorter telomeres than controls and extends this to those with monogenic and polygenic forms of CHD.
Collapse
|
49
|
WANG Y, FANG M, SUN X, SUN J. Telomerase activity and telomere length in acute leukemia: correlations with disease progression, subtypes and overall survival. Int J Lab Hematol 2010; 32:230-8. [DOI: 10.1111/j.1751-553x.2009.01178.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Cottliar ASH, Panero J, Pedrazzini E, Noriega MF, Narbaitz M, Rodríguez A, Slavutsky I. Analysis of telomere length in mantle cell lymphoma. Eur J Haematol 2009; 83:433-8. [DOI: 10.1111/j.1600-0609.2009.01313.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|