1
|
Hu S, Liu Y, Zhang X, Wang X, Li Y, Chu M, Yin J, Fang Y, Ruan C, Zhu L, Wu D, Xu Y. YAP1 regulates thrombopoiesis by binding to MYH9 in immune thrombocytopenia. Blood 2024; 144:2136-2148. [PMID: 39190466 DOI: 10.1182/blood.2023023601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Immune thrombocytopenia (ITP) is a complicated bleeding disease characterized by a sharp platelet reduction. As a dominating element involved in ITP, megakaryocytes (MKs) are responsible for thrombopoiesis. However, the mechanism underlying the dysregulation of thrombopoiesis that occurs in ITP remains unidentified. In this study, we examined the role of Yes-associated protein 1 (YAP1) in thrombopoiesis during ITP. We observed reduced YAP1 expression with cytoskeletal actin misalignment in MKs from patients with ITP. Using an experimental ITP mouse model, we showed that reduced YAP1 expression induced aberrant MK distribution, reduced the percentage of late MKs among the total MKs, and caused submaximal platelet recovery. Mechanistically, YAP1 upregulation by binding of GATA-binding protein 1 to its promoter promoted MK maturation. Phosphorylated YAP1 promoted cytoskeletal activation by binding its WW2 domain to myosin heavy chain 9, thereby facilitating thrombopoiesis. Targeting YAP1 with its activator XMU-MP-1 was sufficient to rescue cytoskeletal defects and thrombopoiesis dysregulation in YAP1+/- mice with ITP and patients. Taken together, these results demonstrate the crucial role of YAP1 in thrombopoiesis, providing potential for the development of diagnostic markers and therapeutic options for ITP.
Collapse
Affiliation(s)
- Shuhong Hu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yifei Liu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Xiaoqi Wang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Mengqian Chu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Jie Yin
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Li Zhu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Diseases, Cyrus Tang Hematology Center, The Ninth Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Musleh M, Alhusein Q. A rare presentation and treatment challenges for multiple myeloma in down syndrome: A case report and literature review. Clin Case Rep 2024; 12:e9154. [PMID: 38962468 PMCID: PMC11220454 DOI: 10.1002/ccr3.9154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Down syndrome (DS), characterized by trisomy 21, significantly increases susceptibility to leukemia, although the occurrence of multiple myeloma (MM) in DS is exceedingly rare. This report details the case of a 45-year-old female with DS who was diagnosed with MM, highlighting diagnostic and therapeutic complexities. It emphasizes the importance of tailored therapeutic strategies for treating MM in individuals with DS and the need for specialized approaches in these cases.
Collapse
Affiliation(s)
- Mais Musleh
- Department of HematologyFaculty of Medicine, Al Assad University HospitalDamascusSyria
| | - Qossay Alhusein
- Department of HematologyFaculty of Medicine, Al‐Mouwasat University HospitalDamascusSyria
| |
Collapse
|
3
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
4
|
Tanaka T, Kudo K, Kanezaki R, Yuzawa K, Toki T, Okuse R, Kobayashi A, Sato T, Kamio T, Terui K, Ito E. Antileukemic effect of azacitidine, a DNA methyltransferase inhibitor, on cell lines of myeloid leukemia associated with Down syndrome. Exp Hematol 2024; 132:104179. [PMID: 38342295 DOI: 10.1016/j.exphem.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.
Collapse
Affiliation(s)
- Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Okuse
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
5
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
6
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
7
|
Yuan H, Liu Y, Zhang J, Dong JF, Zhao Z. Transcription factors in megakaryocytes and platelets. Front Immunol 2023; 14:1140501. [PMID: 36969155 PMCID: PMC10034027 DOI: 10.3389/fimmu.2023.1140501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Transcription factors bind promoter or regulatory sequences of a gene to regulate its rate of transcription. However, they are also detected in anucleated platelets. The transcription factors RUNX1, GATA1, STAT3, NFκB, and PPAR have been widely reported to play key roles in the pathophysiology of platelet hyper-reactivity, thrombosis, and atherosclerosis. These non-transcriptional activities are independent of gene transcription or protein synthesis but their underlying mechanisms of action remain poorly defined. Genetic and acquired defects in these transcription factors are associated with the production of platelet microvesicles that are known to initiate and propagate coagulation and to promote thrombosis. In this review, we summarize recent developments in the study of transcription factors in platelet generation, reactivity, and production of microvesicles, with a focus on non-transcriptional activities of selected transcription factors.
Collapse
Affiliation(s)
- Hengjie Yuan
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
| | - Yafan Liu
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- BloodWorks Research Institute, Seattle, WA, United States
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| | - Zilong Zhao
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| |
Collapse
|
8
|
Alenchery AJ, Yeaney NK, Chen CB, Talati R, Vogelius E, Tan C, Radhakrishnan K. A rare case of hepatic sinusoidal occlusive syndrome in a premature neonate with trisomy 21. J Neonatal Perinatal Med 2023; 16:735-740. [PMID: 38073401 DOI: 10.3233/npm-230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Trisomy 21 (Down Syndrome) may lead to multiple hematological and hepatobiliary manifestations including the development of transient abnormal myelopoiesis. While many cases resolve, transient abnormal myelopoiesis may lead to significant morbidity and mortality in a small percentage of patients. This condition may present a diagnostic challenge for physicians and currently there is only limited data on effective treatments, particularly with low blast percent transient abnormal myelopoiesis. We present a case of a neonate with trisomy 21 and multiple congenital anomalies who consequently developed hepatic failure with evidence of non-cirrhotic portal hypertension likely due to transient abnormal myelopoiesis. This clinical scenario highlights the need for additional evaluation for transient abnormal myelopoiesis associated hepatic disorder and possibly hepatic sinusoidal occlusive syndrome among trisomy 21 neonates particularly with low blast percentage.
Collapse
Affiliation(s)
- A J Alenchery
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children's, Cleveland, OH, USA
| | - N K Yeaney
- Neonatal Director, Fetal Care Center, Cleveland Clinic Children's, Cleveland, OH, USA
| | - C B Chen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children's, Cleveland, OH, USA
| | - R Talati
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Cleveland Clinic, Cleveland, OH, USA
| | - E Vogelius
- Section Head, Pediatric Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - C Tan
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - K Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Children's, Cleveland, OH, USA
| |
Collapse
|
9
|
Kanezaki R, Toki T, Terui K, Sato T, Kobayashi A, Kudo K, Kamio T, Sasaki S, Kawaguchi K, Watanabe K, Ito E. Mechanism of KIT gene regulation by GATA1 lacking the N-terminal domain in Down syndrome-related myeloid disorders. Sci Rep 2022; 12:20587. [PMID: 36447001 PMCID: PMC9708825 DOI: 10.1038/s41598-022-25046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Children with Down syndrome (DS) are at high risk of transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). GATA1 mutations are detected in almost all TAM and ML-DS samples, with exclusive expression of short GATA1 protein (GATA1s) lacking the N-terminal domain (NTD). However, it remains to be clarified how GATA1s is involved with both disorders. Here, we established the K562 GATA1s (K562-G1s) clones expressing only GATA1s by CRISPR/Cas9 genome editing. The K562-G1s clones expressed KIT at significantly higher levels compared to the wild type of K562 (K562-WT). Chromatin immunoprecipitation studies identified the GATA1-bound regulatory sites upstream of KIT in K562-WT, K562-G1s clones and two ML-DS cell lines; KPAM1 and CMK11-5. Sonication-based chromosome conformation capture (3C) assay demonstrated that in K562-WT, the - 87 kb enhancer region of KIT was proximal to the - 115 kb, - 109 kb and + 1 kb region, while in a K562-G1s clone, CMK11-5 and primary TAM cells, the - 87 kb region was more proximal to the KIT transcriptional start site. These results suggest that the NTD of GATA1 is essential for proper genomic conformation and regulation of KIT gene expression, and that perturbation of this function might be involved in the pathogenesis of TAM and ML-DS.
Collapse
Affiliation(s)
- Rika Kanezaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tsutomu Toki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Kiminori Terui
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Tomohiko Sato
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Akie Kobayashi
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Ko Kudo
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Takuya Kamio
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Shinya Sasaki
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan
| | - Koji Kawaguchi
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Kenichiro Watanabe
- grid.415798.60000 0004 0378 1551Department of Hematology and Oncology, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Etsuro Ito
- grid.257016.70000 0001 0673 6172Department of Pediatrics, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki, Aomori 036-8562 Japan ,grid.257016.70000 0001 0673 6172Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Borkowski A, Gawryś J, Iwanek G, Dybko J. A family case series of inherited thrombocytopenia. Proc AMIA Symp 2022; 36:93-95. [PMID: 36578597 PMCID: PMC9762738 DOI: 10.1080/08998280.2022.2116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inherited thrombocytopenia (IT) is a heterogeneous group of diseases with a genetic origin. The primary symptom presented by patients is a reduced platelet count in the peripheral blood. Nevertheless, certain forms of IT are characterized by the occurrence of other congenital malformations or predisposition to acquire additional diseases. Five related subjects with lifelong thrombocytopenia were admitted to our clinic. A total of 16 cases of persistent thrombocytopenia were investigated in the family history. Molecular and cytogenetic analysis covered MECOM, MPL, RUNX1, ETV6, and GATA1 genes, whose mutations are known to cause predisposing forms of IT. The laboratory testing revealed thrombocytopenia ranging from 19 to 65 × 109/L in the subjects. Mild bleeding symptoms were present in each of the subjects, while two of five had a history of severe hemorrhage requiring transfusion of blood products. Establishing a diagnosis of IT protects the patient from unnecessary treatment and enables the appropriate surveillance.
Collapse
Affiliation(s)
- Artur Borkowski
- University Clinical Hospital, Wroclaw, Poland,Corresponding author: Artur Borkowski, MD, University Clinical Hospital, Borowska 213, 50-556Wroclaw, Poland (e-mail: )
| | - Jakub Gawryś
- Department of Internal Medicine, Hypertension and Clinical Oncology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jarosław Dybko
- Department of Hematology and Cellular Transplantation, Lower Silesian Center of Oncology, Wrocław, Poland
| |
Collapse
|
11
|
Aziz-Bose R, Wachter F, Chiarle R, Lindeman NI, Kim AS, Degar BA, Davies K, Pikman Y. Rapid next-generation sequencing aids in diagnosis of transient abnormal myelopoiesis in a phenotypically normal newborn. Blood Adv 2022; 6:2893-2896. [PMID: 35090166 PMCID: PMC9092404 DOI: 10.1182/bloodadvances.2021006865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rahela Aziz-Bose
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Roberto Chiarle
- Harvard Medical School, Boston, MA
- Department of Pathology, Boston Children’s Hospital, Boston, MA; and
| | - Neal I. Lindeman
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Annette S. Kim
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Barbara A. Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Kimberly Davies
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
12
|
Ozono S, Yano S, Oishi S, Mitsuo M, Nakagawa S, Toki T, Terui K, Ito E. A Case of Congenital Leukemia With MYB-GATA1 Fusion Gene in a Female Patient. J Pediatr Hematol Oncol 2022; 44:e250-e252. [PMID: 33661169 DOI: 10.1097/mph.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
We report a female newborn with acute myelogenous leukemia (AML) associated with a MYB-GATA1 fusion gene. Morphologic findings of myeloid lineage were obtained using light microscopy. Cytogenetic analysis of peripheral blood showed a complex karyotype: 46,X,-X,add(3)(q21),der(6)add(6)(q21)del(6)(q?), +mar1[5]/46,XX[15]. Targeted RNA sequencing revealed a MYB-GATA1 fusion gene. Reduced-dose AML-type chemotherapy resulted in remission and survival for >3 years without relapse. The present case demonstrated the feasibility of carrying out targeted RNA sequencing for identifying MYB-GATA1 and supports the notion that neonatal AML with MYB-GATA1 with reduced chemotherapy may show better prognosis than other highly toxic therapies.
Collapse
MESH Headings
- Chromosome Aberrations
- Female
- GATA1 Transcription Factor/genetics
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Leukemia, Myeloid, Acute/congenital
- Leukemia, Myeloid, Acute/drug therapy
- Oncogene Proteins, Fusion/genetics
- Proto-Oncogene Proteins c-myb/genetics
Collapse
Affiliation(s)
- Shuichi Ozono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Shoichiro Yano
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Saori Oishi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Miho Mitsuo
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Shinichiro Nakagawa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
13
|
Mizuta S, Yamane N, Mononobe S, Watanabe A, Kitamura R, Takahara T, Matsushima C, Yoshida A, Okamoto S, Tanaka K, Iwai A, Ikegawa A, Wada T, Usami I, Maihara T, Komai T, Heike T, Nishida Y, Kobayashi K. Sensitive detection of GATA1 mutations using complementary DNA-based analysis for transient abnormal myelopoiesis associated with the Down syndrome. Int J Lab Hematol 2021; 44:349-355. [PMID: 34761527 DOI: 10.1111/ijlh.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION GATA1 mutation plays an important role in initiating transient abnormal myelopoiesis (TAM) and in the clonal evolution towards acute megakaryoblastic leukaemia (AMKL) associated with Down syndrome (DS). This study aimed to develop and validate the clinical utility of a complementary DNA (cDNA) analysis in parallel with the conventional genomic DNA (gDNA) Sanger sequencing (Ss), as an initial screening test for GATA1 mutations. METHODS GATA1 mutations were evaluated using both gDNA and cDNA in 14 DS patients using Ss and fragment analysis (FA), respectively. RESULTS The detection sensitivity of conventional gDNA sequencing was limited in low blast percentage TAM (LBP-TAM); however, cDNA-based Ss readily detected all the pathognomonic GATA1 mutations. The cDNA-based FA readily detected GATA1 frameshift mutation with a reliable sensitivity ranging from 0.005% to 0.01% of clonal cells. CONCLUSIONS GATA1 mutations are heterogeneous; therefore, we would like to propose a dual cDNA and gDNA analysis as a standard diagnostic approach, especially for LBP-TAM. cDNA-based FA promises an excellent sensitivity for detecting frameshift GATA1 mutations in the longitudinal clonal evolution towards AMKL without using a patient specific primer.
Collapse
Affiliation(s)
- Shumpei Mizuta
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| | - Noriko Yamane
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Saya Mononobe
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Asami Watanabe
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Ritsuko Kitamura
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Tadamori Takahara
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Chieko Matsushima
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Atushi Yoshida
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Seiji Okamoto
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kuniaki Tanaka
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Pediatric Hematology and Oncology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Atsushi Iwai
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Pediatric Hematology and Oncology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Atsuko Ikegawa
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Takahito Wada
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ikuya Usami
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Toshiro Maihara
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Takao Komai
- Department of Clinical Laboratory, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Toshio Heike
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshinobu Nishida
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Neonatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kenichiro Kobayashi
- Department of Pediatrics, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan.,Department of Pediatric Hematology and Oncology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan.,Department of Pediatric Hematology and Oncology Research, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
14
|
Shimada A. Profile of down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Matsuo S, Nishinaka-Arai Y, Kazuki Y, Oshimura M, Nakahata T, Niwa A, Saito MK. Pluripotent stem cell model of early hematopoiesis in Down syndrome reveals quantitative effects of short-form GATA1 protein on lineage specification. PLoS One 2021; 16:e0247595. [PMID: 33780474 PMCID: PMC8007000 DOI: 10.1371/journal.pone.0247595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are susceptible to two blood disorders, transient abnormal myelopoiesis (TAM) and Down syndrome-associated acute megakaryocytic leukemia (DS-AMKL). Mutations in GATA binding protein 1 (GATA1) have been identified as the cause of these diseases, and the expression levels of the resulting protein, short-form GATA1 (GATA1s), are known to correlate with the severity of TAM. On the other hand, despite the presence of GATA1 mutations in almost all cases of DS-AMKL, the incidence of DS-AMKL in TAM patients is inversely correlated with the expression of GATA1s. This discovery has required the need to clarify the role of GATA1s in generating the cells of origin linked to the risk of both diseases. Focusing on this point, we examined the characteristics of GATA1 mutant trisomy-21 pluripotent stem cells transfected with a doxycycline (Dox)-inducible GATA1s expression cassette in a stepwise hematopoietic differentiation protocol. We found that higher GATA1s expression significantly reduced commitment into the megakaryocytic lineage at the early hematopoietic progenitor cell (HPC) stage, but once committed, the effect was reversed in progenitor cells and acted to maintain the progenitors. These differentiation stage-dependent reversal effects were in contrast to the results of myeloid lineage, where GATA1s simply sustained and increased the number of immature myeloid cells. These results suggest that although GATA1 mutant cells cause the increase in myeloid and megakaryocytic progenitors regardless of the intensity of GATA1s expression, the pathways vary with the expression level. This study provides experimental support for the paradoxical clinical features of GATA1 mutations in the two diseases.
Collapse
Affiliation(s)
- Shiori Matsuo
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yoko Nishinaka-Arai
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail: (YNA); (AN); (MKS)
| |
Collapse
|
16
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Taga T, Tanaka S, Hasegawa D, Terui K, Toki T, Iwamoto S, Hiramatsu H, Miyamura T, Hashii Y, Moritake H, Nakayama H, Takahashi H, Shimada A, Taki T, Ito E, Hama A, Ito M, Koh K, Hasegawa D, Saito AM, Adachi S, Tomizawa D. Post-induction MRD by FCM and GATA1-PCR are significant prognostic factors for myeloid leukemia of Down syndrome. Leukemia 2021; 35:2508-2516. [PMID: 33589754 DOI: 10.1038/s41375-021-01157-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023]
Abstract
Myeloid leukemia of Down syndrome (ML-DS) is associated with good response to chemotherapy, resulting in favorable outcomes. However, no universal prognostic factors have been identified to date. To clarify a subgroup with high risk of relapse, the role of minimal residual disease (MRD) was explored in the AML-D11 trial by the Japanese Pediatric Leukemia/Lymphoma Study Group. MRD was prospectively evaluated at after induction therapy and at the end of all chemotherapy, using flow cytometry (FCM-MRD) and GATA1-targeted deep sequencing (GATA1-MRD). A total of 78 patients were eligible and 76 patients were stratified to the standard risk (SR) group by morphology. In SR patients, FCM-MRD and GATA1-MRD after induction were positive in 5/65 and 7/59 patients, respectively. Three-year event-free survival (EFS) and overall survival (OS) rates were 95.0% and 96.7% in the FCM-MRD-negative population, and 60.0% and 80.0% in the positive population. Three-year EFS and OS rates were both 98.1% in the GATA1-MRD-negative population, and 57.1% and 71.4% in the positive population. Adjusted hazard ratios for associations of FCM-MRD with EFS were 14.67 (p = 0.01). Detection of MRD by either FCM or GATA1 after initial induction therapy represents a significant prognostic factor for predicting ML-DS relapse.
Collapse
Affiliation(s)
- Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan.
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St Luke's International Hospital, Tokyo, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Department of Reproductive and Developmental Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideki Nakayama
- Department of Pediatrics, Kyushu Cancer Center, Fukuoka, Japan
| | | | - Akira Shimada
- Department of Pediatrics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomohiko Taki
- Laboratory of Clinical Hematology, Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Daiichiro Hasegawa
- Department of Hematology/Oncology, Hyogo Children's Medical Center, Kobe, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
18
|
Clinical features of 35 Down syndrome patients with transient abnormal myelopoiesis at a single institution. Int J Hematol 2021; 113:662-667. [PMID: 33394336 DOI: 10.1007/s12185-020-03066-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Transient abnormal myelopoiesis (TAM) is a unique clonal myeloproliferation characterized by immature megakaryoblasts that occurs in 5-10% of neonates with Down syndrome (DS). Although TAM regresses spontaneously in most patients, approximately 20% of TAM cases result in early death, and approximately 20% of survivors develop acute megakaryoblastic leukemia (AMKL). We retrospectively reviewed records of 35 DS patients with TAM to determine the correlation between clinical characteristics and blast percentage. Thirteen of the 35 patients were classified as low blast percentage TAM (LBP-TAM), defined as TAM with a peak peripheral blast percentage ≤ 10%. Although no patient with LBP-TAM experienced systemic edema, disseminated intravascular coagulation, or early death, eight patients had elevated direct bilirubin levels (> 2 mg/dl) and one developed AMKL. All patients with LBP-TAM had serum markers of liver fibrosis that exceeded the normal limits, and two patients underwent liver biopsy to clarify the etiology of pathological jaundice. Taken together, our results suggest that patients with LBP-TAM may be at risk of liver fibrosis and liver failure, similarly to patients with classical TAM. Although these patients generally have a good prognosis, they should be carefully monitored for potential development of liver disease and leukemia.
Collapse
|
19
|
Yuzawa K, Terui K, Toki T, Kanezaki R, Kobayashi A, Sato T, Kamio T, Kudo K, Sasaki S, Endo M, Ozono S, Nomura K, Ito E. Clinical, cytogenetic, and molecular analyses of 17 neonates with transient abnormal myelopoiesis and nonconstitutional trisomy 21. Pediatr Blood Cancer 2020; 67:e28188. [PMID: 32020774 DOI: 10.1002/pbc.28188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Transient abnormal myelopoiesis (TAM) is a unique myeloproliferative disorder that occurs in neonates with constitutional trisomy 21/Down syndrome (DS). Although TAM also develops in neonates without constitutional trisomy 21, the clinical, cytogenetic, and molecular characteristics of those patients are not fully understood. PROCEDURE We retrospectively evaluated the clinical and cytogenetic findings and GATA1 mutation status of 17 neonates with TAM and nonconstitutional trisomy 21 tested for GATA1 mutations at our institute, and compared the findings with those of 64 neonates with TAM and constitutional trisomy 21/DS. RESULTS DS clinical features were observed in five of the 17 (29%) patients. In all patients, both trisomy 21 and GATA1 mutations were detected in diagnostic samples. Over a median follow-up of 33 (range, 0-139) months, early death (< 6 months of age) occurred in four patients (24%). Overall and event-free survivals were not significantly different between the patients with TAM and nonconstitutional trisomy 21 and those with TAM and constitutional trisomy 21/DS (five-year overall survival: 76% ± 10% vs 53% ± 13%, P = 0.40; five-year event-free survival: 55% ± 13% vs 48% ± 12%, P = 0.90). The five-year cumulative incidence of progression to myeloid leukemia of DS was also similar between the groups (21% vs 24%, P = 0.80). CONCLUSIONS Patients with TAM and nonconstitutional trisomy 21 exhibited similar biology and outcomes to those with TAM and constitutional trisomy 21/DS. The possibility of TAM should be considered even in phenotypically normal neonates with TAM symptoms, for appropriate management.
Collapse
Affiliation(s)
- Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mikiya Endo
- Department of Pediatrics, Iwate Medical University, Morioka, Japan
| | - Shuichi Ozono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan
| | - Keiko Nomura
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
20
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
21
|
Terui K, Toki T, Taga T, Iwamoto S, Miyamura T, Hasegawa D, Moritake H, Hama A, Nakashima K, Kanezaki R, Kudo K, Saito AM, Horibe K, Adachi S, Tomizawa D, Ito E. Highly sensitive detection of GATA1 mutations in patients with myeloid leukemia associated with Down syndrome by combining Sanger and targeted next generation sequencing. Genes Chromosomes Cancer 2019; 59:160-167. [PMID: 31606922 DOI: 10.1002/gcc.22816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) is characterized by a predominance of acute megakaryoblastic leukemia, the presence of GATA1 mutations and a favorable outcome. Because DS children can also develop conventional acute myeloid leukemia with unfavorable outcome, detection of GATA1 mutations is important for diagnosis of ML-DS. However, myelofibrosis and the significant frequency of dry taps have hampered practical screening of GATA1 mutations using bone marrow (BM) samples. In response to those problems, 82 patients were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-D11 study. GATA1 mutations were analyzed by Sanger sequencing (SS) using genomic DNA (gDNA) from BM and cDNA from peripheral blood (PB) followed by targeted next-generation sequencing (NGS) using pooled diagnostic samples. BM and PB samples were obtained from 71 (87%) and 82 (100%) patients, respectively. GATA1 mutations were detected in 46 (56%) and 58 (71%) patients by SS using BM gDNA and PB cDNA, respectively. Collectively, GATA1 mutations were identified in 73/82 (89%) patients by SS. Targeted NGS detected GATA1 mutations in 74/82 (90%) patients. Finally, combining the results of SS with those of targeted NGS, GATA1 mutations were identified in 80/82 (98%) patients. These results indicate that SS using BM gDNA and PB cDNA is a rapid and useful method for screening for GATA1 mutations in ML-DS patients. Thus, a combination of SS and targeted NGS is a sensitive and useful method to evaluate the actual incidence and clinical significance of GATA1 mutations in ML-DS patients.
Collapse
Affiliation(s)
- Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St Luke's International Hospital, Tokyo, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Department of Reproductive and Developmental Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
22
|
Sas V, Blag C, Zaharie G, Puscas E, Lisencu C, Andronic-Gorcea N, Pasca S, Petrushev B, Chis I, Marian M, Dima D, Teodorescu P, Iluta S, Zdrenghea M, Berindan-Neagoe I, Popa G, Man S, Colita A, Stefan C, Kojima S, Tomuleasa C. Transient leukemia of Down syndrome. Crit Rev Clin Lab Sci 2019; 56:247-259. [PMID: 31043105 DOI: 10.1080/10408363.2019.1613629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Childhood leukemia is mostly a "developmental accident" during fetal hematopoiesis and may require multiple prenatal and postnatal "hits". The World Health Organization defines transient leukemia of Down syndrome (DS) as increased peripheral blood blasts in neonates with DS and classifies this type of leukemia as a separate entity. Although it was shown that DS predisposes children to myeloid leukemia, neither the nature of the predisposition nor the associated genetic lesions have been defined. Acute myeloid leukemia of DS is a unique disease characterized by a long pre-leukemic, myelodysplastic phase, unusual chromosomal findings and a high cure rate. In the present manuscript, we present a comprehensive review of the literature about clinical and biological findings of transient leukemia of DS (TL-DS) and link them with the genetic discoveries in the field. We address the manuscript to the pediatric generalist and especially to the next generation of pediatric hematologists.
Collapse
Affiliation(s)
- Valentina Sas
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristina Blag
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gabriela Zaharie
- c Department of Neonatology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Emil Puscas
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cosmin Lisencu
- d Department of Surgery , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Andronic-Gorcea
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Irina Chis
- e Department of Physiology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mirela Marian
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Delia Dima
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Patric Teodorescu
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sabina Iluta
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Mihnea Zdrenghea
- f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- g MedFuture Research Center for Advanced Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Gheorghe Popa
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sorin Man
- b Department of Pediatrics , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Anca Colita
- h Department of Pediatrics , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania.,i Department of Pediatrics , Fundeni Clinical Institute , Bucharest , Romania
| | - Cristina Stefan
- j African Organization for Research and Training in Cancer , Cape Town , South Africa
| | - Seiji Kojima
- k Department of Pediatrics , Nagoya University Graduate School of Medicine , Nagoya , Japan.,l Center for Advanced Medicine and Clinical Research , Nagoya University Hospital , Nagoya , Japan
| | - Ciprian Tomuleasa
- a Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Ion Chiricuta Clinical Cancer Center , Cluj Napoca , Romania.,m Research Center for Functional Genomics and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
23
|
Watanabe K. Recent advances in the understanding of transient abnormal myelopoiesis in Down syndrome. Pediatr Int 2019; 61:222-229. [PMID: 30593694 DOI: 10.1111/ped.13776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/08/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
Neonates with Down syndrome (DS) have a propensity to develop the unique myeloproliferative disorder, transient abnormal myelopoiesis (TAM). TAM usually resolves spontaneously in ≤3 months, but approximately 10% of patients with TAM die from hepatic or multi-organ failure. After remission, 20% of patients with TAM develop acute myeloid leukemia associated with Down syndrome (ML-DS). Blasts in both TAM and ML-DS have trisomy 21 and GATA binding protein 1 (GATA1) mutations. Recent studies have shown that infants with DS and no clinical signs of TAM or increases in peripheral blood blasts can have minor clones carrying GATA1 mutations, referred to as silent TAM. Low-dose cytarabine can improve the outcomes of patients with TAM and high white blood cell count. A number of studies using fetal liver cells, mouse models, or induced pluripotent stem cells have elucidated the roles of trisomy 21 and GATA1 mutations in the development of TAM. Next-generation sequencing of TAM and ML-DS patient samples identified additional mutations in genes involved in epigenetic regulation. Xenograft models of TAM demonstrate the genetic heterogeneity of TAM blasts and mimic the process of clonal selection and expansion of TAM clones that leads to ML-DS. DNA methylation analysis suggests that epigenetic dysregulation may be involved in the progression from TAM to ML-DS. Unraveling the mechanisms underlying leukemogenesis and identification of factors that predict progression to leukemia could assist in development of strategies to prevent progression to ML-DS. Investigation of TAM, a unique pre-leukemic condition, will continue to strongly influence basic and clinical research into the development of hematological malignancies.
Collapse
Affiliation(s)
- Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, Japan
| |
Collapse
|
24
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Tunstall O, Bhatnagar N, James B, Norton A, O'Marcaigh AS, Watts T, Greenough A, Vyas P, Roberts I, Wright M. Guidelines for the investigation and management of Transient Leukaemia of Down Syndrome. Br J Haematol 2018; 182:200-211. [DOI: 10.1111/bjh.15390] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Oliver Tunstall
- Bristol Royal Hospital for Children; University Hospitals Bristol NHS Trust; Bristol UK
| | - Neha Bhatnagar
- John Radcliffe Hospital; Oxford University Hospitals NHS Trust and Oxford BRC Blood Theme; NIHR Oxford Biomedical Centre; Oxford UK
| | - Beki James
- Leeds Children's Hospital; Leeds Teaching Hospitals NHS Trust; Leeds UK
| | - Alice Norton
- Birmingham Children's Hospital NHS Trust; Birmingham UK
| | | | - Tim Watts
- Evelina London Children's Hospital; Guy's and St Thomas' NHS Trust; London UK
| | | | - Paresh Vyas
- John Radcliffe Hospital; Oxford University Hospitals NHS Trust and Oxford BRC Blood Theme; NIHR Oxford Biomedical Centre; Oxford UK
- MRC Molecular Haematology Unit; MRC Weatherall Institute of Molecular Medicine; Oxford UK
| | - Irene Roberts
- John Radcliffe Hospital; Oxford University Hospitals NHS Trust and Oxford BRC Blood Theme; NIHR Oxford Biomedical Centre; Oxford UK
- MRC Molecular Haematology Unit; MRC Weatherall Institute of Molecular Medicine; Oxford UK
- Paediatrics; Oxford University; Oxford UK
| | - Michael Wright
- Paediatrics; Oxford University; Oxford UK
- West Hertfordshire Hospitals NHS Trust; Watford UK
| | | |
Collapse
|
26
|
|
27
|
Smith FO, Dvorak CC, Braun BS. Myelodysplastic Syndromes and Myeloproliferative Neoplasms in Children. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Liu C, Yu T, Xing Z, Jiang X, Li Y, Pao A, Mu J, Wallace PK, Stoica G, Bakin AV, Yu YE. Triplications of human chromosome 21 orthologous regions in mice result in expansion of megakaryocyte-erythroid progenitors and reduction of granulocyte-macrophage progenitors. Oncotarget 2017; 9:4773-4786. [PMID: 29435140 PMCID: PMC5797011 DOI: 10.18632/oncotarget.23463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Individuals with Down syndrome (DS) frequently have hematopoietic abnormalities, including transient myeloproliferative disorder and acute megakaryoblastic leukemia which are often accompanied by acquired GATA1 mutations that produce a truncated protein, GATA1s. The mouse has been used for modeling DS based on the syntenic conservation between human chromosome 21 (Hsa21) and three regions in the mouse genome located on mouse chromosome 10 (Mmu10), Mmu16 and Mmu17. To assess the impact of the dosage increase of Hsa21 gene orthologs on the hematopoietic system, we characterized the related phenotype in the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ model which carries duplications spanning the entire Hsa21 orthologous regions on Mmu10, Mmu16 and Mmu17, and the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+;Gata1Yeym2 model which carries a Gata1s mutation we engineered. Both models exhibited anemia, macrocytosis, and myeloproliferative disorder. Similar to human DS, the megakaryocyte-erythrocyte progenitors (MEPs) and granulocyte-monocyte progenitors (GMPs) were significantly increased and reduced, respectively, in both models. The subsequent identification of all the aforementioned phenotypes in the Dp(16)1Yey/+ model suggests that the causative dosage sensitive gene(s) are in the Hsa21 orthologous region on Mmu16. Therefore, we reveal here for the first time that the human trisomy 21-associated major segmental chromosomal alterations in mice can lead to expanded MEP and reduced GMP populations, mimicking the dynamics of these myeloid progenitors in DS. These models will provide the critical systems for unraveling the molecular and cellular mechanism of DS-associated myeloproliferative disorder, and particularly for determining how human trisomy 21 leads to expansion of MEPs as well as how such an alteration leads to myeloproliferative disorder.
Collapse
Affiliation(s)
- Chunhong Liu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Tao Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Yichen Li
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Justin Mu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - George Stoica
- Department of Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Andrei V Bakin
- Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
29
|
Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. J Hum Genet 2017; 63:145-156. [PMID: 29180645 DOI: 10.1038/s10038-017-0378-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.
Collapse
Affiliation(s)
- Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
30
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
31
|
Liu T, Yao Y, Zhang G, Wang Y, Deng B, Song J, Li X, Han F, Xiao X, Yang J, Xia L, Li YJ, Plachynta M, Zhang M, Yan C, Mu S, Luo H, Zacksenhaus E, Hao X, Ben-David Y. A screen for Fli-1 transcriptional modulators identifies PKC agonists that induce erythroid to megakaryocytic differentiation and suppress leukemogenesis. Oncotarget 2017; 8:16728-16743. [PMID: 28052010 PMCID: PMC5369997 DOI: 10.18632/oncotarget.14377] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/07/2016] [Indexed: 11/25/2022] Open
Abstract
The ETS-related transcription factor Fli-1 affects many developmental programs including erythroid and megakaryocytic differentiation, and is frequently de-regulated in cancer. Fli-1 was initially isolated following retrovirus insertional mutagenesis screens for leukemic initiator genes, and accordingly, inhibition of this transcription factor can suppress leukemia through induction of erythroid differentiation. To search for modulators of Fli-1, we hereby performed repurposing drug screens with compounds isolated from Chinese medicinal plants. We identified agents that can transcriptionally activate or inhibit a Fli-1 reporter. Remarkably, agents that increased Fli-1 transcriptional activity conferred a strong anti-cancer activity upon Fli-1-expressing leukemic cells in culture. As opposed to drugs that suppress Fli1 activity and lead to erythroid differentiation, growth suppression by these new Fli-1 transactivating compounds involved erythroid to megakaryocytic conversion (EMC). The identified compounds are structurally related to diterpene family of small molecules, which are known agonists of protein kinase C (PKC). In accordance, these PKC agonists (PKCAs) induced PKC phosphorylation leading to activation of the mitogen-activated protein kinase (MAPK) pathway, increased cell attachment and EMC, whereas pharmacological inhibition of PKC or MAPK diminished the effect of our PKCAs. Moreover, in a mouse model of leukemia initiated by Fli-1 activation, the PKCA compounds exhibited strong anti-cancer activity, which was accompanied by increased presence of CD41/CD61 positive megakaryocytic cells in leukemic spleens. Thus, PKC agonists offer a novel approach to combat Fli-1-induced leukemia, and possibly other cancers,by inducing EMC in part through over-activation of the PKC-MAPK-Fli-1 pathway.
Collapse
Affiliation(s)
- Tangjingjun Liu
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yao Yao
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gang Zhang
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Ye Wang
- College of Ecology, Lishui University, Zhejiang, China
| | - Bin Deng
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Jialei Song
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,The Laboratory of Cell Biochemistry and Topogenic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, Chongqing, China
| | - Xiaogang Li
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Fei Han
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Xiao Xiao
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jue Yang
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Lei Xia
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,School of Pharmaceutical Sciences, Guizhou University, Guizhou, China
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Maksym Plachynta
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Mu Zhang
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Chen Yan
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China
| | - Shuzhen Mu
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Heng Luo
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute-University Health Network, Toronto, Ontario, Canada
| | - Xiaojiang Hao
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,School of Pharmaceutical Sciences, Guizhou University, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yaacov Ben-David
- Department of Biology and Chemistry, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
32
|
Abstract
In this article we discuss the occurrence of myeloid neoplasms in patients with a range of syndromes that are due to germline defects of the RAS signaling pathway and in patients with trisomy 21. Both RAS mutations and trisomy 21 are common somatic events contributing to leukemogenis. Thus, the increased leukemia risk observed in children affected by these conditions is biologically highly plausible. Children with myeloid neoplasms in the context of these syndromes require different treatments than children with sporadic myeloid neoplasms and provide an opportunity to study the role of trisomy 21 and RAS signaling during leukemogenesis and development.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Shai Izraeli
- The Genes, Development and Environment Institute for Pediatric Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Predispositions to Leukemia in Down Syndrome and Other Hereditary Disorders. Curr Treat Options Oncol 2017; 18:41. [DOI: 10.1007/s11864-017-0485-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Lum SH, Choong SS, Krishnan S, Mohamed Z, Ariffin H. GATA1 mutations in a cohort of Malaysian children with Down syndrome-associated myeloid disorder. Singapore Med J 2017; 57:320-4. [PMID: 27353457 DOI: 10.11622/smedj.2016106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Children with Down syndrome (DS) are at increased risk of developing distinctive clonal myeloid disorders, including transient abnormal myelopoiesis (TAM) and myeloid leukaemia of DS (ML-DS). TAM connotes a spontaneously resolving congenital myeloproliferative state observed in 10%-20% of DS newborns. Following varying intervals of apparent remission, a proportion of children with TAM progress to develop ML-DS in early childhood. Therefore, TAM and ML-DS represent a biological continuum. Both disorders are characterised by recurring truncating somatic mutations of the GATA1 gene, which are considered key pathogenetic events. METHODS We herein report, to our knowledge, the first observation on the frequency and nature of GATA1 gene mutations in a cohort of Malaysian children with DS-associated TAM (n = 9) and ML-DS (n = 24) encountered successively over a period of five years at a national referral centre. RESULTS Of the 29 patients who underwent GATA1 analysis, GATA1 mutations were observed in 15 (51.7%) patients, including 6 (75.0%) out of 8 patients with TAM, and 9 (42.9%) of 21 patients with ML-DS. All identified mutations were located in exon 2 and the majority were sequence-terminating insertions or deletions (66.7%), including several hitherto unreported mutations (12 out of 15). CONCLUSION The low frequency of GATA1 mutations in ML-DS patients is unusual and potentially indicates distinctive genomic events in our patient cohort.
Collapse
Affiliation(s)
- Su Han Lum
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Soo Sin Choong
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shekhar Krishnan
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Zulqarnain Mohamed
- Unit of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hany Ariffin
- Department of Paediatrics, University Malaya Medical Centre, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, Faculty of Medicine, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Hara Y, Shiba N, Ohki K, Tabuchi K, Yamato G, Park MJ, Tomizawa D, Kinoshita A, Shimada A, Arakawa H, Saito AM, Kiyokawa N, Tawa A, Horibe K, Taga T, Adachi S, Taki T, Hayashi Y. Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-Down syndrome. Genes Chromosomes Cancer 2017; 56:394-404. [DOI: 10.1002/gcc.22444] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yusuke Hara
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Norio Shiba
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Kentaro Ohki
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Ken Tabuchi
- Department of Pediatrics; Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital; Tokyo Japan
| | - Genki Yamato
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Myoung-ja Park
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma; Children's Cancer Center, National Center for Child Health and Development; Tokyo Japan
| | - Akitoshi Kinoshita
- Department of Pediatrics; St Marianna University School of Medicine; Kawasaki Japan
| | - Akira Shimada
- Department of Pediatrics; Okayama University Hospital; Okayama Japan
| | - Hirokazu Arakawa
- Department of Pediatrics; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Akiko M. Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research; National Research Institute for Child Health and Development; Tokyo Japan
| | - Akio Tawa
- Department of Pediatrics; National Hospital Organization Osaka National Hospital; Osaka Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
| | - Takashi Taga
- Department of Pediatrics; Shiga University of Medical Science; Otsu Japan
| | - Souichi Adachi
- Department of Human Health Sciences Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tomohiko Taki
- Department of Molecular Diagnostics and Therapeutics; Kyoto Prefectural University of Medicine Graduate School of Medical Science; Kyoto Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology; Gunma Children's Medical Center; Shibukawa Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center; Nagoya Japan
- Gunma Red Cross Blood Center; Maebashi Japan
| |
Collapse
|
36
|
Sunami Y, Araki M, Kan S, Ito A, Hironaka Y, Imai M, Morishita S, Ohsaka A, Komatsu N. Histone Acetyltransferase p300/CREB-binding Protein-associated Factor (PCAF) Is Required for All- trans-retinoic Acid-induced Granulocytic Differentiation in Leukemia Cells. J Biol Chem 2017; 292:2815-2829. [PMID: 28053092 DOI: 10.1074/jbc.m116.745398] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/30/2016] [Indexed: 01/01/2023] Open
Abstract
Differentiation therapy with all-trans-retinoic acid (ATRA) improves the treatment outcome of acute promyelocytic leukemia (APL); however, the molecular mechanism by which ATRA induces granulocytic differentiation remains unclear. We previously reported that the inhibition of the NAD-dependent histone deacetylase (HDAC) SIRT2 induces granulocytic differentiation in leukemia cells, suggesting the involvement of protein acetylation in ATRA-induced leukemia cell differentiation. Herein, we show that p300/CREB-binding protein-associated factor (PCAF), a histone acetyltransferase (HAT), is a prerequisite for ATRA-induced granulocytic differentiation in leukemia cells. We found that PCAF expression was markedly increased in leukemia cell lines (NB4 and HL-60) and primary APL cells during ATRA-induced granulocytic differentiation. Consistent with these results, the expression of PCAF was markedly up-regulated in the bone marrow cells of APL patients who received ATRA-containing chemotherapy. The knockdown of PCAF inhibited ATRA-induced granulocytic differentiation in leukemia cell lines and primary APL cells. Conversely, the overexpression of PCAF induced the expression of the granulocytic differentiation marker CD11b at the mRNA level. Acetylome analysis identified the acetylated proteins after ATRA treatment, and we found that histone H3, a known PCAF acetylation substrate, was preferentially acetylated by the ATRA treatment. Furthermore, we have demonstrated that PCAF is required for the acetylation of histone H3 on the promoter of ATRA target genes, such as CCL2 and FGR, and for the expression of these genes in ATRA-treated leukemia cells. These results strongly support our hypothesis that PCAF is induced and activated by ATRA, and the subsequent acetylation of PCAF substrates promotes granulocytic differentiation in leukemia cells. Targeting PCAF and its downstream acetylation targets could serve as a novel therapeutic strategy to overcome all subtypes of AML.
Collapse
Affiliation(s)
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | - Shin Kan
- From the Department of Hematology.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan and
| | - Akihiro Ito
- the Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Misa Imai
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan and
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, and
| | | |
Collapse
|
37
|
Semeniak D, Kulawig R, Stegner D, Meyer I, Schwiebert S, Bösing H, Eckes B, Nieswandt B, Schulze H. Proplatelet formation is selectively inhibited by collagen type I through Syk-independent GPVI signaling. J Cell Sci 2016; 129:3473-84. [PMID: 27505889 DOI: 10.1242/jcs.187971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Collagen receptors GPVI (also known as GP6) and integrin α2β1 are highly expressed on blood platelets and megakaryocytes, their immediate precursors. After vessel injury, subendothelial collagen becomes exposed and induces platelet activation to prevent blood loss. Collagen types I and IV are thought to have opposite effects on platelet biogenesis, directing proplatelet formation (PPF) towards the blood vessels to prevent premature release within the marrow cavity. We used megakaryocytes lacking collagen receptors or treated megakaryocytes with blocking antibodies, and could demonstrate that collagen-I-mediated inhibition of PPF is specifically controlled by GPVI. Other collagen types competed for binding and diminished the inhibitory signal, which was entirely dependent on receptor-proximal Src family kinases, whereas Syk and LAT were dispensable. Adhesion assays indicate that megakaryocyte binding to collagens is mediated by α2β1, and that collagen IV at the vascular niche might displace collagen I from megakaryocytes and thus contribute to prevention of premature platelet release into the marrow cavity and thereby directionally promote PPF at the vasculature.
Collapse
Affiliation(s)
- Daniela Semeniak
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Rebecca Kulawig
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Imke Meyer
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Silke Schwiebert
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Hendrik Bösing
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| |
Collapse
|
38
|
Evolution of myeloid leukemia in children with Down syndrome. Int J Hematol 2016; 103:365-72. [PMID: 26910243 DOI: 10.1007/s12185-016-1959-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Children with Down syndrome (DS) have a markedly increased risk of leukemia. They are at particular risk of acute megakaryoblastic leukemia, known as myeloid leukemia associated with DS (ML-DS), the development of which is closely linked to a preceding temporary form of neonatal leukemia called transient abnormal myelopoiesis (TAM). Findings from recent clinical and laboratory studies suggest that constitutional trisomy 21 and GATA1 mutation(s) cause TAM, and that additional genetic alteration(s) including those in epigenetic regulators and signaling molecules are involved in the progression from TAM to ML-DS. Thus, this disease progression represents an important model of multi-step leukemogenesis. The present review focuses on the evolutionary process of TAM to ML-DS, and advances in the understanding of perturbed hematopoiesis in DS with respect to GATA1 mutation and recent findings, including cooperating genetic events, are discussed.
Collapse
|
39
|
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| |
Collapse
|
40
|
Scheenstra MR, Salunkhe V, De Cuyper IM, Hoogenboezem M, Li E, Kuijpers TW, van den Berg TK, Gutiérrez L. Characterization of hematopoietic GATA transcription factor expression in mouse and human dendritic cells. Blood Cells Mol Dis 2015; 55:293-303. [PMID: 26460250 DOI: 10.1016/j.bcmd.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are key initiators and regulators of the immune response. The development of the DC lineage and their subsets requires an orchestrated regulation of their transcriptional program. Gata1, a transcription factor expressed in several hematopoietic cell lineages, has been recently reported to be required for mouse DC development and function. In humans, GATA1 is involved in the lineage separation between monocyte-derived DCs and Langerhans cells (LC) and loss of GATA1 results in differentiation arrest at the monocyte stage. The hematopoietic GATA factors (i.e. Gata1, Gata2, Gata3) are known to regulate each other's expression and to function consecutively throughout lineage commitment (so-called GATA switch). In humans, mutations in GATA2 are causative of MonoMAC disease, a human immunodeficiency syndrome characterized by loss of DCs, monocytes, B and NK cells. However, additional data on the expression of hematopoietic GATA factors in the DC lineage is missing. In this study, we have characterized the expression of hematopoietic GATA factors in murine and human DCs and their expression dynamics upon TLR stimulation. We found that all hematopoietic GATA factors are expressed in DCs, but identified species-specific differences in the relative expression of each GATA factor, and how their expression fluctuates upon stimulation.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vishal Salunkhe
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eveline Li
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Acute megakaryoblastic leukemia with acquired trisomy 21 and GATA1 mutations in phenotypically normal children. Eur J Pediatr 2015; 174:525-31. [PMID: 25266042 DOI: 10.1007/s00431-014-2430-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/14/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED GATA1 mutations are found almost exclusively in children with myeloid proliferations related to Down syndrome (DS). Here, we report two phenotypically and cytogenetically normal children with acute megakaryoblastic leukemia (AMKL) whose blasts had both acquired trisomy 21 and GATA1 mutation. Patient 1 was diagnosed with transient abnormal myelopoiesis in the neonatal period. Following spontaneous improvement of the disease, leukemic blasts increased 7 months later. He received less intensive chemotherapy, and he is now 6 years old in complete remission. Patient 2 was diagnosed with AMKL at the age of 18 months. Although he received intensive chemotherapy and a cord blood transplantation, he died without gaining remission. In both cases, trisomy 21 and GATA1 mutation were detected only in leukemic blasts, but not in germline samples. Based on a literature review, we identified reports describing 14 non-DS AMKL with GATA1 mutation and acquired trisomy 21. Of those, 12 cases were diagnosed during the neonatal period, whereas the remaining 2 cases were diagnosed at the age of 22 and 31 months, respectively. CONCLUSION These cases suggest that GATA1 mutation may cooperate with the additional chromosome 21 in developing myeloid proliferations even in non-DS patients.
Collapse
|
42
|
Abstract
Children with Down syndrome (DS) and acute leukemias acute have unique biological, cytogenetic, and intrinsic factors that affect their treatment and outcome. Myeloid leukemia of Down syndrome (ML-DS) is associated with high event-free survival (EFS) rates and frequently preceded by a preleukemia condition, the transient abnormal hematopoiesis (TAM) present at birth. For acute lymphoblastic leukemia (ALL), their EFS and overall survival are poorer than non-DS ALL, it is important to enroll them on therapeutic trials, including relapse trials; investigate new agents that could potentially improve their leukemia-free survival; and strive to maximize the supportive care these patients need.
Collapse
Affiliation(s)
- Kelly W Maloney
- Center for Cancer & Blood Disorders, Children's Hospital Colorado, 13123 East 16th Avenue, B115, Aurora, CO 80045, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Boulevard, Detroit, MI 48201, USA.
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Boulevard, Detroit, MI 48201, USA
| | - Irene Roberts
- Department of Paediatrics and Molecular Haematology Unit, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Department of Haematology, Weatherall Institute of Molecular Medicine, Oxford University Hospitals NHS Trust, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
43
|
Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies. Sci Rep 2014; 4:6136. [PMID: 25159877 PMCID: PMC4145315 DOI: 10.1038/srep06136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022] Open
Abstract
Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.
Collapse
|
44
|
Abstract
Children with constitutional trisomy 21 (cT21, Down Syndrome, DS) are at a higher risk for both myeloid and B-lymphoid leukaemias. The myeloid leukaemias are often preceded by a transient neonatal pre-leukaemic syndrome, Transient Abnormal Myelopoiesis (TAM). TAM is caused by cooperation between cT21 and acquired somatic N-terminal truncating mutations in the key haematopoietic transcription factor GATA1. These mutations, which are not leukaemogenic in the absence of cT21, are found in almost one-third of neonates with DS. Analysis of primary human fetal liver haematopoietic cells and of human embryonic stem cells demonstrates that cT21 itself substantially alters human fetal haematopoietic development. Consequently, many haematopoietic developmental defects are observed in neonates with DS even in the absence of TAM. Although studies in mouse models have suggested a pathogenic role of deregulated expression of several chromosome 21-encoded genes, their role in human leukaemogenesis remains unclear. As cT21 exists in all embryonic cells, the molecular basis of cT21-associated leukaemias probably reflects a complex interaction between deregulated gene expression in haematopoietic cells and the fetal haematopoietic microenvironment in DS.
Collapse
Affiliation(s)
- Irene Roberts
- Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Doan S, Bertrand KC, Ma JCS, Chauhan A, Warrier R. Leukocytosis in an infant with Down syndrome. Clin Pediatr (Phila) 2014; 53:804-6. [PMID: 24658909 DOI: 10.1177/0009922814527510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sylvia Doan
- University of Queensland School of Medicine, Brisbane, Queensland, Australia
| | - Kelsey C Bertrand
- University of Queensland School of Medicine, Brisbane, Queensland, Australia
| | - Jenson C S Ma
- University of Queensland School of Medicine, Brisbane, Queensland, Australia
| | - Aman Chauhan
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
46
|
Fukuda S, Nagano M, Yamashita T, Kimura K, Tsuboi I, Salazar G, Ueno S, Kondo M, Kunath T, Oshika T, Ohneda O. Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80(+) /Ly6c(+) macrophages in a mouse model of retinal degeneration. Stem Cells 2014; 31:2149-61. [PMID: 23843337 DOI: 10.1002/stem.1469] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 01/23/2023]
Abstract
Retinitis pigmentosa is a group of inherited eye disorders that result in profound vision loss with characteristic retinal neuronal degeneration and vasculature attenuation. In a mouse model of retinitis pigmentosa, endothelial progenitor cells (EPC) from bone marrow rescued the vasculature and photoreceptors. However, the mechanisms and cell types underlying these protective effects were uncertain. We divided EPC, which contribute to angiogenesis, into two subpopulations based on their aldehyde dehydrogenase (ALDH) activity and observed that EPC with low ALDH activity (Alde-Low) had greater neuroprotection and vasoprotection capabilities after injection into the eyes of an rd1 mouse model of retinitis pigmentosa compared with EPC with high ALDH activity (Alde-High). Of note, Alde-Low EPC selectively recruited F4/80(+) /Ly6c(+) monocyte-derived macrophages from bone marrow into retina through CCL2 secretion. In addition, the mRNA levels of CCR2, the neurotrophic factors TGF-β1 and IGF-1, and the anti-inflammatory mediator interleukin-10 were higher in migrated F4/80(+) /Ly6c(+) monocyte-derived macrophages as compared with F4/80(+) /Ly6c(-) resident retinal microglial cells. These results suggest a novel therapeutic approach using EPC to recruit neuroprotective macrophages that delay the progression of neural degenerative disease.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Science; Department of Ophthalmology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, Sanada M, Park MJ, Terui K, Suzuki H, Kon A, Nagata Y, Sato Y, Wang R, Shiba N, Chiba K, Tanaka H, Hama A, Muramatsu H, Hasegawa D, Nakamura K, Kanegane H, Tsukamoto K, Adachi S, Kawakami K, Kato K, Nishimura R, Izraeli S, Hayashi Y, Miyano S, Kojima S, Ito E, Ogawa S. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45:1293-9. [PMID: 24056718 DOI: 10.1038/ng.2759] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome-related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).
Collapse
Affiliation(s)
- Kenichi Yoshida
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 2013; 122:3908-17. [PMID: 24021668 DOI: 10.1182/blood-2013-07-515148] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transient abnormal myelopoiesis (TAM), a preleukemic disorder unique to neonates with Down syndrome (DS), may transform to childhood acute myeloid leukemia (ML-DS). Acquired GATA1 mutations are present in both TAM and ML-DS. Current definitions of TAM specify neither the percentage of blasts nor the role of GATA1 mutation analysis. To define TAM, we prospectively analyzed clinical findings, blood counts and smears, and GATA1 mutation status in 200 DS neonates. All DS neonates had multiple blood count and smear abnormalities. Surprisingly, 195 of 200 (97.5%) had circulating blasts. GATA1 mutations were detected by Sanger sequencing/denaturing high performance liquid chromatography (Ss/DHPLC) in 17 of 200 (8.5%), all with blasts >10%. Furthermore low-abundance GATA1 mutant clones were detected by targeted next-generation resequencing (NGS) in 18 of 88 (20.4%; sensitivity ∼0.3%) DS neonates without Ss/DHPLC-detectable GATA1 mutations. No clinical or hematologic features distinguished these 18 neonates. We suggest the term "silent TAM" for neonates with DS with GATA1 mutations detectable only by NGS. To identify all babies at risk of ML-DS, we suggest GATA1 mutation and blood count and smear analyses should be performed in DS neonates. Ss/DPHLC can be used for initial screening, but where GATA1 mutations are undetectable by Ss/DHPLC, NGS-based methods can identify neonates with small GATA1 mutant clones.
Collapse
|
49
|
Roberts I, O'Connor D, Roy A, Cowan G, Vyas P. The impact of trisomy 21 on foetal haematopoiesis. Blood Cells Mol Dis 2013; 51:277-81. [PMID: 23932236 DOI: 10.1016/j.bcmd.2013.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/03/2013] [Indexed: 01/09/2023]
Abstract
The high frequency of a unique neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM), and subsequent acute myeloid leukaemia in early childhood in patients with trisomy 21 (Down syndrome) points to a specific role for trisomy 21 in transforming foetal haematopoietic cells. N-terminal truncating mutations in the key haematopoietic transcription factor GATA1 are acquired during foetal life in virtually every case. These mutations are not leukaemogenic in the absence of trisomy 21. In mouse models, deregulated expression of chromosome 21-encoded genes is implicated in leukaemic transformation, but does not recapitulate the effects of trisomy 21 in a human context. Recent work using primary human foetal liver and bone marrow cells, human embryonic stem cells and iPS cells shows that prior to acquisition of GATA1 mutations, trisomy 21 itself alters human foetal haematopoietic stem cell and progenitor cell biology causing multiple abnormalities in myelopoiesis and B-lymphopoiesis. The molecular basis by which trisomy 21 exerts these effects is likely to be extremely complex, to be tissue-specific and lineage-specific and to be dependent on ontogeny-related characteristics of the foetal microenvironment.
Collapse
Affiliation(s)
- Irene Roberts
- Centre for Haematology, Imperial College London, UK.
| | | | | | | | | |
Collapse
|
50
|
Sekiguchi K, Maeda T, Suenobu SI, Kunisaki N, Shimizu M, Kiyota K, Handa YS, Akiyoshi K, Korematsu S, Aoki Y, Matsubara Y, Izumi T. A transient myelodysplastic/myeloproliferative neoplasm in a patient with cardio-facio-cutaneous syndrome and a germline BRAFmutation. Am J Med Genet A 2013; 161A:2600-3. [DOI: 10.1002/ajmg.a.36107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/26/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuhito Sekiguchi
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | - Tomoki Maeda
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | | | - Nobutaka Kunisaki
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | - Miki Shimizu
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | - Kyoko Kiyota
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | - Yo-suke Handa
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | - Kensuke Akiyoshi
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| | | | - Yoko Aoki
- Department of Medical Genetics; Tohoku University School of Medicine; Sendai; Japan
| | - Yoichi Matsubara
- Department of Medical Genetics; Tohoku University School of Medicine; Sendai; Japan
| | - Tatsuro Izumi
- Department of Pediatrics and Child Neurology; Oita University Faculty of Medicine; Oita; Japan
| |
Collapse
|