1
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Pena R, Lopes P, Gaspar G, Miranda A, Faustino P. Ancestry of the major long-range regulatory site of the α-globin genes in the Portuguese population with the common 3.7 kb α-thalassemia deletion. Mol Biol Rep 2024; 51:612. [PMID: 38704770 PMCID: PMC11070386 DOI: 10.1007/s11033-024-09530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.
Collapse
Affiliation(s)
- Rita Pena
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal
| | - Pedro Lopes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal
| | - Gisela Gaspar
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Armandina Miranda
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Paula Faustino
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, Lisboa, 1649-016, Portugal.
- Grupo Ecogenética e Saúde Humana, Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisboa, Portugal.
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Li H, Zeng J, Zhao Y, Xu X. MZF1 regulates α-globin gene transcription via long-range interactions in erythroid differentiation. Blood Cells Mol Dis 2020; 87:102533. [PMID: 33352376 DOI: 10.1016/j.bcmd.2020.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Precise spatiotemporal gene expression regulation is crucial for human erythropoiesis. However, dramatic changes in the chromatin structure and transcriptome involved in α-globin gene expression during erythropoiesis still not fully understand. To identify candidate regulators for α-globin gene regulation, we carried out an integrated approach by integrating publicly available transcriptomic and epigenomic data. We computed active enhancers by overlapping enriched regions marked with H3K4me1 and H3K27ac and correlated their activity with mRNA expression. Next, we cataloged potential transcription factors via de novo motif analysis. We highlighted the discovery of potential novel transcription factor MZF1 of the α-globin gene in erythroid differentiation. To validate the role of MZF1, we quantified the expression level of MZF1 and α-globin gene in HSPCs, early erythroid progenitors and late erythroid precursors cells. Both the mRNA and protein expression patterns of MZF1 were consistent with the α-globin gene. Also, the qPCR result showed that the expression of the α-globin gene was significantly increased by the MZF1 overexpression. To further investigate the role of MZF1 regulating α-globin gene transcriptional activity during erythroid differentiation, we performed ChIP-qPCR at the α-globin locus. Our results showed that MZF1 recruitment both at 4 upstream HS sites and α-globin gene promoter in erythroid precursor cells. To determine the importance of the MZF1 to enhancer-promoter interaction at the α-globin locus, we compared interaction frequency before and after knockdown of MZF1 by chromosome conformation capture (3C) assay. Upon MZF1 depletion, both the expression of the α-globin gene and all 3C signals were significantly decreased. Taken together, MZF1 plays an important role in regulating α-globin gene expression by binding to long-region enhancers and α-globin gene promoter and facilitates the organization of specific 3D chromatin architecture in erythroid differentiation.
Collapse
Affiliation(s)
- Haoli Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jingjing Zeng
- The Central Laboratory, The Second People's Hospital of Shenzhen, Shenzhen 518035, People's Republic of China
| | - Yongzhong Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Zhang D, Iwabuchi S, Baba T, Hashimoto SI, Mukaida N, Sasaki SI. Involvement of a Transcription factor, Nfe2, in Breast Cancer Metastasis to Bone. Cancers (Basel) 2020; 12:cancers12103003. [PMID: 33081224 PMCID: PMC7602858 DOI: 10.3390/cancers12103003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) is frequently complicated by bone metastasis, which deteriorates the life expectancy of this patient cohort. In order to develop a novel type of therapy for bone metastasis, we established 4T1.3 clone with a high capacity to metastasize to bone after orthotopic injection, from a murine TNBC cell line, 4T1.0. To elucidate the molecular mechanism underlying a high growth ability of 4T1.3 in a bone cavity, we searched for a novel candidate molecule with a focus on a transcription factor whose expression was selectively enhanced in a bone cavity. Comprehensive gene expression analysis detected enhanced Nfe2 mRNA expression in 4T1.3 grown in a bone cavity, compared with in vitro culture conditions. Moreover, Nfe2 gene transduction into 4T1.0 cells enhanced their capability to form intraosseous tumors. Moreover, Nfe2 shRNA treatment reduced tumor formation arising from intraosseous injection of 4T1.3 clone as well as another mouse TNBC-derived TS/A.3 clone with an augmented intraosseous tumor formation ability. Furthermore, NFE2 expression was associated with in vitro growth advantages of these TNBC cell lines under hypoxic condition, which mimics the bone microenvironment, as well as Wnt pathway activation. These observations suggest that NFE2 can potentially contribute to breast cancer cell survival in the bone microenvironment.
Collapse
Affiliation(s)
- Di Zhang
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - Shin-ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; (S.I.); (S.-i.H.)
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
| | - So-ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa 920-1192, Japan; (D.Z.); (T.B.); (N.M.)
- Correspondence: ; Tel.: +81-76-674-6736
| |
Collapse
|
5
|
Luteolin modulates gene expression related to steroidogenesis, apoptosis, and stress response in rat LC540 tumor Leydig cells. Cell Biol Toxicol 2019; 36:31-49. [DOI: 10.1007/s10565-019-09481-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/27/2019] [Indexed: 01/09/2023]
|
6
|
Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:120305. [PMID: 23766848 PMCID: PMC3677633 DOI: 10.1155/2013/120305] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1), and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.
Collapse
|
7
|
Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20:1064-83. [PMID: 20566737 DOI: 10.1101/gr.104935.110] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.
Collapse
|
8
|
Zhou Z, Li X, Deng C, Ney PA, Huang S, Bungert J. USF and NF-E2 cooperate to regulate the recruitment and activity of RNA polymerase II in the beta-globin gene locus. J Biol Chem 2010; 285:15894-905. [PMID: 20236933 DOI: 10.1074/jbc.m109.098376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human beta-globin gene is expressed at high levels in erythroid cells and regulated by proximal and distal cis-acting DNA elements, including promoter, enhancer, and a locus control region (LCR). Transcription complexes are recruited not only to the globin gene promoters but also to the LCR. Previous studies have implicated the ubiquitously expressed transcription factor USF and the tissue-restricted activator NF-E2 in the recruitment of transcription complexes to the beta-globin gene locus. Here we demonstrate that although USF is required for the efficient association of RNA polymerase II (Pol II) with immobilized LCR templates, USF and NF-E2 together regulate the association of Pol II with the adult beta-globin gene promoter. Recruitment of Pol II to the LCR occurs in undifferentiated murine erythroleukemia cells, but phosphorylation of LCR-associated Pol II at serine 5 of the C-terminal domain is mediated by erythroid differentiation and requires the activity of NF-E2. Furthermore, we provide evidence showing that USF interacts with NF-E2 in erythroid cells. The data provide mechanistic insight into how ubiquitous and tissue-restricted transcription factors cooperate to regulate the recruitment and activity of transcription complexes in a tissue-specific chromatin domain.
Collapse
Affiliation(s)
- Zhuo Zhou
- Department of Biochemistry and Molecular Biology, Powell Gene Therapy Center, Center for Epigenetics, and Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhou GL, Xin L, Song W, Di LJ, Liu G, Wu XS, Liu DP, Liang CC. Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol Cell Biol 2006; 26:5096-105. [PMID: 16782894 PMCID: PMC1489176 DOI: 10.1128/mcb.02454-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerases can be shared by a particular group of genes in a transcription "factory" in nuclei, where transcription may be coordinated in concert with the distribution of coexpressed genes in higher-eukaryote genomes. Moreover, gene expression can be modulated by regulatory elements working over a long distance. Here, we compared the conformation of a 130-kb chromatin region containing the mouse alpha-globin cluster and their flanking housekeeping genes in 14.5-day-postcoitum fetal liver and brain cells. The analysis of chromatin conformation showed that the active alpha1 and alpha2 globin genes and upstream regulatory elements are in close spatial proximity, indicating that looping may function in the transcriptional regulation of the mouse alpha-globin cluster. In fetal liver cells, the active alpha1 and alpha2 genes, but not the inactive zeta gene, colocalize with neighboring housekeeping genes C16orf33, C16orf8, MPG, and C16orf35. This is in sharp contrast with the mouse alpha-globin genes in nonexpressing cells, which are separated from the congregated housekeeping genes. A comparison of RNA polymerase II (Pol II) occupancies showed that active alpha1 and alpha2 gene promoters have a much higher RNA Pol II enrichment in liver than in brain. The RNA Pol II occupancy at the zeta gene promoter, which is specifically repressed during development, is much lower than that at the alpha1 and alpha2 promoters. Thus, the mouse alpha-globin gene cluster may be regulated through moving in or out active globin gene promoters and regulatory elements of a preexisting transcription factory in the nucleus, which is maintained by the flanking clustered housekeeping genes, to activate or inactivate alpha-globin gene expression.
Collapse
Affiliation(s)
- Guo-Ling Zhou
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brecht K, Simonen M, Kamke M, Heim J. Hematopoietic transcription factor GATA-2 promotes upregulation of alpha globin and cell death in FL5.12 cells. Apoptosis 2006; 10:1063-78. [PMID: 16151640 DOI: 10.1007/s10495-005-0623-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently we showed that alpha globin is a novel pro-apoptotic factor in programmed cell death in the pro-B cell line, FL5.12. Alpha globin was also upregulated in various other cell lines after different apoptotic stimuli. Under withdrawal of IL-3, overexpression of alpha globin accelerated apoptosis in FL5.12. Here, we have studied how transcription of alpha globin is placed in the broader context of apoptosis. We used Affymetrix chip technology and RT QPCR to compare expression patterns of FL5.12 cells growing with or without IL-3 to search for transcription factors which were concomitantly upregulated with alpha globin. The erythroid-specific transcription factor GATA-2 was the earliest and most prominently upregulated candidate. GATA-1 was expressed at low levels and was weakly induced while GATA-3 was completely absent. To evaluate the influence of GATA-2 on alpha globin expression and cell viability we overexpressed GATA-2 in FL5.12 cells. Interestingly, high expression of GATA-2 resulted in cell death and elevated alpha globin levels in FL5.12 cells. Transduction of antisense GATA-2 prevented both increase of GATA-2 and alpha globin under apoptotic conditions and delayed cell death. We suggest a role of GATA-2 in apoptosis besides its function in maintenance and proliferation of immature hematopoietic progenitors.
Collapse
Affiliation(s)
- K Brecht
- Novartis Institutes for BioMedical Research Basel, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|
11
|
Anguita E, Hughes J, Heyworth C, Blobel GA, Wood WG, Higgs DR. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J 2004; 23:2841-52. [PMID: 15215894 PMCID: PMC514941 DOI: 10.1038/sj.emboj.7600274] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 05/24/2004] [Indexed: 11/10/2022] Open
Abstract
How does an emerging transcriptional programme regulate individual genes as stem cells undergo lineage commitment, differentiation and maturation? To answer this, we have analysed the dynamic protein/DNA interactions across 130 kb of chromatin containing the mouse alpha-globin cluster in cells representing all stages of differentiation from stem cells to mature erythroblasts. The alpha-gene cluster appears to be inert in pluripotent cells, but priming of expression begins in multipotent haemopoietic progenitors via GATA-2. In committed erythroid progenitors, GATA-2 is replaced by GATA-1 and binding is extended to additional sites including the alpha-globin promoters. Both GATA-1 and GATA-2 nucleate the binding of various protein complexes including SCL/LMO2/E2A/Ldb-1 and NF-E2. Changes in protein/DNA binding are accompanied by sequential alterations in long-range histone acetylation and methylation. The recruitment of polymerase II, which ultimately leads to a rapid increase in alpha-globin transcription, occurs late in maturation. These studies provide detailed evidence for the more general hypothesis that commitment and differentiation are primarily driven by the sequential appearance of key transcriptional factors, which bind chromatin at specific, high-affinity sites.
Collapse
Affiliation(s)
- Eduardo Anguita
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Jim Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Clare Heyworth
- Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK
| | - Gerd A Blobel
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - William G Wood
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK. Tel.: +44 1865 222393; Fax: +44 1865 222500; E-mail:
| |
Collapse
|