1
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
2
|
Li N. Platelets as an inter-player between hyperlipidaemia and atherosclerosis. J Intern Med 2024; 296:39-52. [PMID: 38704820 DOI: 10.1111/joim.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Platelet hyperreactivity and hyperlipidaemia contribute significantly to atherosclerosis. Thus, it is desirable to review the platelet-hyperlipidaemia interplay and its impact on atherogenesis. Native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) are the key proatherosclerotic components of hyperlipidaemia. nLDL binds to the platelet-specific LDL receptor (LDLR) ApoE-R2', whereas oxLDL binds to the platelet-expressed scavenger receptor CD36, lectin-type oxidized LDLR 1 and scavenger receptor class A 1. Ligation of nLDL/oxLDL induces mild platelet activation and may prime platelets for other platelet agonists. Platelets, in turn, can modulate lipoprotein metabolisms. Platelets contribute to LDL oxidation by enhancing the production of reactive oxygen species and LDLR degradation via proprotein convertase subtilisin/kexin type 9 release. Platelet-released platelet factor 4 and transforming growth factor β modulate LDL uptake and foam cell formation. Thus, platelet dysfunction and hyperlipidaemia work in concert to aggravate atherogenesis. Hypolipidemic drugs modulate platelet function, whereas antiplatelet drugs influence lipid metabolism. The research prospects of the platelet-hyperlipidaemia interplay in atherosclerosis are also discussed.
Collapse
Affiliation(s)
- Nailin Li
- Karolinska Institutet, Department of Medicine-Solna, Division of Cardiovascular Medicine, Stockholm, Sweden
| |
Collapse
|
3
|
Platelet Redox Imbalance in Hypercholesterolemia: A Big Problem for a Small Cell. Int J Mol Sci 2022; 23:ijms231911446. [PMID: 36232746 PMCID: PMC9570056 DOI: 10.3390/ijms231911446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance between reactive oxygen species (ROS) synthesis and their scavenging by anti-oxidant defences is the common soil of many disorders, including hypercholesterolemia. Platelets, the smallest blood cells, are deeply involved in the pathophysiology of occlusive arterial thrombi associated with myocardial infarction and stroke. A great deal of evidence shows that both increased intraplatelet ROS synthesis and impaired ROS neutralization are implicated in the thrombotic process. Hypercholesterolemia is recognized as cause of atherosclerosis, cerebro- and cardiovascular disease, and, closely related to this, is the widespread acceptance that it strongly contributes to platelet hyperreactivity via direct oxidized LDL (oxLDL)-platelet membrane interaction via scavenger receptors such as CD36 and signaling pathways including Src family kinases (SFK), mitogen-activated protein kinases (MAPK), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In turn, activated platelets contribute to oxLDL generation, which ends up propagating platelet activation and thrombus formation through a mechanism mediated by oxidative stress. When evaluating the effect of lipid-lowering therapies on thrombogenesis, a large body of evidence shows that the effects of statins and proprotein convertase subtilisin/kexin type 9 inhibitors are not limited to the reduction of LDL-C but also to the down-regulation of platelet reactivity mainly by mechanisms sensitive to intracellular redox balance. In this review, we will focus on the role of oxidative stress-related mechanisms as a cause of platelet hyperreactivity and the pathophysiological link of the pleiotropism of lipid-lowering agents to the beneficial effects on platelet function.
Collapse
|
4
|
Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int J Mol Sci 2022; 23:ijms23169199. [PMID: 36012465 PMCID: PMC9409144 DOI: 10.3390/ijms23169199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.
Collapse
|
5
|
Miyazaki A, Uehara T, Usami Y, Ishimine N, Sugano M, Tozuka M. Highly oxidized low-density lipoprotein does not facilitate platelet aggregation. J Int Med Res 2020; 48:300060520958960. [PMID: 33100088 PMCID: PMC7607141 DOI: 10.1177/0300060520958960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to examine whether oxidized low-density lipoprotein (oxLDL) facilitates platelet aggregation, which is one cause for development of cardiovascular disease. METHODS The susceptibility of platelets to aggregation was monitored by light transmittance aggregometry and a laser light scattering method using low-density lipoprotein (LDL) and oxLDL as agonists. β-thromboglobulin (β-TG) levels released from platelets were also measured after incubation with or without oxLDL. RESULTS Platelet aggregation was suppressed by oxLDL as estimated by maximum light transmission. Additionally, adenosine diphosphate-induced further aggregation was slightly reduced by the presence of oxLDL. Aggregation levels of a low number of platelets, which was determined by the laser light scattering method, were lower upon addition of oxLDL compared with unoxidized LDL. After a short time of incubation, oxLDL increased secreted β-TG levels in platelet-rich plasma. However, further incubation with oxLDL caused relatively lower secreted β-TG levels compared with incubation with unoxidized LDL. This fluctuation was not due to β-TG degradation by oxLDL. CONCLUSIONS Levels of oxLDL in vitro weakly activate platelets at an early stage, but then inhibit platelet function, such as aggregation and β-TG secretion.
Collapse
Affiliation(s)
- Akari Miyazaki
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Nau Ishimine
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Mitsutoshi Sugano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| |
Collapse
|
6
|
Bekeschus S, Brüggemeier J, Hackbarth C, Weltmann KD, von Woedtke T, Partecke LI, van der Linde J. The feed gas composition determines the degree of physical plasma-induced platelet activation for blood coagulation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6595/aaaf0e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G, Söderberg-Nauclér C, Assinger A. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34:571-80. [PMID: 24371083 DOI: 10.1161/atvbaha.113.302919] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE A growing body of evidence indicates that platelets contribute to the onset and progression of atherosclerosis by modulating immune responses. We aimed to elucidate the effects of oxidized low-density lipoprotein (OxLDL) on platelet-monocyte interactions and the consequences of these interactions on platelet phagocytosis, chemokine release, monocyte extravasation, and foam cell formation. APPROACH AND RESULTS Confocal microscopy and flow cytometric analysis revealed that in vitro and in vivo stimulation with OxLDL resulted in rapid formation of platelet-monocyte aggregates, with a preference for CD16+ monocyte subsets. This platelet-monocyte interaction facilitated OxLDL uptake by monocytes, in a process that involved platelet CD36-OxLDL interaction, release of chemokines, such as CXC motif ligand 4, direct platelet-monocyte interaction, and phagocytosis of platelets. Inhibition of cyclooxygenase with acetylsalicylic acid and antagonists of ADP receptors, P2Y1 and P2Y12, partly abrogated OxLDL-induced platelet-monocyte aggregates and platelet-mediated lipid uptake in monocytes. Platelets also enhanced OxLDL-induced monocyte transmigration across an endothelial monolayer via direct interaction with monocytes in a transwell assay. Importantly, in LDLR(-/-) mice, platelet depletion resulted in a significant decrease of peritoneal macrophage recruitment and foam cell formation in a thioglycollate-elicited peritonitis model. In platelet-depleted wild-type mice, transfusion of ex vivo OxLDL-stimulated platelets induced monocyte extravasation to a higher extent when compared with resting platelets. CONCLUSIONS Our results on OxLDL-mediated platelet-monocyte aggregate formation, which promoted phenotypic changes in monocytes, monocyte extravasation and enhanced foam cell formation in vitro and in vivo, provide a novel mechanism for how platelets potentiate key steps of atherosclerotic plaque development and plaque destabilization.
Collapse
Affiliation(s)
- Sigrun Badrnya
- From the Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (S.B., W.C.S., J.B.K., I.V., G.S., A.A.); and Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden (K.-C.Y., C.S.-N., A.A.)
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Han J, Shuvaev VV, Muzykantov VR. Targeted interception of signaling reactive oxygen species in the vascular endothelium. Ther Deliv 2012; 3:263-76. [PMID: 22834201 PMCID: PMC5333711 DOI: 10.4155/tde.11.151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are implicated as injurious and as signaling agents in human maladies including inflammation, hyperoxia, ischemia-reperfusion and acute lung injury. ROS produced by the endothelium play an important role in vascular pathology. They quench, for example, nitric oxide, and mediate pro-inflammatory signaling. Antioxidant interventions targeted for the vascular endothelium may help to control these mechanisms. Animal studies have demonstrated superiority of targeting ROS-quenching enzymes catalase and superoxide dismutase to endothelial cells over nontargeted formulations. A diverse arsenal of targeted antioxidant formulations devised in the last decade shows promising results for specific quenching of endothelial ROS. In addition to alleviation of toxic effects of excessive ROS, these targeted interventions suppress pro-inflammatory mechanisms, including endothelial cytokine activation and barrier disruption. These interventions may prove useful in experimental biomedicine and, perhaps, in translational medicine.
Collapse
Affiliation(s)
- Jingyan Han
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| | - Vladimir V Shuvaev
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| | - Vladimir R Muzykantov
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| |
Collapse
|
10
|
Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592. [PMID: 22154653 PMCID: PMC3348846 DOI: 10.1016/j.freeradbiomed.2011.11.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.
Collapse
Affiliation(s)
- Peter R Kvietys
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| |
Collapse
|
11
|
Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 2010; 67:2363-86. [PMID: 20213276 PMCID: PMC11115602 DOI: 10.1007/s00018-010-0306-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/28/2010] [Accepted: 02/05/2010] [Indexed: 02/05/2023]
Abstract
The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.
Collapse
Affiliation(s)
- Hans-Dieter Flad
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|
12
|
Keating FK, Fung MK, Schneider DJ. Induction of platelet white blood cell (WBC) aggregate formation by platelets and WBCs in red blood cell units. Transfusion 2008; 48:1099-105. [DOI: 10.1111/j.1537-2995.2008.01692.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Chen K, Febbraio M, Li W, Silverstein RL. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008; 102:1512-9. [PMID: 18497330 DOI: 10.1161/circresaha.108.172064] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platelet hyperactivity associated with hyperlipidemia may contribute to development of a prothrombotic state. We previously showed that oxidized low-density lipoprotein (oxLDL) formed in the setting of hyperlipidemia and atherosclerosis activated platelets in a CD36-dependent manner. We now show that mitogen-activated protein kinase c-Jun N-terminal kinase (JNK)2 and its upstream activator MKK4 were phosphorylated in platelets exposed to oxLDL. Using apoE(-/-) mice as a model of hyperlipidemia, we showed that JNK was constitutively phosphorylated in platelets in a CD36-dependent manner. Inhibition of src kinase activity reduced JNK phosphorylation by oxLDL. Immunoprecipitations revealed that active phosphorylated forms of src kinases Fyn and Lyn were recruited to CD36 in platelets exposed to oxLDL. Pharmacological inhibition of the mitogen-activated protein kinase JNK or src family kinases abolished platelet activation by oxLDL in vitro. Using a murine carotid artery thrombosis model we demonstrated CD36-dependent phosphorylation of platelet JNK within thrombi. Furthermore, pharmacological inhibition of JNK prolonged thrombosis times in wild-type but not cd36-null mice in vivo. These findings suggest that a specific CD36-dependent signaling pathway is required for platelet activation by oxLDL and may provide insights related to development of novel antiplatelet therapies more relevant to atherothrombosis than to normal hemostasis.
Collapse
Affiliation(s)
- Kan Chen
- Program in Cell Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
14
|
Platelet-stimulating effects of oxidized LDL are not attributable to toxic properties of the lipoproteins. Thromb Res 2008; 122:630-9. [PMID: 18387657 DOI: 10.1016/j.thromres.2008.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/21/2007] [Accepted: 01/27/2008] [Indexed: 02/02/2023]
Abstract
One prominent feature of oxidized LDL (OxLDL) is their ability to activate human platelets and effects of OxLDL on platelet function have been shown to depend on the chemical mechanisms that form the basis for the oxidation process. In this regard, the possibility that the observed platelet-stimulating properties of OxLDL might be a direct consequence of cytotoxic effects mediated by these lipoproteins merits further investigation, as experimental strategies to overcome the toxic effects of OxLDL towards a variety of different cell types did not yield conclusive results. In the present work, we show that copper-oxidized LDL mediate severe toxic effects towards a macrophage cell line (decrease in both the number of adherent cells and the amount of incorporated tritiated thymidine, induction of apoptosis and subsequent loss of membrane integrity)--effects that are presumably attributable to products emerging from lipid peroxidation. When added to resting human platelets, copper oxidized LDL stimulate platelets but are not able to trigger an aggregation response on their own. In contrast, hypochlorite-oxidized LDL are able to trigger platelet aggregation, but do not mediate toxic effects towards nucleated cells. Even in the absence of exogenous antioxidants, these lipoproteins mediate cytostatic effects but do not negatively affect cell viability. As a conclusion, platelet-activating effects of oxidatively modified LDL are not attributable to toxic properties of the lipoproteins and this finding might expand possibilities for therapeutical intervention.
Collapse
|
15
|
Rao J, DiGiandomenico A, Unger J, Bao Y, Polanowska-Grabowska RK, Goldberg JB. A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2008; 154:654-665. [PMID: 18227268 DOI: 10.1099/mic.0.2007/011429-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel protein, PA0122, has been identified in Pseudomonas aeruginosa and shown to bind to oxidized low-density lipoprotein (Ox-LDL). The PA0122 gene was recognized based on gene expression pattern differences between two strains of P. aeruginosa isolated from the sputum of an individual with cystic fibrosis (CF). There was an approximately eightfold increase in PA0122 expression in the non-mucoid strain 383, compared to that in the mucoid strain 2192. Quantitative real-time RT-PCR (qRT-PCR) supported PA0122 transcript expression differences between strains 383 and 2192 and revealed growth-phase dependence, with the highest level of expression at early stationary phase (OD(600) 1.5). PA0122 encodes a 136 aa 'conserved hypothetical' protein that has similarity to Aspergillus fumigatus Asp-haemolysin, which is an Ox-LDL-binding protein, and possessed a motif that is homologous to the fungal aegerolysin family of proteins. Antibodies produced to purified recombinant PA0122 recognized a 16 kDa protein band in cell lysates as well as in the supernatant fractions of strain 383. The PA0122 protein expression pattern was growth phase-dependent, with maximal production observed at OD(600) 1.5 that was consistent with the PA0122 transcript expression profile. Subcellular fractionation studies revealed differences in the localization of PA0122 between strains 383 and 2192. In 383, PA0122 was observed in the cytoplasm and in membrane fractions. In 2192, PA0122 was found in the cytoplasm but was not detected in membrane fractions. Surface plasmon resonance revealed that recombinant PA0122 binds with high affinity to Ox-LDL and to its major subcomponent, lysophosphatidylcholine, but not to non-oxidized LDL.
Collapse
Affiliation(s)
- Jayasimha Rao
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Jason Unger
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Yongde Bao
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Renata K Polanowska-Grabowska
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Joanna B Goldberg
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| |
Collapse
|
16
|
Gunst MA, Minei JP. Transfusion of blood products and nosocomial infection in surgical patients. Curr Opin Crit Care 2007; 13:428-32. [PMID: 17599014 DOI: 10.1097/mcc.0b013e32826385ef] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Liberal transfusion of blood products may be associated with a worse clinical outcome, including in-hospital mortality. This review focuses on the mechanisms by which transfusions may result in an increased risk of bacterial infection. RECENT FINDINGS The association between blood transfusion and worse outcome has been attributed to suppression of the recipient's immune function, the so called transfusion-related immunomodulation effect, as well as changes that may occur as blood ages. Despite several attempts to identify the mechanism by which transfusion worsens outcomes, this mechanism, as well as the role of leukoreduction in the mitigation of transfusion-related immunomodulation, have yet to be demonstrated. Bacterial contamination of the blood supply has become a serious problem in the past 20 years, and is currently the second leading cause of transfusion-associated death. Since the implementation of specific platelet transfusion protocols, the incidence of morbidity and mortality caused by infected platelet units appears to be markedly reduced. SUMMARY Transfusion of blood and blood products can be life-saving interventions. Consequences of transfusion may ultimately result in worse outcomes. More research will be required in order to identify indications and practices that optimize outcomes of surgical patients who require a blood transfusion.
Collapse
Affiliation(s)
- Mark A Gunst
- Department of Surgery, Division of Burn/Trauma/Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9158, USA
| | | |
Collapse
|
17
|
Gleissner CA, Leitinger N, Ley K. Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension 2007; 50:276-83. [PMID: 17548720 DOI: 10.1161/hypertensionaha.107.089854] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christian A Gleissner
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
18
|
Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 2007; 27:728-39. [PMID: 17272754 DOI: 10.1161/01.atv.0000259359.52265.62] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelet adhesion and aggregation at sites of vascular injury are two key events in hemostasis and thrombosis. Because of exciting advances in genetic engineering, the mouse has become an important and frequently used model to unravel the molecular mechanisms underlying the multistep process leading to the formation of a stable platelet plug. In gene-targeted mice, the crucial importance of platelet adhesion receptors such as glycoprotein Ib alpha or the alphaIIb beta3 integrin has been confirmed and further clarified. Their absence leads to highly impaired thrombus formation, independent of the model used to induce vascular injury. In contrast, the relative contribution of other receptors, such as glycoprotein VI, or of various platelet ligands may be regulated by the severity of injury, the type of vessel injured, and the signaling pathways that are generated. Murine models have also helped improve understanding of the second wave of events that leads to stabilization of the platelet aggregate. Despite the current limitations due to lack of standardization and the virtual absence of thrombosis models in diseased vessels, there is no doubt that the mouse will play a key role in the discovery and characterization of the next generation of antithrombotic agents. This review focuses on key findings about the molecular mechanisms supporting hemostasis and thrombosis that have been obtained with genetically engineered mouse models deficient in various platelet adhesion receptors and ligands. Combination of these models with sophisticated methods allowing direct visualization of platelet-vessel wall interactions after injury greatly contributed to recent advances in the field.
Collapse
|
19
|
Koller E, Volf I, Gurvitz A, Koller F. Modified Low-Density Lipoproteins and High-Density Lipoproteins. PATHOPHYSIOLOGY OF HAEMOSTASIS AND THROMBOSIS 2006; 35:322-45. [PMID: 16877881 DOI: 10.1159/000093225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has long been known that the oxidative state of the various plasma lipoproteins modulates platelet aggregability, thereby contributing to atherogenesis. Low-density lipoprotein (LDL), occurring in vivo both in the native and oxidised forms, interacts directly with platelets, by binding to specific receptors. While the identity of the receptors for native LDL and some subfractions of high-density lipoproteins (HDL) remains disputed, apoE-containing HDL(2) binds to LRP8. The nature of these interactions as well as the distinction between candidate receptor proteins was elucidated using covalently modified apolipoproteins, which pointed to the participation of apolipoproteins in high affinity binding. However, the platelet effects initiated by binding of native lipoproteins remain controversial. Some of this ambiguity can be traced to the fact that native LDL inevitably undergoes substantial oxidisation upon modification, including by radiolabelling. The platelet-activating effects provoked by oxidised LDL are irrefutable, but many details remain unknown. The role of CD36 in platelet binding by oxidised LDL is well established, although additional receptors may exist. Much less is known about the interaction of oxidised HDL with platelets, since platelet activation was observed in some, but not all studies. Various frequently applied in vitro oxidation methods produce modified lipoprotein species that may not be relevant in vivo. Based on the reported modifications obtained by in vitro oxidation of LDL, early investigations focused mainly on the formation and the eventual effects of oxidised lipids. More recently, alterations to lipoproteins performed using hypochloric acid and myeloperoxidase redirected the attention to the role of modified apoproteins in triggering platelet responses.
Collapse
Affiliation(s)
- Elisabeth Koller
- Department of Physiology, Center of Physiology and Pathophysiology, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
20
|
Rana JS, Nasir K, Santos RD, Roguin A, Orakzai SH, Carvalho JAM, Meneghello R, Blumenthal RS. Increased level of cardiorespiratory fitness blunts the inflammatory response in metabolic syndrome. Int J Cardiol 2006; 110:224-30. [PMID: 16290227 DOI: 10.1016/j.ijcard.2005.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 08/21/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The presence of metabolic syndrome is associated with a higher degree of inflammation. We sought to assess whether the higher levels of cardiorespiratory fitness attenuate the levels of inflammation in people with metabolic syndrome. RESEARCH DESIGN AND METHODS We studied 449 consecutive asymptomatic men (47+/-7 years) who underwent a maximal treadmill exercise test according to the Bruce protocol. Cardiorespiratory fitness was divided into tertiles based on metabolic equivalents (METs). White blood cells (WBC) (x10(9) cells/L) count was used as marker of inflammation. RESULTS In our study population, 23% of the participants had the metabolic syndrome. The WBC count increased (p < 0.0001 for trend) with increasing number of risk factors for metabolic syndrome; however there was an inverse relationship (p < 0.0001 for trend) with increasing tertiles of fitness (6.47 cells x 10(9) cells/L for lowest tertile and 5.7 x 10(9) cells/L for highest tertile). Multiple linear regression analyses demonstrated that as compared to individuals with no MS risk factor, the WBC count remained significantly higher in men with metabolic syndrome in first tertile (regression coefficient: 1.2, 95% CI 0.4-2.0, p = 0.003) and second tertile (regression coefficient: 0.61, 95% CI 0.4-2.0, p = 0.02) of cardiorespiratory fitness, respectively. However, in the highest tertile of fitness no increase in level of WBC count was observed with increasing metabolic syndrome risk factors. CONCLUSION Our findings suggest that in people with metabolic syndrome an increased level of physical fitness might exert its beneficial effect via attenuating inflammation.
Collapse
Affiliation(s)
- Jamal S Rana
- Department of Medicine, University of Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:392-415. [PMID: 16698314 DOI: 10.1016/j.bbalip.2006.03.024] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Substantial evidence supports the notion that oxidative processes contribute to the pathogenesis of atherosclerosis and coronary heart disease. The nature of the oxidants that give rise to the elevated levels of oxidised lipids and proteins, and decreased levels of antioxidants, detected in human atherosclerotic lesions are, however, unclear, with multiple species having been invoked. Over the last few years, considerable data have been obtained in support of the hypothesis that oxidants generated by the heme enzyme myeloperoxidase play a key role in oxidation reactions in the artery wall. In this article, the evidence for a role of myeloperoxidase, and oxidants generated therefrom, in the modification of low-density lipoprotein, the major source of lipids in atherosclerotic lesions, is reviewed. Particular emphasis is placed on the reactions of the reactive species generated by this enzyme, the mechanisms and sites of damage, the role of modification of the different components of low-density lipoprotein, and the biological consequences of such oxidation on cell types present in the artery wall and in the circulation, respectively.
Collapse
Affiliation(s)
- Ernst Malle
- Medical University Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Morris A Blajchman
- Departments of Pathology and Medicine, McMaster University, 1200 Main Street West, HSC 2N34, Hamilton, Ontario, Canada L8N 3Z5.
| |
Collapse
|
23
|
Abstract
Enhanced coagulation and thrombosis are linked to a variety of cardiovascular and metabolic diseases, as well as to cancer. Many of these diseases are also associated with enhanced levels of reactive oxygen species (ROS). Indeed, ROS have been made responsible for promoting many of these diseases. They have been shown not only to be cytotoxic, but also to serve as signaling molecules in a variety of cells. Recently, evidence accumulated that ROS and the redox state are also important in the control of blood coagulation and thrombosis.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich at the Technical University Munich, Munich, Germany.
| |
Collapse
|
24
|
Fusegawa Y, Hashizume H, Okumura T, Deguchi Y, Shina Y, Ikari Y, Tanabe T. Hypertensive patients with carotid artery plaque exhibit increased platelet aggregability. Thromb Res 2005; 117:615-22. [PMID: 15993474 DOI: 10.1016/j.thromres.2005.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/18/2005] [Accepted: 05/08/2005] [Indexed: 11/21/2022]
Abstract
BACKGROUND Platelets play an important role in myocardial infarction and ischemic stroke events, but whether platelet aggregability is related to early stage arteriosclerosis remains unclear. METHODS We used a novel platelet counting system which makes it possible to detect spontaneous platelet aggregation, to evaluate the relationship between platelet aggregability and carotid artery arteriosclerosis in 125 outpatients with primary hypertension (46-73 years old: 65 men, 60 women). All subjects underwent carotid artery ultrasonography to determine whether plaque was present and to estimate intima-media thickness. RESULTS Patients with carotid artery plaques (Plaque(+), n=63) were older and had higher systolic blood pressures than patients without plaques (Plaque(-), n=62), but no significant differences in sex, body mass index, diastolic blood pressure, plasma concentrations of glucose, total cholesterol, triglyceride, lipoprotein cholesterol, fibrinogen or the platelet count in whole blood were observed between Plaque(+) and Plaque(-) groups. Plaque(+) subjects showed greater spontaneous platelet aggregability and platelet aggregation induced by 2 microM or 0.5 microM of ADP or 0.3 microM of epinephrine than the Plaque(-) group. When age and systolic blood pressure were matched (n=52 in both groups), the Plaque(+) subjects exhibited greater platelet aggregability than the Plaque(-) subjects. Platelet aggregation induced by 2 microM of ADP showed statistical significant positive correlation coefficients with age, HbA1c and diastolic blood pressure. CONCLUSION Our results indicate that hypertensive patients with carotid artery plaque have increased platelet aggregability. A prospective study is recommended to clarify whether this increase in platelet aggregability promotes the progression of arteriosclerosis.
Collapse
Affiliation(s)
- Yuichi Fusegawa
- Atherosclerosis Prevention Center, Sagamidai Hospital, 6-24-28, Sagamigaoka, Zama, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Korporaal SJA, Gorter G, van Rijn HJM, Akkerman JWN. Effect of oxidation on the platelet-activating properties of low-density lipoprotein. Arterioscler Thromb Vasc Biol 2005; 25:867-72. [PMID: 15692097 DOI: 10.1161/01.atv.0000158381.02640.4b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Because of the large variation in oxidizing procedures and susceptibility to oxidation of low-density lipoprotein (LDL) and the lack in quantification of LDL oxidation, the role of oxidation in LDL-platelet contact has remained elusive. This study aims to compare platelet activation by native LDL (nLDL) and oxidized LDL (oxLDL). METHODS AND RESULTS After isolation, nLDL was dialyzed against FeSO4 to obtain LDL oxidized to well-defined extents varying between 0% and >60%. The oxLDL preparations were characterized with respect to their platelet-activating properties. An increase in LDL oxidation enhances platelet activation via 2 independent pathways, 1 signaling via p38(MAPK) phosphorylation and 1 via Ca2+ mobilization. Between 0% and 15% oxidation, the p38(MAPK) route enhances fibrinogen binding induced by thrombin receptor (PAR-1)-activating peptide (TRAP), and signaling via Ca2+ is absent. At >30% oxidation, p38(MAPK) signaling increases further and is accompanied by Ca2+ mobilization and platelet aggregation in the absence of a second agonist. Despite the increase in p38(MAPK) signaling, synergism with TRAP disappears and oxLDL becomes an inhibitor of fibrinogen binding. Inhibition is accompanied by binding of oxLDL to the scavenger receptor CD36, which is associated with the fibrinogen receptor, alpha(IIb)beta3. CONCLUSIONS At >30% oxidation, LDL interferes with ligand binding to integrin alpha(IIb)beta3, thereby attenuating platelet functions.
Collapse
Affiliation(s)
- Suzanne J A Korporaal
- Thrombosis and Haemostasis Laboratory, Department of Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
26
|
Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene? Arterioscler Thromb Vasc Biol 2005; 25:658-70. [PMID: 15662026 DOI: 10.1161/01.atv.0000156877.94472.a5] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The association between leukocytosis and increased morbidity and mortality of ischemic vascular disease has been observed for more than half a century, and recent studies in >350,000 patients confirm the robustness of the association and the dramatically higher relative and absolute acute and chronic mortality rates in patients with high versus low leukocyte counts. Although there is reason to believe that the association is not causal (that is, that leukocytosis is simply a marker of inflammation), there is also reason to believe that the leukocytosis directly enhances acute thrombosis and chronic atherosclerosis. Leukocytosis also is associated with poor prognosis and vaso-occlusive events in patients with sickle cell disease, and experimental data suggest a direct role for leukocytes in microvascular obstruction. The only way to test whether leukocytes contribute directly to poor outcome in ischemic cardiovascular disease is to assess the effect of modifying leukocyte function or number. Because selective blockade of leukocyte integrin alphaMbeta2 and P-selectin have thus far been disappointing as therapeutic strategies in human cardiovascular and cerebrovascular disease, I discuss the potential risks and benefits of short-term treatment with hydroxyurea to decrease the leukocyte count in select populations of patients at the highest risk of short-term death.
Collapse
Affiliation(s)
- Barry S Coller
- The Rockefeller University, 1230 York Ave, New York, NY 10021, USA.
| |
Collapse
|