1
|
Ricolinostat promotes the generation of megakaryocyte progenitors from human hematopoietic stem and progenitor cells. Stem Cell Res Ther 2022; 13:54. [PMID: 35123563 PMCID: PMC8817546 DOI: 10.1186/s13287-022-02722-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ex vivo production of induced megakaryocytes (MKs) and platelets from stem cells is an alternative approach for supplying transfusible platelets. However, it is difficult to generate large numbers of MKs and platelets from hematopoietic stem cells and progenitor cells (HSPCs).
Methods To optimize the differentiation efficiency of megakaryocytic cells from HSPCs, we first employed a platelet factor 4 (PF4)-promoter reporter and high-throughput screening strategy to screen for small molecules. We also investigated the effects and possible mechanisms of candidate small molecules on megakaryocytic differentiation of human HSPCs. Results The small molecule Ricolinostat remarkably promoted the expression of PF4-promoter reporter in the megakaryocytic cell line. Notably, Ricolinostat significantly enhanced the cell fate commitment of MK progenitors (MkPs) from cord blood HSPCs and promoted the proliferation of MkPs based on cell surface marker detection, colony-forming unit-MK assay, and quantitative real-time PCR analyses. MkPs generated from Ricolinostat-induced HSPCs differentiated into mature MKs and platelets. Mechanistically, we found that Ricolinostat enhanced MkP fate mainly by inhibiting the secretion of IL-8 and decreasing the expression of the IL-8 receptor CXCR2. Conclusion The addition of Ricolinostat to the culture medium promoted MkP differentiation from HSPCs and enhanced the proliferation of MkPs mainly by suppressing the IL-8/CXCR2 pathway. Our results can help the development of manufacturing protocols for the efficient generation of MKs and platelets from stem cells in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02722-5.
Collapse
|
2
|
Identification, characterization and functional analysis of regulatory region of nanos gene from half-smooth tongue sole ( Cynoglossus semilaevis ). Gene 2017; 617:8-16. [DOI: 10.1016/j.gene.2017.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 01/04/2023]
|
3
|
Kaneko M, Minematsu T, Yoshida M, Nishijima Y, Noguchi H, Ohta Y, Nakagami G, Mori T, Sanada H. Compression-induced HIF-1 enhances thrombosis and PAI-1 expression in mouse skin. Wound Repair Regen 2015; 23:657-63. [DOI: 10.1111/wrr.12312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Maki Kaneko
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Takeo Minematsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Mikako Yoshida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Yoshimi Nishijima
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hiroshi Noguchi
- Department of Life Support Technology (Molten), Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Yasunori Ohta
- Department of Pathology, Research Hospital, Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Taketoshi Mori
- Department of Life Support Technology (Molten), Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine; The University of Tokyo; Tokyo Japan
| |
Collapse
|
4
|
Okada Y, Watanabe M, Nakai T, Kamikawa Y, Shimizu M, Fukuhara Y, Yonekura M, Matsuura E, Hoshika Y, Nagai R, Aird WC, Doi T. RUNX1, but not its familial platelet disorder mutants, synergistically activates PF4 gene expression in combination with ETS family proteins. J Thromb Haemost 2013; 11:1742-50. [PMID: 23848403 DOI: 10.1111/jth.12355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Familial platelet disorder (FPD) is a rare autosomal dominant disease characterized by thrombocytopenia and abnormal platelet function. Causal mutations have been identified in the gene encoding runt-related transcription factor 1 (RUNX1) of FPD patients. OBJECTIVES To elucidate the role of RUNX1 in the regulation of expression of platelet factor 4 (PF4) and to propose a plausible mechanism underlying RUNX1-mediated induction of the FPD phenotype. METHODS We assessed whether RUNX1 and its mutants, in combination with E26 transformation-specific-1 (ETS-1), Core-binding factor subunit beta (CBFβ), and Friend leukemia virus integration 1 (FLI-1), cooperatively regulate PF4 expression during megakaryocytic differentiation. In an embryonic stem cell differentiation system, expression levels of endogenous and exogenous RUNX1 and PF4 were determined by real-time RT-PCR. Promoter activation by the transcription factors were evaluated by reporter gene assays with HepG2 cells. DNA binding activity and protein interaction were analyzed by electrophoretic mobility shift assay and immunoprecipitation assay with Cos-7 cells, respectively. Protein localization was analyzed by immunocytochemistry and Western blotting with Cos-7 cells. RESULTS We demonstrated that RUNX1 activates endogenous PF4 expression in megakaryocytic differentiation. RUNX1, but not its mutants, in combination with ETS-1 and CBFβ, or FLI-1, synergistically activated the PF4 promoter. Each RUNX1 mutant harbors various functional abnormalities, including loss of DNA-binding activity, abnormal subcellular localization, and/or alterations of binding affinities for ETS-1, CBFβ, and FLI-1. CONCLUSIONS RUNX1, but not its mutants, strongly and synergistically activates PF4 expression along with ETS family proteins. Furthermore, loss of the RUNX1 transcriptional activation function is induced by various functional abnormalities.
Collapse
Affiliation(s)
- Y Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gebauer N, Bernard V, Gebauer W, Feller AC, Merz H. MicroRNA expression and JAK2 allele burden in bone marrow trephine biopsies of polycythemia vera, essential thrombocythemia and early primary myelofibrosis. Acta Haematol 2013; 129:251-6. [PMID: 23343777 DOI: 10.1159/000345848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/06/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS MicroRNAs (miRNAs) play an important role in cellular differentiation and cancer pathogenesis. However, their role in promoting the malignant phenotype of myeloproliferative diseases and their importance for differential diagnosis of early-stage chronic myeloproliferative diseases (CMPDs) remains widely obscure. METHODS In this study, we systematically evaluated the differential expression of miRNAs previously described to be associated with myelopoiesis and myeloproliferative pathogenesis by quantitative RT-PCR in polycythemia vera, essential thrombocythemia, early primary myelofibrosis (PMF) and normal hematopoiesis. Our goal was to establish certain miRNAs as potential markers for CMPDs to facilitate the differentiation between these diseases and to further investigate molecular differences between the subtypes of myeloproliferative neoplasia. RESULTS An aberrant expression of miRNAs 10a and 150 could be demonstrated for essential thrombocythemia and PMF as well as for polycythemia vera and PMF, respectively. The expression of miR-150 could further be shown to correlate with both JAK2 allele burden and peripheral blood counts. CONCLUSION Thus, the miRNAs investigated in this study seem to be potential marker oncomiRs in the differential diagnosis of CMPDs and possibly hold potential for the elucidation of a JAK2-independent mechanism of pathogenesis.
Collapse
Affiliation(s)
- Niklas Gebauer
- Department of Pathology, Reference Centre for Lymph Node Pathology and Hematopathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.
| | | | | | | | | |
Collapse
|
6
|
Yakura Y, Ishihara C, Kurosaki H, Kazuki Y, Komatsu N, Okada Y, Doi T, Takeya H, Oshimura M. An induced pluripotent stem cell-mediated and integration-free factor VIII expression system. Biochem Biophys Res Commun 2013; 431:336-41. [PMID: 23291180 DOI: 10.1016/j.bbrc.2012.12.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/22/2012] [Indexed: 12/21/2022]
Abstract
Human artificial chromosome (HAC) has several advantages as a gene therapy vector, including stable episomal maintenance and the ability to carry large gene inserts. Induced pluripotent stem (iPS) cells also have a great potential for gene therapy, which can be generated from an individual's own tissues and contribute to any tissues when reintroduced. A Sendai virus (SeV) vector with reprogramming factors is a powerful tool for generating iPS cells because of the high infection efficiency without the risk of integration into host chromosomes. In this study, we developed an iPS cell-mediated and integration-free coagulation factor VIII (FVIII) expression system using non-integrating SeV- and HAC-vectors. Multiple human FVIII genes, which were under the control of the megakaryocyte-specific platelet factor-4 (PF4) promoter for development of a treatment for hemophilia A, were inserted into a HAC vector (PF4-FVIII-HAC). The PF4-FVIII-HAC was introduced into SeV vector-mediated iPS cells derived from a mouse model of hemophilia A. After in vitro differentiation of iPS cells with the PF4-FVIII-HAC into megakaryocytes/platelets, the PF4-FVIII-HAC resulted in expression of FVIII. This study has developed the iPS cell-mediated PF4-driven FVIII expression system using two non-integrating vectors; therefore, this system may be a promising tool for safer gene- and cell-therapy of hemophilia A.
Collapse
Affiliation(s)
- Yuwna Yakura
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Erwin-Cohen R, Porter A, Pittman P, Rossi C, Dasilva L. Host responses to live-attenuated Venezuelan equine encephalitis virus (TC-83): comparison of naïve, vaccine responder and nonresponder to TC-83 challenge in human peripheral blood mononuclear cells. Hum Vaccin Immunother 2012; 8:1053-65. [PMID: 22617845 DOI: 10.4161/hv.20300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a positive-strand RNA Alphavirus endemic in Central and South America, and the causative agent of fatal encephalitis in humans. In an effort to better understand the mechanisms of infection, including differences between people who produce a neutralizing antibody response to the vaccine and those who do not, we performed whole genome transcriptional analysis in human PBMCs exposed in vitro to the live-attenuated vaccine strain of VEEV, TC-83. We compared the molecular responses in cells from three groups of individuals: naïve; previously vaccinated individuals who developed a neutralizing antibody response to the vaccine (responders); and those who did not develop a neutralizing antibody response to the vaccine (nonresponders). Overall, the changes in gene expression were more intense for the naïve group after TC-83 challenge and least potent in the nonresponder group. The main canonical pathways revealed the involvement of interferon and interferon-induced pathways, as well as toll-like receptors TLR- and interleukin (IL)-12-related pathways. HLA class II genotype and suppression of transcript expression for TLR2, TLR4 and TLR8 in the nonresponder group may help explain the lack of vaccine response in this study group. Because TL3 and TLR7 transcripts were elevated in all study groups, these factors may be indicators of the infection and not the immunological state of the individuals. Biomarkers were identified that differentiate between the vaccine responder and the vaccine nonresponder groups. The identified biomarkers were contrasted against transcripts that were unique to the naïve population alone upon induction with TC-83. Biomarker analysis allowed for the discernment between the naïve (innate) responses; the responder (recall) responses; and the nonresponder (alternative) changes to gene transcription that were caused by infection with TC-83. The study also points to the existence of HLA haplotypes that may discriminate between vaccine low- and high-responder phenotypes.
Collapse
Affiliation(s)
- Rebecca Erwin-Cohen
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Center for Aerobiological Sciences, 1425 Porter Street, Room 821, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
8
|
Qiao H, May JM. Interaction of the transcription start site core region and transcription factor YY1 determine ascorbate transporter SVCT2 exon 1a promoter activity. PLoS One 2012; 7:e35746. [PMID: 22532872 PMCID: PMC3332055 DOI: 10.1371/journal.pone.0035746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/23/2012] [Indexed: 01/10/2023] Open
Abstract
Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
| | | |
Collapse
|
9
|
CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 2011; 440:73-84. [PMID: 21770893 DOI: 10.1042/bj20110392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SVCT2 (sodium-vitamin C co-transporter 2) is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In the present study, we mapped discrete elements within the proximal CpG-poor promoter responsible for exon 1a transcription. We identified two E boxes for USF (upstream stimulating factor) binding and one Y box for NF-Y (nuclear factor Y) binding. We show further that NF-Y and USF bind to the exon 1a promoter in a co-operative manner, amplifying the binding of each to the promoter, and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF-binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that exon 1a transcription was induced in cell culture treated with the demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y-USF complex as well as promoter activity, suggesting its importance for cell-specific transcription. Thus CpG methylation at the upstream USF-binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter.
Collapse
|
10
|
Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site. PLoS One 2011; 6:e24837. [PMID: 21931859 PMCID: PMC3171469 DOI: 10.1371/journal.pone.0024837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022] Open
Abstract
In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the −51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a −51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the −51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the −51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.
Collapse
|
11
|
Abstract
The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.
Collapse
|
12
|
Cis-regulatory elements affecting the Nanos gene promoter in the germline stem cells. J Biotechnol 2009; 145:323-9. [PMID: 20026207 DOI: 10.1016/j.jbiotec.2009.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/05/2009] [Accepted: 12/09/2009] [Indexed: 02/02/2023]
Abstract
Drosophila Nanos gene plays an important role in stem cell maintenance and body patterning. With the purpose of understanding the cis-regulatory machinery involved in the transcription of the nanos gene in the germline stem cells, we examined its promoter fragment from +97 to -708 relative to the transcription start site and identified enhancer elements located between position -108 and +97. Experiments with transgenic flies revealed that the minimal promoter (from -108 to +20) is sufficient in the germline stem cells for the GFP expression in transgenic Drosophila. Moreover, the flag-tagged nanos protein blotting experiments revealed that a short promoter fragment plus some sequences of the nos 5'UTR spanning -108 to +97 could efficiently drive the expression of the flag-tagged [Nos-mRNA-nos3'UTR] transgene in transgenic flies indicating that the cis-regulatory elements located between positions -108 and +97 of the nanos promoter are sufficient to fully transcribe the nanos mRNA. Deletion of the identified cis-acting sequences from the promoter rendered it non-functional as it could no longer transcribe the nanos mRNA in transgenic flies thus revealing the importance of these sequences for the transcription of the nanos gene.
Collapse
|
13
|
Altered gene expression patterns in dendritic cells after severe trauma: implications for systemic inflammation and organ injury. Shock 2008; 30:344-51. [PMID: 18323745 DOI: 10.1097/shk.0b013e3181673eb4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells and members of the adoptive immunity. In addition, they play an important role in innate immunity within the systemic inflammatory response to trauma and sepsis. In this study, gene expression patterns of DC in patients with multiple trauma were studied. Total RNA was isolated from highly purified DCs (purity>95%) that were enriched from peripheral blood mononuclear cells and whole blood, respectively. Samples were obtained from 10 multiple trauma patients (injury severity score, 35.4+/-10.6 on day of admission) and 5 healthy volunteers (control). Aliquots of target cDNAs and reference samples (cDNA derived from the monocytic cell line SIGM5) were cohybridized on a thematic medium-density microarray assessing 780 inflammation-related transcripts. Twenty transcripts were up-regulated in DCs of multiple trauma patients compared with healthy volunteers, whereas these differences were missed when RNA from whole blood was subjected to transcriptomic profiling. This cluster included central effector molecules of DC such as transcripts encoding for 5-lipoxygenase and the corresponding leukotriene 4 receptor, which regulate DC migration, adoptive immune responses, and airway inflammation, as well as CD74, CXCL4, or platelet factor 4, a chemokine not implicated as a product of DCs to date. In addition, genes involved in antiapoptosis (BCL2), intracellular signal transduction (mitogen-activated protein kinase), and secretion of mediators (VAMP2) were found to be up-regulated. The up-regulated transcripts suggest that life span and signaling function of DCs are altered by trauma. Furthermore, these data confirm and expand the central role of chemokines and lipid mediators as effector molecules of DC-mediated immune responses in systemic inflammation associated with severe trauma.
Collapse
|
14
|
Hara T, Matsumura-Arioka Y, Ohtani K, Nakamura M. Role of human T-cell leukemia virus type I Tax in expression of the human telomerase reverse transcriptase (hTERT) gene in human T-cells. Cancer Sci 2008; 99:1155-63. [PMID: 18422743 PMCID: PMC11159262 DOI: 10.1111/j.1349-7006.2008.00798.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/08/2008] [Accepted: 01/31/2008] [Indexed: 12/22/2022] Open
Abstract
The viral product Tax encoded by human T-cell leukemia virus type I (HTLV-I) is thought to play a central role in leukemogenesis. Clonal expansion of HTLV-I-infected cells requires the extension of cell division with telomere maintenance, which is regulated by the ribonucleoprotein enzyme telomerase. However, the roles of Tax in the expression of telomerase activity in T-cells remains controversial. Our previous study indicated that expression of the human telomerase reverse transcriptase subunit (hTERT) gene, which determines telomerase activity, is tightly regulated in human T-cells. In the present study, we investigated Tax-mediated regulation of hTERT gene expression by Tax in human T-cells. HTLV-I Tax induced expression of the hTERT gene in human peripheral blood leukocytes. Reporter assays revealed that Tax activated the hTERT promoter in quiescent Kit 225 cells, while the promoter activity was repressed by Tax in proliferating Jurkat cells. Both up-regulation and down-regulation by Tax were mediated through the 43-bp sequences in the promoter, which carried at least two elements that independently functioned as repressors. The two elements bound distinct factors. G1 to S phase transition induced by introduction of either cyclin D2 with cdk4 or p130-specific shRNA also activated the hTERT promoter, implying that activation of the hTERT promoter in quiescent Kit 225 cells is associated with cell cycle progression. Our findings suggest that the cell cycle state critically influences Tax-mediated regulation of hTERT expression.
Collapse
Affiliation(s)
- Toshifumi Hara
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
15
|
Delanaye P, Cavalier E, Depas G, Chapelle JP, Krzesinski JM. New data on the intraindividual variation of cystatin C. Nephron Clin Pract 2008; 108:c246-8. [PMID: 18391572 DOI: 10.1159/000124327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 01/03/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cystatin C is a new interesting marker of glomerular filtration rate (GFR). However, data regarding its biological variance are scarce and conflicting. The ability of cystatin C to longitudinally follow renal function in patients therefore remains questionable. METHODS 12 healthy subjects (6 men and 6 women) were included in the final statistical analysis. Serum creatinine, plasma cystatin C and GFR were measured twice after a 1-week interval on the same day, at the same time, and under the same preanalytical and analytical conditions. GFR was measured with an iohexol method. Serum creatinine was measured with a compensated Jaffé and an enzymatic method. Plasma cystatin C was measured by a particle-enhanced immunonephelometric method. Analytical (CV(A)) and within-subject (CV(I)) variances were classically calculated. RESULTS CV(A) for creatinine (Jaffé and enzymatic methods) and cystatin C was 2.5, 0.97 and 1.29%, respectively. CV(I) was 5.8, 5 and 4.5% for the Jaffé creatinine, enzymatic creatinine and cystatin C determinations, respectively. CONCLUSION Our study confirms that intraindividual variation of cystatin C and creatinine are similar. Therefore, from a biological point of view, cystatin C seems as accurate as creatinine for the longitudinal follow-up of renal function in daily clinical practice.
Collapse
Affiliation(s)
- Pierre Delanaye
- Department of Nephrology, University of Liege, CHU Sart Tilman, Liege, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Murisier F, Guichard S, Beermann F. The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. ACTA ACUST UNITED AC 2007; 20:173-84. [PMID: 17516925 DOI: 10.1111/j.1600-0749.2007.00368.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The terminal differentiation of melanocytes is associated with the transcriptional activation of genes responsible for pigment production such as tyrosinase. Pigment cell-specific transcription factors, such as Mitf, as well as specific proximal and distal regulatory elements (DRE) are implicated in the tight control of tyrosinase expression during development and adulthood. Proper tyrosinase expression in melanocytes depends upon the presence of a DRE that is located at -15 kb and provides enhancer activity via a central element termed core-enhancer. In this report, we show that the transcription factors Sox10, Mitf and USF-1 are able to activate the core-enhancer in luciferase reporter assays. Comparative sequence analysis identified evolutionarily motifs resembling Sox10 binding sites that were required for full enhancer activity in melanoma cells and in tyrosinase::lacZ transgenic mice. Sox10 was able to bind the DRE in vitro and mutation of the conserved motifs abolished the enhancer transactivation mediated by Sox10. In addition, two highly conserved CAGCTG E-box motifs were identified that were also required for enhancer activity and for transactivation by Mitf. The results suggest that Sox10 directly, and Mitf, most likely indirectly, activate the tyrosinase enhancer, underlining the contribution of Sox10 to tyrosinase gene regulation in melanocytes.
Collapse
Affiliation(s)
- Fabien Murisier
- Swiss Institute for Experimental Cancer Research (ISREC), National Center of Competence in Research (NCCR) Molecular Oncology, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
17
|
Jalagadugula G, Dhanasekaran DN, Kim S, Kunapuli SP, Rao AK. Early growth response transcription factor EGR-1 regulates Galphaq gene in megakaryocytic cells. J Thromb Haemost 2006; 4:2678-86. [PMID: 16995904 DOI: 10.1111/j.1538-7836.2006.02229.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Galphaq (Gene GNAQ) plays a major role in platelet signal transduction but little is known regarding its transcriptional regulation. OBJECTIVES We studied Galphaq promoter activity using luciferase reporter gene assays in human erythroleukemia (HEL) cells treated with phorbol 12-myristate 13-acetate (PMA) for 24 h to induce megakaryocytic transformation. METHODS AND RESULTS PMA-treated HEL cells showed enhanced Galphaq expression. Reporter (luciferase) gene studies on 5' upstream construct (up to -116 bp from ATG) revealed a negative regulatory site at -238/-202 and two positive sites at -203/-138 and -1116/-731. The positive regulatory region -203/-138 contained overlapping Sp1/AP-2/EGR-1 consensus sites. Gel shift studies on Galphaq oligonucleotides 1 (-203/-175) and 2 (-174/-152) using HEL cell extracts demonstrated protein binding that was due to early growth response factor EGR-1 at two sites. Mutations in either EGR-1 site markedly decreased the gene activity, indicating functional relevance. Mutation of consensus E-Box motif (-185/-180) had no effect. Reduction in the expression of endogenous EGR-1 with antisense oligonucleotide to EGR-1 inhibited PMA-induced Galphaq transcription. Correspondingly, Egr-1 deficient mouse platelets also showed approximately 50% reduction in the Galphaq expression relative to wild-type platelets. CONCLUSIONS These studies suggest that Galphaq gene is regulated during PMA-induced megakaryocytic differentiation by EGR-1, an early growth response transcription factor that regulates a wide array of genes and plays a major role in diverse activities, including cell proliferation, differentiation and apoptosis, and in vascular response to injury and atherosclerosis.
Collapse
Affiliation(s)
- G Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
18
|
Zhao J, Ennion SJ. Sp1/3 and NF-1 mediate basal transcription of the human P2X1 gene in megakaryoblastic MEG-01 cells. BMC Mol Biol 2006; 7:10. [PMID: 16529657 PMCID: PMC1464135 DOI: 10.1186/1471-2199-7-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/10/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND P2X1 receptors play an important role in platelet function as they can induce shape change, granule centralization and are also involved in thrombus formation. As platelets have no nuclei, the level of P2X1 expression depends on transcriptional regulation in megakaryocytes, the platelet precursor cell. Since nothing is known about the molecular mechanisms regulating megakaryocytic P2X1 expression, this study aimed to identify and functionally characterize the P2X1 core promoter utilized in the human megakaryoblastic cell line MEG-01. RESULTS In order to identify cis-acting elements involved in the transcriptional regulation of P2X1 expression, the ability of 4.7 kb P2X1 upstream sequence to drive luciferase reporter gene expression was tested. Low promoter activity was detected in proliferating MEG-01 cells. This activity increased 20-fold after phorbol-12-myristate-13-acetate (PMA) induced differentiation. A transcription start site was detected 365 bp upstream of the start codon by primer extension. Deletion analysis of reporter constructs indicated a core promoter located within the region -68 to +149 bp that contained two Sp1 sites (named Sp1a and Sp1b) and an NF-1 site. Individual mutations of Sp1b or NF-1 binding sites severely reduced promoter activity whereas triple mutation of Sp1a, Sp1b and NF-1 sites completely abolished promoter activity in both untreated and PMA treated cells. Sp1/3 and NF-1 proteins were shown to bind their respective sites by EMSA and interaction of Sp1/3, NF-1 and TFIIB with the endogenous P2X1 core promoter in MEG-01 cells was demonstrated by chromatin immunoprecipitation. Alignment of P2X1 genes from human, chimp, rat, mouse and dog revealed consensus Sp1a, Sp1b and NF-1 binding sites in equivalent positions thereby demonstrating evolutionary conservation of these functionally important sites. CONCLUSION This study has identified and characterized the P2X1 promoter utilized in MEG-01 cells and shown that binding of Sp1/3 and NF-1 to elements in the direct vicinity of the transcription start site is essential for basal transcription. Targeting the function of these transcription factors in megakaryocytes may therefore provide a basis for the future therapeutic manipulation of platelet P2X1 function.
Collapse
Affiliation(s)
- Jiangqin Zhao
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester, UK
| | - Steven J Ennion
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester, UK
| |
Collapse
|
19
|
Abstract
Megakaryocytes are the hematopoietic precursors of platelets, which play an essential role in thrombosis and hemostasis. Platelet factor 4 (PF4) is expressed exclusively in megakaryocytes and platelets and serves as a lineage-specific marker of megakaryocytic differentiation. We previously characterized a number of upstream enhancer and repressor elements and demonstrated that GATA-1 and ETS-1 are important for PF4 gene expression. Recently, we have determined the novel regulatory element termed "TME" in the PF4 promoter and identified a group of binding proteins from megakaryocytic HEL cells. Here we review the function of these proteins in PF4 gene expression and discuss megakaryocyte-specific gene expression and megakaryocytepoiesis.
Collapse
Affiliation(s)
- Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
20
|
Sayasith K, Lussier JG, Sirois J. Role of upstream stimulatory factor phosphorylation in the regulation of the prostaglandin G/H synthase-2 promoter in granulosa cells. J Biol Chem 2005; 280:28885-93. [PMID: 15927963 DOI: 10.1074/jbc.m413434200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the role of USF phosphorylation in the regulation of the PGHS-2 promoter in granulosa cells, promoter activity assays were performed in primary cultures of bovine granulosa cells transfected with the chimeric PGHS-2 promoter/luciferase (LUC) construct -149/-2PGHS-2.LUC. Transfections were done in the absence or presence of forskolin; the protein kinase A (PKA) inhibitor H-89; or an expression vector encoding USF1, USF2, the catalytic subunit of PKA (cPKA), or a PKA inhibitor protein (PKI). Electrophoretic mobility shift assays were performed to study USF/DNA interactions using granulosa cell nuclear extracts and a 32P-labeled proximal PGHS-2 promoter fragment containing the E-box element. The results show that forskolin stimulation and cPKA overexpression caused a marked and significant increase in USF-dependent DNA binding and PGHS-2 promoter activities (p < 0.05). In contrast, both activities were decreased by H-89 treatment or PKI overexpression. Reverse transcription-PCR analyses revealed that these treatments had similar effects on endogenous PGHS-2 mRNA levels in granulosa cells. Cotransfection studies with a USF2 mutant lacking N-terminal activation domains (U2Delta1-220) repressed forskolin-, cPKA-, and USF-dependent PGHS-2 promoter activities. Electrophoretic mobility shift assays showed that U2Delta1-220 was able to compete with full-length USF proteins and to saturate the E-box element. Immunoprecipitation/Western blot analyses revealed an increase in the levels of phosphorylated USF1 and USF2 after forskolin treatment, whereas chromatin immunoprecipitation assays showed that binding of USF proteins to the endogenous PGHS-2 promoter was stimulated by forskolin. Site-directed mutagenesis of a consensus PKA phosphorylation site within USF proteins abolished their transactivating capacity. Collectively, these results characterize the role of USF phosphorylation in PGHS-2 expression and identify the phosphorylation-dependent increase in USF binding to the E-box as a putative molecular basis for the increase in PGHS-2 promoter transactivation in granulosa cells.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de Recherche en Reproduction Animale and the Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| | | | | |
Collapse
|