1
|
Sahasrabuddhe AA, Elenitoba-Johnson KSJ. TCL1A expression promotes aggressive biology in CLL. Blood 2023; 141:1371-1373. [PMID: 36951882 DOI: 10.1182/blood.2022018435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
|
2
|
Zhang L, Shi Y, Han X. Immunogenomic correlates of immune-related adverse events for anti-programmed cell death 1 therapy. Front Immunol 2022; 13:1032221. [PMID: 36505471 PMCID: PMC9733471 DOI: 10.3389/fimmu.2022.1032221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Despite impressive antitumor efficacy of programmed cell death 1 (PD-1) inhibitors, this inhibition can induce mild to severe autoimmune toxicities, termed immune-related adverse events (irAEs). Yet, predictive pretreatment biomarkers for irAEs development across cancer types remain elusive. We first assessed cellular and molecular factors. To determine factors predicting the risk of irAEs for anti-PD-1 immunotherapy across multiple cancer types, an integrative analysis of cellular and molecular factors from 9104 patients across 21 cancer types and 4865522 postmarketing adverse event reports retrieved from adverse event reporting system was then performed. Accuracy of predictions was quantified as Pearson correlation coefficient determined using leave-one-out cross-validation. Independent validation sets included small cell lung cancer and melanoma cohorts. Out of 4865522 eligible adverse events reports, 10412 cases received anti-PD-1 monotherapy, of which, 2997 (28.78%) exhibited at least one irAE. Among established immunogenomic factors, dendritic cells (DC) abundance showed the strongest correlation with irAEs risk, followed by tumor mutational burden (TMB). Further predictive accuracy was achieved by DC and TMB in combination with CD4+ naive T-cells abundance, and then validated in the small cell lung cancer cohort. Additionally, global screening of multiomics data identified 11 novel predictors of irAEs. Of these, IRF4 showed the highest correlation. Best predictive performance was observed in the IRF4 - TCL1A - SHC-pY317 trivariate model. Associations of IRF4 and TCL1A expression with irAEs development were verified in the melanoma cohort receiving immune checkpoint inhibitors. Collectively, pretreatment cellular and molecular irAEs-associated features as well as their combinations are identified regardless of cancer types. These findings may deepen our knowledge of irAEs pathogenesis and, ultimately, aid in early detection of high-risk patients and management of irAEs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China,Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China,*Correspondence: Yuankai Shi, ; Xiaohong Han,
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,*Correspondence: Yuankai Shi, ; Xiaohong Han,
| |
Collapse
|
3
|
The Modes of Dysregulation of the Proto-Oncogene T-Cell Leukemia/Lymphoma 1A. Cancers (Basel) 2021; 13:cancers13215455. [PMID: 34771618 PMCID: PMC8582492 DOI: 10.3390/cancers13215455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary T-cell leukemia/lymphoma 1A (TCL1A) is a proto-oncogene that is mainly expressed in embryonic and fetal tissues, as well as in some lymphatic cells. It is frequently overexpressed in a variety of T- and B-cell lymphomas and in some solid tumors. In chronic lymphocytic leukemia and in T-prolymphocytic leukemia, TCL1A has been implicated in the pathogenesis of these conditions, and high-level TCL1A expression correlates with more aggressive disease characteristics and poorer patient survival. Despite the modes of TCL1A (dys)regulation still being incompletely understood, there are recent advances in understanding its (post)transcriptional regulation. This review summarizes the current concepts of TCL1A’s multi-faceted modes of regulation. Understanding how TCL1A is deregulated and how this can lead to tumor initiation and sustenance can help in future approaches to interfere in its oncogenic actions. Abstract Incomplete biological concepts in lymphoid neoplasms still dictate to a large extent the limited availability of efficient targeted treatments, which entertains the mostly unsatisfactory clinical outcomes. Aberrant expression of the embryonal and lymphatic TCL1 family of oncogenes, i.e., the paradigmatic TCL1A, but also TML1 or MTCP1, is causally implicated in T- and B-lymphocyte transformation. TCL1A also carries prognostic information in these particular T-cell and B-cell tumors. More recently, the TCL1A oncogene has been observed also in epithelial tumors as part of oncofetal stemness signatures. Although the concepts on the modes of TCL1A dysregulation in lymphatic neoplasms and solid tumors are still incomplete, there are recent advances in defining the mechanisms of its (de)regulation. This review presents a comprehensive overview of TCL1A expression in tumors and the current understanding of its (dys)regulation via genomic aberrations, epigenetic modifications, or deregulation of TCL1A-targeting micro RNAs. We also summarize triggers that act through such transcriptional and translational regulation, i.e., altered signals by the tumor microenvironment. A refined mechanistic understanding of these modes of dysregulations together with improved concepts of TCL1A-associated malignant transformation can benefit future approaches to specifically interfere in TCL1A-initiated or -driven tumorigenesis.
Collapse
|
4
|
Sun S, Fang W. Current understandings on T-cell prolymphocytic leukemia and its association with TCL1 proto-oncogene. Biomed Pharmacother 2020; 126:110107. [PMID: 32247279 DOI: 10.1016/j.biopha.2020.110107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/02/2023] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare mature T cell leukemia with aggressive clinical course, poor response to conventional therapies and high mortality rates. Classical cytogenetics and various genetic techniques have observed complex karyotypes and associated genes involved in the molecular pathogenesis of T-PLL, among which the proto-oncogene T-cell leukemia/lymphoma 1 (TCL1) as a hallmark of malignancy is hyper-activated and abnormally expressed in many T-PLL cases. Progress has been made to identify the presence of chromosomal rearrangements and subsequent changes in key molecular pathways typically involving Akt, which may hint cytogenetic mechanisms underlying the pathogenesis of T-PLL and indicate new treatment targets. In this article, we describe current insights of T-PLL with an emphasis on the potential role of TCL1 gene disorders and TCL1-Akt interactions in cell transformation and disease progression, followed by discussion on current treatment options and novel therapeutic approaches based on cytogenetics, which still remains to be explored for the effective management of T-PLL and other TCL1-driven hematological malignancies.
Collapse
Affiliation(s)
- Siyu Sun
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| | - Wenjia Fang
- Medical College of Nanchang University, Nanchang, 330000, China; Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
5
|
Fiorenza MT, Rava A. The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle 2019; 18:3055-3063. [PMID: 31564197 DOI: 10.1080/15384101.2019.1672465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The oncogenic ability of the T-cell leukemia/lymphoma 1 gene, TCL1, has captured the attention in the field of prolymphocytic T-cell and B-cell chronic leukemias for more than two decades. However, the finding that TCL1 is also expressed in totipotent cells of the mouse preimplantation embryos and that it is among the 10 genes, including the transcription factors Nanog, Oct4, Sox2, Tbx3, and Esrrb, that are required for maintaining the mitotic self-renewal state of embryonic stem cells, raises a great interest. In this review, we highlight newly acquired evidence pinpointing TCL1 as a crucial regulator of metabolic pathways that dictate somatic cell reprogramming toward pluripotency. In our opinion, this feature provides a relevant hint for reframing the role that this factor plays at early stages of mammalian embryo development and in tumorigenesis. Hence, the TCL1-dependent enhancement of serine/threonine AKT/PKB kinase activity favoring cell proliferation appears to be associated to the promotion of glucose transport and activation of glycolytic pathways. This is also consistent with the TCL1 ability to suppress mitochondrial biogenesis and oxygen consumption, downplaying the contribution of oxidative phosphorylation to energy metabolism. It thus appears that TCL1 masters the direction of energy metabolism toward the glycolytic pathway to meet a critical metabolic requirement that goes beyond the mere ATP production. For instance, the synthesis of glycolytic intermediates that are required for DNA synthesis likely represents the most pressing cellular need for both cleavage-stage embryos and rapidly proliferating tumor cells.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy.,IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Alessandro Rava
- Department of Psychology, Division of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
6
|
T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1. PLoS One 2018; 13:e0204775. [PMID: 30286151 PMCID: PMC6171881 DOI: 10.1371/journal.pone.0204775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when over-expressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/- adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e. the secondary hair germ) and in the stem cell niche (i.e. the bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative–differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/- and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/- mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KCs.
Collapse
|
7
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|
8
|
Ho MF, Lummertz da Rocha E, Zhang C, Ingle JN, Goss PE, Shepherd LE, Kubo M, Wang L, Li H, Weinshilboum RM. TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor κB p65: Single Nucleotide Polymorphism and Estrogen Dependence. J Pharmacol Exp Ther 2018; 365:700-710. [PMID: 29592948 DOI: 10.1124/jpet.118.247718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
T-cell leukemia 1A (TCL1A) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E2) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be "reversed" by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E2-dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E2 in a SNP-dependent fashion. Even more striking, nuclear factor-κB (NF-κB) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E2-dependent fashion-a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF-κB p65, an important immune system transcription factor.
Collapse
Affiliation(s)
- Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Edroaldo Lummertz da Rocha
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Cheng Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - James N Ingle
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Paul E Goss
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Lois E Shepherd
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Michiaki Kubo
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Hu Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (M.H., E.L.d.R., C.Z., L.W., H.L., R.M.W.), and Division of Medical Oncology, Department of Oncology (J.N.I.), Mayo Clinic, Rochester, Minnesota; Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts (P.E.G.); Canadian Cancer Trials Group, Kingston, Ontario, Canada (L.E.S.); and RIKEN Center for Integrative Medical Science, Yokohama, Japan (M.K.)
| |
Collapse
|
9
|
Johnston HE, Carter MJ, Cox KL, Dunscombe M, Manousopoulou A, Townsend PA, Garbis SD, Cragg MS. Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures. Mol Cell Proteomics 2017; 16:386-406. [PMID: 28062796 DOI: 10.1074/mcp.m116.063511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Approximately 800,000 leukemia and lymphoma cases are diagnosed worldwide each year. Burkitt's lymphoma (BL) and chronic lymphocytic leukemia (CLL) are examples of contrasting B-cell cancers; BL is a highly aggressive lymphoid tumor, frequently affecting children, whereas CLL typically presents as an indolent, slow-progressing leukemia affecting the elderly. The B-cell-specific overexpression of the myc and TCL1 oncogenes in mice induce spontaneous malignancies modeling BL and CLL, respectively. Quantitative mass spectrometry proteomics and isobaric labeling were employed to examine the biology underpinning contrasting Eμ-myc and Eμ-TCL1 B-cell tumors. Additionally, the plasma proteome was evaluated using subproteome enrichment to interrogate biomarker emergence and the systemic effects of tumor burden. Over 10,000 proteins were identified (q<0.01) of which 8270 cellular and 2095 plasma proteins were quantitatively profiled. A common B-cell tumor signature of 695 overexpressed proteins highlighted ribosome biogenesis, cell-cycle promotion and chromosome segregation. Eμ-myc tumors overexpressed several methylating enzymes and underexpressed many cytoskeletal components. Eμ-TCL1 tumors specifically overexpressed ER stress response proteins and signaling components in addition to both subunits of the interleukin-5 (IL5) receptor. IL5 treatment promoted Eμ-TCL1 tumor proliferation, suggesting an amplification of IL5-induced AKT signaling by TCL1. Tumor plasma contained a substantial tumor lysis signature, most prominent in Eμ-myc plasma, whereas Eμ-TCL1 plasma contained signatures of immune-response, inflammation and microenvironment interactions, with putative biomarkers in early-stage cancer. These findings provide a detailed characterization of contrasting B-cell tumor models, identifying common and specific tumor mechanisms. Integrated plasma proteomics allowed the dissection of a systemic response and a tumor lysis signature present in early- and late-stage cancers, respectively. Overall, this study suggests common B-cell cancer signatures exist and illustrates the potential of the further evaluation of B-cell cancer subtypes by integrative proteomics.
Collapse
Affiliation(s)
- Harvey E Johnston
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK.,§Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Matthew J Carter
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Kerry L Cox
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Melanie Dunscombe
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Antigoni Manousopoulou
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul A Townsend
- ‖Molecular and Clinical Cancer Sciences, Paterson Building, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, M20 4BX
| | - Spiros D Garbis
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.,¶Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Mark S Cragg
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
10
|
Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis 2016; 7:e2071. [PMID: 26821067 PMCID: PMC4816192 DOI: 10.1038/cddis.2015.419] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.
Collapse
Affiliation(s)
- A Bresin
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - L D'Abundo
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - M G Narducci
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - M T Fiorenza
- Dipartimento di Psicologia, Sezione di Neuroscienze, Università La Sapienza di Roma, Rome, Italy
| | - C M Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - M Negrini
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - G Russo
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
11
|
ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice. Proc Natl Acad Sci U S A 2013; 111:793-8. [PMID: 24379361 DOI: 10.1073/pnas.1308374111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen found on chronic lymphocytic leukemia (CLL) B cells, but not on normal adult tissues. We generated transgenic (Tg) mice with human ROR1 regulated by the murine Ig promoter/enhancer. In contrast to nontransgenic littermates, such animals had B-cell-restricted expression of ROR1 and could develop clonal expansions of ROR1(bright)CD5(+)B220(low) B cells resembling human CLL at ≥ 15 mo of age. Because immune-precipitation and mass spectrometry studies revealed that ROR1 could complex with T-cell leukemia 1 (TCL1) in CLL, we crossed these animals with Eµ-TCL1-Tg (TCL1) mice. Progeny with both transgenes (ROR1 × TCL1) developed CD5(+)B220(low) B-cell lymphocytosis and leukemia at a significantly younger median age than did littermates with either transgene alone. ROR1 × TCL1 leukemia B cells had higher levels of phospho-AKT than TCL1 leukemia cells and expressed high levels of human ROR1, which we also found complexed with TCL1. Transcriptome analyses revealed that ROR1 × TCL1 leukemia cells had higher expression of subnetworks implicated in embryonic and tumor-cell proliferation, but lower expression of subnetworks involved in cell-cell adhesion or cell death than did TCL1 leukemia cells. ROR1 × TCL1 leukemia cells also had higher proportions of Ki-67-positive cells, lower proportions of cells undergoing spontaneous apoptosis, and produced more aggressive disease upon adoptive transfer than TCL1 leukemia cells. However, treatment with an anti-ROR1 mAb resulted in ROR1 down-modulation, reduced phospho-AKT, and impaired engraftment of ROR1 × TCL1 leukemia cells. Our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL.
Collapse
|
12
|
Miyazaki T, Miyazaki S, Ashida M, Tanaka T, Tashiro F, Miyazaki JI. Functional analysis of Tcl1 using Tcl1-deficient mouse embryonic stem cells. PLoS One 2013; 8:e71645. [PMID: 23940776 PMCID: PMC3733782 DOI: 10.1371/journal.pone.0071645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Tcl1 is highly expressed in embryonic stem (ES) cells, but its expression rapidly decreases following differentiation. To assess Tcl1’s roles in ES cells, we generated Tcl1-deficient and -overexpressing mouse ES cell lines. We found that Tcl1 was neither essential nor sufficient for maintaining the undifferentiated state. Tcl1 is reported to activate Akt and to enhance cell proliferation. We found that Tcl1 expression levels correlated positively with the proliferation rate and negatively with the apoptosis of ES cells, but did not affect Akt phosphorylation. On the other hand, the phosphorylation level of β-catenin decreased in response to Tcl1 overexpression. We measured the β-catenin activity using the TOPflash reporter assay, and found that wild-type ES cells had low activity, which Tcl1 overexpression enhanced 1.8-fold. When the canonical Wnt signaling is activated by β-catenin stabilization, it reportedly helps maintain ES cells in the undifferentiated state. We then performed DNA microarray analyses between the Tcl1-deficient and -expressing ES cells. The results revealed that Tcl1 expression downregulated a distinct group of genes, including Ndp52, whose expression is very high in blastocysts but reduced in the primitive ectoderm. Based on these results, we discuss the possible roles of Tcl1 in ES cells.
Collapse
Affiliation(s)
- Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Ashida
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomofumi Tanaka
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
13
|
Kim KW, Chung BH, Jeon EJ, Kim BM, Choi BS, Park CW, Kim YS, Cho SG, Cho ML, Yang CW. B cell-associated immune profiles in patients with end-stage renal disease (ESRD). Exp Mol Med 2013; 44:465-72. [PMID: 22617684 PMCID: PMC3429810 DOI: 10.3858/emm.2012.44.8.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most of the previous studies on immune dysregulation in end-stage renal disease (ESRD) have focused on T cell immunity. We investigated B cell subpopulations in ESRD patients and the effect of hemodialysis (HD) on B cell-associated immune profiles in these patients. Forty-four ESRD [maintenance HD patients (n = 27) and pre-dialysis patients (n = 17)] and 27 healthy volunteers were included in this study. We determined the percentage of B cell subtypes, such as mature and immature B cells, memory B cells, and interleukin (IL)-10+ cells, as well as B cell-producing cytokines (IL-10, IL-4 and IL-21) by florescent activated cell sorting (FACS). B cell-associated gene expression was examined using real-time PCR and B cell producing cytokines (IL-10, IL-4 and IL-21) were determined using an enzyme-linked immunosorbent assay (ELISA). The percentage of total B cells and mature B cells did not differ significantly among the three groups. The percentages of memory B cells were significantly higher in the pre-dialysis group than in the HD group (P < 0.01), but the percentage of immature B cells was significantly lower in the pre-dialysis group than in the other groups. The percentages of IL-10-expressing cells that were CD19+ or immature B cells did not differ significantly (P > 0.05) between the two subgroups within the ESRD group, but the serum IL-10 concentration was significantly lower in the pre-dialysis group (P < 0.01). The results of this study demonstrate significantly altered B cell-associated immunity. Specifically, an imbalance of immature and memory B cells in ESRD patients was observed, with this finding predominating in pre-dialysis patients.
Collapse
Affiliation(s)
- Kyoung Woon Kim
- Conversant Research Consortium in Immunologic Disease,Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia 2012; 27:170-82. [PMID: 22713648 DOI: 10.1038/leu.2012.165] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic lymphocytic leukemia (CLL) can be immunosuppressive in humans and mice, and CLL cells share multiple phenotypic markers with regulatory B cells that are competent to produce interleukin (IL)-10 (B10 cells). To identify functional links between CLL cells and regulatory B10 cells, the phenotypes and abilities of leukemia cells from 93 patients with overt CLL to express IL-10 were assessed. CD5(+) CLL cells purified from 90% of the patients were IL-10-competent and secreted IL-10 following appropriate ex vivo stimulation. Serum IL-10 levels were also significantly elevated in CLL patients. IL-10-competent cell frequencies were higher among CLLs with IgV(H) mutations, and correlated positively with TCL1 expression. In the TCL1-transgenic (TCL1-Tg) mouse model of CLL, IL-10-competent B cells with the cell surface phenotype of B10 cells expanded significantly with age, preceding the development of overt, CLL-like leukemia. Malignant CLL cells in TCL1-Tg mice also shared immunoregulatory functions with mouse and human B10 cells. Serum IL-10 levels varied in TCL1-Tg mice, but in vivo low-dose lipopolysaccharide treatment induced IL-10 expression in CLL cells and high levels of serum IL-10. Thus, malignant IL-10-competent CLL cells exhibit regulatory functions comparable to normal B10 cells that may contribute to the immunosuppression observed in patients and TCL1-Tg mice.
Collapse
|
15
|
Abstract
Immunotherapy with therapeutic idiotype vaccines offers promise for treatment of B-cell malignancies. However, identification of novel immunogenic lymphoma-associated antigens that are universally expressed is necessary to overcome the barriers of patient-specific idiotype vaccines. Here, we determined whether T-cell leukemia/lymphoma 1 (TCL1) oncoprotein encoded by the TCL1 gene could be a target for immunotherapy of B-cell malignancies. We show that TCL1 mRNA and protein are selectively expressed in normal B cells but markedly hyperexpressed in multiple human B-cell lymphomas, including follicular lymphoma, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, and splenic marginal zone B-cell lymphoma. We demonstrated that TCL1-specific CD8(+) T cells can be generated from HLA-A*0201 (HLA-A2)(+) normal donors and identified TCL1(71-78) (LLPIMWQL) as the minimal epitope recognized by these T cells. More importantly, TCL1(71-78) peptide-specific T cells were present in the peripheral blood and tumor-infiltrating lymphocytes of lymphoma patients, could be expanded in vitro, and lysed autologous tumor cells but not normal B cells in an HLA-A2-restricted manner. Our results suggest that TCL1 is naturally processed and presented on the surface of lymphoma cells for recognition by cytotoxic T cells and can serve as a novel target for development of immunotherapeutic strategies against common B-cell lymphomas.
Collapse
|
16
|
MyD88 plays an essential role in inducing B cells capable of differentiating into antibody-secreting cells after vaccination. J Virol 2011; 85:11391-400. [PMID: 21865389 DOI: 10.1128/jvi.00080-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We investigated the roles of MyD88, an innate adaptor signaling molecule, in inducing protective humoral immunity after vaccination with influenza virus-like particles (VLPs). MyD88 knockout C57BL/6 mice (MyD88(-/-) mice) vaccinated with influenza VLPs showed significant defects in inducing IgG2a/c isotype antibodies and in generating splenic recall memory B cell responses and antibody-secreting plasma cells in the bone marrow. The protective efficacy of influenza VLP vaccination was lower in MyD88(-/-) mice than in the wild-type mice. Our findings indicate that MyD88-mediated innate signaling pathways are important for effectively inducing primary and boost immune responses, T helper type 1 isotype-switched antibodies, and gamma interferon (IFN-γ)-secreting T cell responses. In particular, the results in this study demonstrated for the first time that MyD88-mediated immune activation is likely an essential pathway for effective generation of long-lived antibody-secreting plasma cells and highly protective immunity after vaccination with influenza VLPs. This study provides insight into mechanisms by which recombinant viral vaccines induce protective immunity via the MyD88-mediated innate immune signaling pathway.
Collapse
|
17
|
Tabrizi SJ, Niiro H, Masui M, Yoshimoto G, Iino T, Kikushige Y, Wakasaki T, Baba E, Shimoda S, Miyamoto T, Hara T, Akashi K. T cell leukemia/lymphoma 1 and galectin-1 regulate survival/cell death pathways in human naive and IgM+ memory B cells through altering balances in Bcl-2 family proteins. THE JOURNAL OF IMMUNOLOGY 2009; 182:1490-9. [PMID: 19155496 DOI: 10.4049/jimmunol.182.3.1490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BCR signaling plays a critical role in purging the self-reactive repertoire, or in rendering it anergic to establish self-tolerance in the periphery. Differences in self-reactivity between human naive and IgM(+) memory B cells may reflect distinct mechanisms by which BCR signaling dictates their survival and death. Here we demonstrate that BCR stimulation protected naive B cells from apoptosis with induction of prosurvival Bcl-2 family proteins, Bcl-x(L) and Mcl-1, whereas it rather accelerated apoptosis of IgM(+) memory B cells by inducing proapoptotic BH3-only protein Bim. We found that BCR-mediated PI3K activation induced the expression of Mcl-1, whereas it inhibited Bim expression in B cells. Phosphorylation of Akt, a downstream molecule of PI3K, was more sustained in naive than IgM(+) memory B cells. Abundant expression of T cell leukemia/lymphoma 1 (Tcl1), an Akt coactivator, was found in naive B cells, and enforced expression of Tcl1 induced a high level of Mcl-1 expression, resulting in prolonged B cell survival. In contrast, Galectin-1 (Gal-1) was abundantly expressed in IgM(+) memory B cells, and inhibited Akt phosphorylation, leading to Bim up-regulation. Enforced expression of Gal-1 induced accelerated apoptosis in B cells. These results suggest that a unique set of molecules, Tcl1 and Gal-1, defines distinct BCR signaling cascades, dictating survival and death of human naive and IgM(+) memory B cells.
Collapse
|
18
|
Kang SM, Yoo DG, Lipatov AS, Song JM, Davis CT, Quan FS, Chen LM, Donis RO, Compans RW. Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One 2009; 4:e4667. [PMID: 19252744 PMCID: PMC2646145 DOI: 10.1371/journal.pone.0004667] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 01/24/2009] [Indexed: 01/15/2023] Open
Abstract
Background Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic. Methodology/Principal Findings Influenza virus-like particles (VLPs) produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1) hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro. Conclusions/Significance These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza.
Collapse
Affiliation(s)
- Sang-Moo Kang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ragone G, Bresin A, Piermarini F, Lazzeri C, Picchio MC, Remotti D, Kang SM, Cooper MD, Croce CM, Narducci MG, Russo G. The Tcl1 oncogene defines secondary hair germ cells differentiation at catagen-telogen transition and affects stem-cell marker CD34 expression. Oncogene 2009; 28:1329-38. [PMID: 19169282 DOI: 10.1038/onc.2008.489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overexpression of the TCL1 gene family plays a role in the onset of T-cell leukemias in mice and in humans. The Tcl1 gene is tightly regulated during early embryogenesis in which it participates in embryonic stem (ES)-cells proliferation and during lymphoid differentiation. Here, we provide evidences that Tcl1 is also important in mouse hair follicle (HF) and skin homeostasis. We found that Tcl1(-/-) adult mice exhibit hair loss, leading to alopecia with extensive skin lesions. By analysing Tcl1 expression in the wild-type (wt) skin through different stages of hair differentiation, we observe high levels in the secondary hair germ (HG) cells and hair bulges, during early anagen and catagen-telogen transition phases. The loss of Tcl1 does not result in apparent skin morphological defects during embryonic development and at birth, but its absence causes a reduction of proliferation in anagen HFs. Importantly, we show the that absence of Tcl1 induces a significant loss of the stem-cell marker CD34 (but not alpha6-integrin) expression in the bulge cells, which is necessary to maintain stem-cell characteristics. Therefore, our findings indicate that Tcl1 gene(s) might have important roles in hair formation, by its involvement in cycling and self-renewal of transient amplifying (TA) and stem-cell (SC) populations.
Collapse
Affiliation(s)
- G Ragone
- Molecular Oncology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
CLL (chronic lymphocytic leukaemia) is characterized by the clonal outgrowth of B-lymphocytes with the distinctive phenotype: CD19(hi)CD5(+)CD23(+)IgM(lo). These malignant B-cells accumulate in the PB (peripheral blood) and lymphoid organs, and are generally arrested at the G(0)/G(1)-phase of cell cycle and display a resistance to apoptosis. To date, most of the CLL research has been carried out using PB samples obtained from patients with established CLL, which have proved instrumental in characterizing the disease. However, while CLL cells appear to have a defect in apoptosis in vivo, they rapidly undergo apoptosis ex vivo, suggesting that CLL cells are dependent on microenvironmental signals to enhance cell survival. One approach used to define the cellular and molecular events that govern CLL has been the development of murine models that replicate the human disease. As well as providing a deeper understanding of the potential triggers for CLL, these models provide preclinical in vivo systems to test novel therapies. The focus of the present review will be to highlight the recent advances in the development of mouse models for CLL.
Collapse
|
21
|
Cheng WC, Hsieh-Li HM, Yeh YJ, Li H. Mice lacking the Obox6 homeobox gene undergo normal early embryonic development and are fertile. Dev Dyn 2007; 236:2636-42. [PMID: 17676645 DOI: 10.1002/dvdy.21261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obox6 is a member of the Obox (oocyte-specific homeobox) gene family. The Obox6 gene was isolated from the mouse two-cell embryonic cDNA library. Using reverse transcriptase-polymerase chain reaction analysis, we found Obox6 is expressed exclusively in early embryonic stages and exhibits an elevated expression from the two-cell stage to the morula stage. The gene is thought to be involved in early embryogenesis. To study the function of Obox6 in early embryogenesis, we generated Obox6 mutant mice using a gene targeting strategy. Obox6 mutant mice with genetic background of C57BL/6J inbred were born according to Mendelian rules without apparent defects. The mutant mice grew without morphological abnormalities and with normal fertility. The lack of an obvious phenotype in Obox6-null mice and altered RNA levels of some Obox genes raise the possibility that other members of the Obox gene family can compensate for Obox6 function during embryogenesis.
Collapse
Affiliation(s)
- Wei-Cheng Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
22
|
Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, Jones D. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 2007; 111:328-37. [PMID: 17890451 PMCID: PMC2200815 DOI: 10.1182/blood-2007-07-101519] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The T-cell leukemia 1 (TCL1) oncoprotein is overexpressed by chromosomal rearrangement in the majority of cases of T-cell prolymphocytic leukemia (T-PLL). In vitro, TCL1 can modulate the activity of the serine-threonine kinase AKT, a downstream effector of T-cell receptor (TCR) signaling. In a series of 86 T-PLL tumors, we show that expression of TCR, and levels of TCL1 and activated AKT are adverse prognostic markers. High-level TCL1 in TCR-expressing T-PLL is associated with higher presenting white blood cell counts, faster tumor cell doubling, and enhanced in vitro growth response to TCR engagement. In primary tumors and TCL1-transfected T-cell lines, TCR engagement leads to rapid recruitment of TCL1 and AKT to transient membrane activation complexes that include TCR-associated tyrosine kinases, including LCK. Pharmacologic inhibition of AKT activation alters the localization, stability, and levels of these transient TCL1-AKT complexes and reduces tumor cell growth. Experimental introduction and knockdown of TCL1 influence the kinetics and strength of TCR-mediated AKT activation. We propose that in T-PLL, TCL1 represents a highly regulated, targetable modulator of TCR-mediated AKT growth signaling.
Collapse
Affiliation(s)
- Marco Herling
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Despouy G, Joiner M, Le Toriellec E, Weil R, Stern MH. The TCL1 oncoprotein inhibits activation-induced cell death by impairing PKCtheta and ERK pathways. Blood 2007; 110:4406-16. [PMID: 17846228 DOI: 10.1182/blood-2006-11-059501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The TCL1/MTCP1 oncogenes were identified on the basis of their involvement in T-cell prolymphocytic leukemia (T-PLL). TCL1 and MTCP1 proteins directly interact with AKT and modulate the AKT signal-transduction pathway, but the relevance of this mechanism in leukemogenesis remains unclear. We investigate the biologic functions of TCL1 in the T-cell lineage using various cell lines, and primary malignant and normal lymphocytes. In the Jurkat cell line, expression of TCL1 had no effect in unstimulated cells, whereas it abrogated activation-induced cell death (AICD). These cellular effects were concomitant with a major inhibition by TCL1 of PKCtheta and ERK pathways. Secondly, the TCL1-driven T-cell leukemia cell line SUP-T11 was shown to have impaired PKCtheta and ERK phosphorylation upon stimulation, which were restored by TCL1 inhibition using RNA interference. Finally, defects in these pathways were also observed in primary malignant (T-PLL) and transduced normal T lymphocytes expressing TCL1. Altogether, our data demonstrated that TCL1 inhibits AICD in T cells by blocking PKCtheta and ERK activation, upon cellular activation.
Collapse
|
24
|
Noguchi M, Ropars V, Roumestand C, Suizu F. Proto‐oncogene TCL1: more than just a coactivator for Akt. FASEB J 2007; 21:2273-84. [PMID: 17360849 DOI: 10.1096/fj.06-7684com] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Serine threonine kinase Akt, also called PKB (protein kinase B), plays a central role in regulating intracellular survival. Deregulation of this Akt signaling pathway underlies various human neoplastic diseases. Recently, the proto-oncogene TCL1 (T cell leukemia 1), with a previously unknown physiological function, was shown to interact with the Akt pleckstrin homology domain, enhancing Akt kinase activity; hence, it functions as an Akt kinase coactivator. In contrast to pathological conditions in which the TCL1 gene is highly activated in various human neoplasmic diseases, the physiological expression of TCL1 is tightly limited to early developmental cells as well as various developmental stages of immune cells. The NBRE (nerve growth factor-responsive element) of the proximal TCL1 promoter sequences can regulate the restricted physiological expression of TCL1 in a negative feedback mechanism. Further, based on the NMR structural studies of Akt-TCL1 protein complexes, an inhibitory peptide, "Akt-in," consisting of the betaA strand of TCL1, has been identified and has therapeutic potential. This review article summarizes and discusses recent advances in the understanding of TCL1-Akt functional interaction in order to clarify the biological action of the proto-oncogene TCL1 family and the development avenues for a suppressive drug specific for Akt, a core intracellular survival regulator.
Collapse
Affiliation(s)
- Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
25
|
Quan FS, Huang C, Compans RW, Kang SM. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 2007; 81:3514-24. [PMID: 17251294 PMCID: PMC1866067 DOI: 10.1128/jvi.02052-06] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recurrent outbreaks of highly pathogenic avian influenza virus pose the threat of pandemic spread of lethal disease and make it a priority to develop safe and effective vaccines. Influenza virus-like particles (VLPs) have been suggested to be a promising vaccine approach. However, VLP-induced immune responses, and their roles in inducing memory immune responses and cross-protective immunity have not been investigated. In this study, we developed VLPs containing influenza virus A/PR8/34 (H1N1) hemagglutinin (HA) and matrix (M1) proteins and investigated their immunogenicity, long-term cross-protective efficacy, and effects on lung proinflammatory cytokines in mice. Intranasal immunization with VLPs containing HA induced high serum and mucosal antibody titers and neutralizing activity against PR8 and A/WSN/33 (H1N1) viruses. Mice immunized with VLPs containing HA showed little or no proinflammatory lung cytokines and were protected from a lethal challenge with mouse-adapted PR8 or WSN viruses even 5 months postimmunization. Influenza VLPs induced mucosal immunoglobulin G and cellular immune responses, which were reactivated rapidly upon virus challenge. Long-lived antibody-secreting cells were detected in the bone marrow of immunized mice. Immune sera administered intranasally were able to confer 100% protection from a lethal challenge with PR8 or WSN, which provides further evidence that anti-HA antibodies are primarily responsible for preventing infection. Taken together, these results indicate that nonreplicating influenza VLPs represent a promising strategy for the development of a safe and effective vaccine to control the spread of lethal influenza viruses.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
26
|
Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA, Ko MS. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS One 2006; 1:e26. [PMID: 17183653 PMCID: PMC1762406 DOI: 10.1371/journal.pone.0000026] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/03/2006] [Indexed: 12/11/2022] Open
Abstract
POU transcription factor Pou5f1 (Oct3/4) is required to maintain ES cells in an undifferentiated state. Here we show that global expression profiling of Oct3/4-manipulated ES cells delineates the downstream target genes of Oct3/4. Combined with data from genome-wide chromatin-immunoprecipitation (ChIP) assays, this analysis identifies not only primary downstream targets of Oct3/4, but also secondary or tertiary targets. Furthermore, the analysis also reveals that downstream target genes are regulated either positively or negatively by Oct3/4. Identification of a group of genes that show both activation and repression depending on Oct3/4 expression levels provides a possible mechanism for the requirement of appropriate Oct3/4 expression to maintain undifferentiated ES cells. As a proof-of-principle study, one of the downstream genes, Tcl1, has been analyzed in detail. We show that Oct3/4 binds to the promoter region of Tcl1 and activates its transcription. We also show that Tcl1 is involved in the regulation of proliferation, but not differentiation, in ES cells. These findings suggest that the global expression profiling of gene-manipulated ES cells can help to delineate the structure and dynamics of gene regulatory networks.
Collapse
Affiliation(s)
- Ryo Matoba
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of HealthBaltimore, Maryland, United States of America
| | - Hitoshi Niwa
- Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental BiologyKobe, Japan
| | - Shinji Masui
- Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental BiologyKobe, Japan
| | - Satoshi Ohtsuka
- Laboratory of Pluripotent Cell Studies, RIKEN Center for Developmental BiologyKobe, Japan
| | - Mark G. Carter
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of HealthBaltimore, Maryland, United States of America
| | - Alexei A. Sharov
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of HealthBaltimore, Maryland, United States of America
| | - Minoru S.H. Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, National Institutes of HealthBaltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Skountzou I, Quan FS, Gangadhara S, Ye L, Vzorov A, Selvaraj P, Jacob J, Compans RW, Kang SM. Incorporation of glycosylphosphatidylinositol-anchored granulocyte- macrophage colony-stimulating factor or CD40 ligand enhances immunogenicity of chimeric simian immunodeficiency virus-like particles. J Virol 2006; 81:1083-94. [PMID: 17108046 PMCID: PMC1797543 DOI: 10.1128/jvi.01692-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The rapid worldwide spread of human immunodeficiency virus (HIV) mandates the development of successful vaccination strategies. Since live attenuated HIV is not accepted as a vaccine due to safety concerns, virus-like particles (VLPs) offer an attractive safe alternative because they lack the viral genome yet they are perceived by the immune system as a virus particle. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this we generated chimeric simian immunodeficiency virus (SIV) VLPs containing either glycosylphosphatidylinositol (GPI)-anchored granulocyte-macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity and ability to enhance immune responses in vivo. Immunization of mice with chimeric SIV VLPs containing GM-CSF induced SIV Env-specific antibodies as well as neutralizing activity at significantly higher levels than those induced by standard SIV VLPs, SIV VLPs containing CD40L, or standard VLPs mixed with soluble GM-CSF. In addition, mice immunized with chimeric SIV VLPs containing either GM-CSF or CD40L showed significantly increased CD4(+)- and CD8(+)-T-cell responses to SIV Env, compared to standard SIV VLPs. Taken together, these results demonstrate that the incorporation of immunostimulatory molecules enhances humoral and cellular immune responses. We propose that anchoring immunostimulatory molecules into SIV VLPs can be a promising approach to augmenting the efficacy of VLP antigens.
Collapse
Affiliation(s)
- Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
French SW, Dawson DW, Chen HW, Rainey RN, Sievers SA, Balatoni CE, Wong L, Troke JJ, Nguyen MTN, Koehler CM, Teitell MA. The TCL1 oncoprotein binds the RNase PH domains of the PNPase exoribonuclease without affecting its RNA degrading activity. Cancer Lett 2006; 248:198-210. [PMID: 16934922 DOI: 10.1016/j.canlet.2006.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 07/13/2006] [Indexed: 12/16/2022]
Abstract
TCL1 is an AKT kinase coactivator that, when dysregulated, initiates mature lymphocyte malignancies in humans and transgenic mice. While TCL1 augments AKT pathway signaling, additional TCL1 interacting proteins that may contribute to cellular homeostasis or transformation are lacking. Here, an exoribonuclease, PNPase, was identified in a complex with TCL1. The AKT interaction domain on TCL1 bound either RNase PH repeat domain of PNPase without influencing its RNA degrading activity, which was compatible with predicted docking models for a TCL1-PNPase complex. Our data provide a novel protein interaction for mammalian PNPase that may impact TCL1 mediated transformation.
Collapse
Affiliation(s)
- Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hiromura M, Suizu F, Narita M, Kinowaki K, Noguchi M. Identification of nerve growth factor-responsive element of the TCL1 promoter as a novel negative regulatory element. J Biol Chem 2006; 281:27753-64. [PMID: 16835233 DOI: 10.1074/jbc.m602420200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine kinase, Akt (protein kinase B) plays a central role in the regulation of intracellular cell survival. Recently, we demonstrated that the proto-oncogene TCL1, overexpressed in human T-cell prolymphocytic leukemia, is an Akt kinase co-activator. Tightly restricted TCL1 gene expression in early developmental cells suggested that the TCL1 gene is regulated at a transcriptional level. To characterize how TCL1 gene expression is regulated, we cloned the 5'-promoter of the TCL1 gene located at human chromosome 14q32. The 5'-TCL1 promoter region contains a TATA box with cis-regulatory elements for Nur77/NGFI-B (nerve growth factor-responsive element (NBRE), CCAAGGTCA), NFkappaB, and fork head transcription factor. Nur77/NGFI-B, an orphan receptor superfamily transcription factor implicated in T-cell apoptosis, is a substrate for Akt. We hypothesized that TCL1 transactivity is regulated through Akt-induced phosphorylation of Nur77/NGFI-B in vivo. In an electrophoretic mobility shift assay with chromosomal immunoprecipitation assays, wild-type Nur77, but not S350A mutant Nur77, could specifically bind to TCL1-NBRE. A luciferase assay demonstrated that TCL1-NBRE is required for inhibition of TCL1 transactivity upon nerve growth factor/platelet-derived growth factor stimulation, which activates Akt and phosphorylates Nur77. Using a chromosomal immunoprecipitation assay with reverse transcription-PCR, nerve growth factor stimulation inhibited binding of endogenous Nur77 to TCL1-NBRE, in turn, suppressing TCL1 gene expression. The results together establish that TCL1-NBRE is a novel negative regulatory element of Nur77 (NGFI-B). To the best of our knowledge, TCL1-NBRE is the first direct target of Nur77 involving the regulation of intracellular cell death survival. This Akt-induced inhibitory mechanism of TCL1 should play an important role in immunological and/or neuronal development in vivo.
Collapse
Affiliation(s)
- Makoto Hiromura
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | |
Collapse
|
30
|
Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR. Dissecting self-renewal in stem cells with RNA interference. Nature 2006; 442:533-8. [PMID: 16767105 DOI: 10.1038/nature04915] [Citation(s) in RCA: 749] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 05/16/2006] [Indexed: 12/12/2022]
Abstract
We present an integrated approach to identify genetic mechanisms that control self-renewal in mouse embryonic stem cells. We use short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions. We focus on transcriptional regulators and identify seven genes for which shRNA-mediated depletion negatively affects self-renewal, including four genes with previously unrecognized roles in self-renewal. Perturbations of these gene products are combined with dynamic, global analyses of gene expression. Our studies suggest specific biological roles for these molecules and reveal the complexity of cell fate regulation in embryonic stem cells.
Collapse
Affiliation(s)
- Natalia Ivanova
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The T-cell leukaemia/lymphoma 1 (TCL1)-family oncoproteins augment AKT signal transduction and enhance cell proliferation and survival. Chromosome rearrangements, faulty developmental silencing and Epstein-Barr virus infection appear to dysregulate the expression of TCL1-family genes, provoking several important types of lymphocyte cancer. A key role for TCL1 proteins in cell transformation has been established in studies of transgenic mouse models, which develop a unique spectrum of T- and B-cell malignancies. How TCL1 proteins are regulated and dysregulated, how they promote transformation and the potential for therapies modelled on TCL1 interactions have important implications for understanding and treating lymphocyte cancers.
Collapse
Affiliation(s)
- Michael A Teitell
- Department of Pathology and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, 675 Charles Young Drive South, 4-762 MacDonald Research Laboratories, Los Angeles, California 90095-1732, USA.
| |
Collapse
|